Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (3): 427-437.doi: 10.3724/SP.J.1006.2021.04178
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
ZHOU Guan-Tong(), LEI Jian-Feng, DAI Pei-Hong, LIU Chao, LI Yue, LIU Xiao-Dong*()
[1] | 许宗弘. 棉花枯黄萎病研究现状及展望. 知识经济, 2010,16:132. |
Xu Z H. Research status and prospect of cotton Fusarium Wilt. Knowledge Econ, 2010,16:132 (in Chinese with English abstract). | |
[2] | 任爱霞. 棉花枯黄萎病抗性遗传及生化机理研究. 浙江大学硕士学位论文, 浙江杭州, 2002. |
Ren A X. Study on Inheritance and Biochemical Mechanism of Cotton Fusarium Wilt Resistance. MS Thesis of Zhejiang University, Hangzhou, Zhejiang, China, 2002 (in Chinese with English abstract). | |
[3] | 徐立华. 我国棉花高产、高效栽培技术研究现状与发展思路. 中国棉花, 2001, (3):5-8. |
Xu L H. Research status and development ideas of cotton high-yield and high-efficiency cultivation technology in my country. China Cotton, 2001, (3):5-8 (in Chinese with English abstract). | |
[4] | 孙学振, 施培, 周治国. 我国棉花高产栽培技术理论研究现状与展望. 中国棉花, 1999, (4):2-7. |
Sun X Z, Shi P, Zhou Z G. Current status and prospects of the theoretical research on cotton high-yield cultivation techniques in my country. China Cotton, 1999, (4):2-7 (in Chinese with English abstract). | |
[5] |
Sun Y, Li J, Xia L. Precise genome modification via sequence specific nucleases-mediated gene targetingfor crop improvement. Front Plant Sci, 2016,7:1928.
doi: 10.3389/fpls.2016.01928 pmid: 28066481 |
[6] | 刘蓓, 尉玮, 王丽华. 基因编辑新技术研究进展. 亚热带农业研究, 2013,9(4):262-269. |
Liu B, Wei W, Wang L H. Research progress of new technology of gene editing. Subtrop Agric Res, 2013,9(4):262-269 (in Chinese with English abstract). | |
[7] | Cao H X, Wang W, Le H T, Vu G T. The power of CRISPR-Cas9-induced genome editing to speed up plant breeding. Int J Genomics, 2016,2016:5078796. |
[8] | Gilbert L A, Larson M H, Morsut L, Liu Za, Brar G A, Torres S E, Stern-Ginossar N, Brandman O, Whitehead E H, Doudna J A, Lim W A, Weissman J S, Qi L S. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell, 2013,154:442-451. |
[9] |
Hsu P D, Lander E S, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014,157:1262-1278.
pmid: 24906146 |
[10] | Bassett A R, Tibbit C, Ponting C P, Liu J L. Highly efficient targeted mutagenesis of drosophila with the CRISPR/Cas9 system. Cell Rep, 2014,6:1178-1179. |
[11] | Barrangou R, Marraffini L A. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Mol Cell, 2014,54:234-244. |
[12] |
Mao Y F, Zhang Z J, Feng Z Y, Wei P L, Zhang H, Botella J R, Zhu J K. Development of germline specific CRISPR/Cas9 systems to improve the production of heritable gene modifications in Arabidopsis. Plant Biotechnol J, 2016,14:519-532.
doi: 10.1111/pbi.12468 pmid: 26360626 |
[13] |
Kim H, Kim S T, Ryu J, Choi M K, Kweon J, Kang B C, Ahn H M, Bae S, Kim J, Kim J S, Kim S G. A simple, flexible and high-throughput cloning system for plant genome editing via CRISPR/Cas system. J Integr Plant Biol, 2016,58:705-712.
