Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (3): 462-471.doi: 10.3724/SP.J.1006.2021.04034

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL mapping of salt and drought tolerance related traits in Brassica napus L.

MENG Jiang-Yu(), LIANG Guang-Wei, HE Ya-Jun*(), QIAN Wei   

  1. College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
  • Received:2020-02-16 Accepted:2020-10-14 Online:2021-03-12 Published:2020-11-18
  • Contact: HE Ya-Jun E-mail:1131241810@qq.com;hyj790124@163.com
  • Supported by:
    National Key Research and Development Program of China(2016YFD0100202);National Natural Science Foundation of China(31671729);Chongqing Research Program of Basic Research and Frontier Technology(cstc2017jcyjAX0391)

Abstract:

Salt and drought stresses are main abiotic stresses affecting crop yield. Detecting the QTLs related to salt and drought tolerance can provide theoretical basis for stress resistance breeding in rapeseed. In this study, a doubled haploid population (DH population), which included 261 lines constructed using the German winter rapeseed cultivar ‘Express’ (female) and the Chinese semi-