doi: 10.1111/jipb.12474 |
[14] |
Gao S L, Tong Y Y, Wen Z Q, Zhu L, Ge M, Chen D J, Jiang Y, Yang S. Multiplex gene editing of theYarrowia lipolytica genome using the CRISPR/Cas9 system. J Ind Microbiol Biotechnol, 2016,43:1085-1093.
pmid: 27349768 |
[15] |
Zhang F, Maeder M L, Unger-Wallace E, Hoshaw J P, Reyon D, Christian M, Li X H, Pierick C J, Dobbs D, Peterson T, Joung J K, Voytas D F. High frequency targeted mutagenesis inArabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA, 2010,107:12028-12033.
doi: 10.1073/pnas.0914991107 pmid: 20508152 |
[16] |
Shukla V K, Doyon Y, Miller J C, DeKelver R C, Moehle E A, Worden S E, Mitchell J C, Arnold N L, Gopalan S, Meng X D, Choi V M, Rock J M, Wu Y Y, Katibah G E, Gao Z F, McCaskill D, Simpson M A, Blakeslee B, Greenwalt S A, Butler H J, Hinkley S J, Zhang L, Rebar E J, Gregory P D, Urnov F D. Precise genome modification in the crop speciesZea mays using zinc-finger nucleases. Nature, 2009,459:437-441.
doi: 10.1038/nature07992 pmid: 19404259 |
[17] |
Townsend J A, Wright D A, Winfrey R J, Fu F L, Maeder M L, Joung J K, Voytas D F. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature, 2009,459:442-445.
pmid: 19404258 |
[18] | 谢小东, 高军平, 李泽锋, 张剑锋, 魏攀, 罗朝鹏, 王晨, 武明珠, 翟妞, 杨军. CRISPR/Cas9介导烟草多基因编辑体系的应用. 中国烟草学报, 2019,25(4):72-80. |
Xie X D, Gao J P, Li Z F, Zhang J F, Wei P, Luo Z P, Wang C, Wu M Z, Zhai N, Yang J. Application of CRISPR/Cas9 mediated tobacco multi-gene editing system. Acta Tab Sin, 2019,25(4):72-80 (in Chinese with English abstract). | |
[19] | 王海明, 张立强, 李娜, 刘建丰, 马崇烈. 利用CRISPR/Cas9基因编辑技术敲除水稻NRR基因促进根系生长的研究. 杂交水稻, 2019,34(5):39-45. |
Wang H M, Zhang L Q, Li N, Liu J F, Ma C L. Using CRISPR/Cas9 gene editing technology to knock out rice NRR gene to promote root growth. Hybrid Rice, 2019,34(5):39-45 (in Chinese with English abstract). | |
[20] | 陈修贵. CRISPR/Cas9系统介导的棉花GhCLA1和GhVP基因编辑的研究. 华中农业大学博士学位论文, 湖北武汉, 2017. |
Chen X G. Study on Cotton GhCLA1 and GhVP Gene Editing Mediated by CRISPR/Cas9 System. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2017 (in Chinese with English abstract). | |
[21] | 王艳玲, 孟志刚, 李妍妍, 孟钊红, 王远, 孙国清, 朱涛, 梁成真, 蔡永萍, 郭三堆, 张锐, 林毅. CRISPR/Cas9编辑棉花精氨酸酶基因促进侧根形成和发育. 中国科学: 生命科学, 2017,47:1200-1203. |
Wang Y L, Meng Z G, Li Y Y, Meng Z H, Wang Y, Sun G Q, Zhu T, Liang C Z, Cai Y P, Guo S D, Zhang R, Lin Y. CRISPR/Cas9 editing cotton arginase gene promotes lateral root formation and development. Sci Sin (Vitae), 2017,47:1200-1203 (in Chinese with English abstract). | |
[22] |
Farboud B, Meyer B J. Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design. Genetics, 2015,199:959-971.
doi: 10.1534/genetics.115.175166 pmid: 25695951 |
[23] |
Chen X G, Lu X K, Shu N, Wang S, Wang J J, Wang D L, Guo L X, Ye W W. Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system. Sci Rep, 2017,7:44304.
pmid: 28287154 |
[24] | Gao W, Long L, Tian X Q, Xu F C, Liu J, Prashant K S, Jose R B, Song C P. Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci, 2017,8:1364. |
[25] |
Hu J C, Li S, Li Z L, Li H Y, Song W B, Zhao H M, Lai J S, Xia L Q, Li D W, Zhang Y L. A barley stripe mosaic virus-based guide RNA delivery system for targeted mutagenesis in wheat and maize. Mol Plant Pathol, 2019,20:1463-1474.
pmid: 31273916 |
[26] |
Yin K Q, Han T, Liu G, Chen T Y, Wang Y, Yu A Y L, Liu Y L. A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Sci Rep, 2015,5:14926.
pmid: 26450012 |
[27] |
Ali Z, Abul-Faraj A, Li L X, Ghosh N, Piatek M, Mahjoub A, Aouida M, Piatek A, Baltes N J, Voytas D F, Dinesh-Kumar S, Mahfouz M M. Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol Plant, 2015,8:1288-1291.
doi: 10.1016/j.molp.2015.02.011 pmid: 25749112 |
[28] |
Ali Z, Eid A, Ali S, Mahfouz M M. Pea early-browning virus- mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis. Virus Res, 2018,244:333-337.
pmid: 29051052 |
[29] |
Cody W B, Scholthof H B, Mirkov T E. Multiplexed gene editing and protein overexpression using aTobacco mosaic virus viral vector. Plant Physiol, 2017,175:23-35.
doi: 10.1104/pp.17.00411 pmid: 28663331 |
[30] |
Jiang N, Zhang C, Liu J Y, Guo Z H, Zhang Z Y, Han C G, Wang Y. Development of Beet necrotic yellow vein virus-based vectors for multiple-gene expression and guide RNA delivery in plant genome editing. Plant Biotechnol J, 2019,17:1302-1315.
pmid: 30565826 |
[31] |
Gu Z H, Huang C J, Li F F, Zhou X P. A versatile system for functional analysis of genes and microRNAs in cotton. Plant Biotechnol J, 2014,12:638-649.
pmid: 24521483 |
[32] | 雷建峰, 伍娟, 陈晓俊, 於添平, 倪志勇, 李月, 张巨松, 刘晓东. 棉花花粉中高效转录U6启动子的克隆及功能分析. 中国农业科学, 2015,48:3794-3802. |
Lei J F, Wu J, Chen X J, Yu T P, Ni Z Y, Li Y, Zhang J S, Liu X D. Cloning and functional analysis of the highly efficient transcription U6 promoter in cotton pollen. Sci Agric Sin, 2015,48:3794-3802 (in Chinese with English abstract). | |
[33] | Zhu S H, Yu X L, Li Y J, Sun Y Q, Zhu Q H, Sun J. Highly efficient targeted gene editing in upland cotton using the CRISPR/Cas9 system. Int J Mol Sci, 2018,19:3000. |
[34] | Gao W, Long L, Tian X Q, Xu F C, Liu J, Prashant K S, Jose R B, Song C P. Genome editing in cotton with the CRISPR/Cas9 system. Front Plant Sci, 2017,8:1364. |
[35] | 李妮娜, 丁林云, 张志远, 郭旺珍. 棉花叶肉原生质体分离及目标基因瞬时表达体系的建立. 作物学报, 2014,40:231-239. |
Li N N, Ding L Y, Zhang Z Y, Guo W Z. Isolation of mesophyll protoplast and establishment of gene transient expression system in cotton. Acta Agron Sin, 2014,40:231-239 (in Chinese with English abstract). |
[1] | ZHOU Jing-Yuan, KONG Xiang-Qiang, ZHANG Yan-Jun, LI Xue-Yuan, ZHANG Dong-Mei, DONG He-Zhong. Mechanism and technology of stand establishment improvements through regulating the apical hook formation and hypocotyl growth during seed germination and emergence in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1051-1058. |
[2] | SUN Si-Min, HAN Bei, CHEN Lin, SUN Wei-Nan, ZHANG Xian-Long, YANG Xi-Yan. Root system architecture analysis and genome-wide association study of root system architecture related traits in cotton [J]. Acta Agronomica Sinica, 2022, 48(5): 1081-1090. |
[3] | YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247. |
[4] | SHI Yu-Qin, SUN Meng-Dan, CHEN Fan, CHENG Hong-Tao, HU Xue-Zhi, FU Li, HU Qiong, MEI De-Sheng, LI Chao. Genome editing of BnMLO6 gene by CRISPR/Cas9 for the improvement of disease resistance in Brassica napus L [J]. Acta Agronomica Sinica, 2022, 48(4): 801-811. |
[5] | ZHENG Shu-Feng, LIU Xiao-Ling, WANG Wei, XU Dao-Qing, KAN Hua-Chun, CHEN Min, LI Shu-Ying. On the green and light-simplified and mechanized cultivation of cotton in a cotton-based double cropping system [J]. Acta Agronomica Sinica, 2022, 48(3): 541-552. |
[6] | ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395. |
[7] | ZHANG Te, WANG Mi-Feng, ZHAO Qiang. Effects of DPC and nitrogen fertilizer through drip irrigation on growth and yield in cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 396-409. |
[8] | ER Chen, LIN Tao, XIA Wen, ZHANG Hao, XU Gao-Yu, TANG Qiu-Xiang. Coupling effects of irrigation and nitrogen levels on yield, water distribution and nitrate nitrogen residue of machine-harvested cotton [J]. Acta Agronomica Sinica, 2022, 48(2): 497-510. |
[9] | ZHAO Wen-Qing, XU Wen-Zheng, YANG Liu-Yan, LIU Yu, ZHOU Zhi-Guo, WANG You-Hua. Different response of cotton leaves to heat stress is closely related to the night starch degradation [J]. Acta Agronomica Sinica, 2021, 47(9): 1680-1689. |
[10] | YUE Dan-Dan, HAN Bei, Abid Ullah, ZHANG Xian-Long, YANG Xi-Yan. Fungi diversity analysis of rhizosphere under drought conditions in cotton [J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815. |
[11] | ZHANG Wang, XIAN Jun-Lin, SUN Chao, WANG Chun-Ming, SHI Li, YU Wei-Chang. Preliminary study of genome editing of peanut FAD2 genes by CRISPR/Cas9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1481-1490. |
[12] | ZENG Zi-Jun, ZENG Yu, YAN Lei, CHENG Jin, JIANG Cun-Cang. Effects of boron deficiency/toxicity on the growth and proline metabolism of cotton seedlings [J]. Acta Agronomica Sinica, 2021, 47(8): 1616-1623. |
[13] | GAO Lu, XU Wen-Liang. GhP4H2 encoding a prolyl-4-hydroxylase is involved in regulating cotton fiber development [J]. Acta Agronomica Sinica, 2021, 47(7): 1239-1247. |
[14] | MA Huan-Huan, FANG Qi-Di, DING Yuan-Hao, CHI Hua-Bin, ZHANG Xian-Long, MIN Ling. GhMADS7 positively regulates petal development in cotton [J]. Acta Agronomica Sinica, 2021, 47(5): 814-826. |
[15] | XU Nai-Yin, ZHAO Su-Qin, ZHANG Fang, FU Xiao-Qiong, YANG Xiao-Ni, QIAO Yin-Tao, SUN Shi-Xian. Retrospective evaluation of cotton varieties nationally registered for the Northwest Inland cotton growing regions based on GYT biplot analysis [J]. Acta Agronomica Sinica, 2021, 47(4): 660-671. |
|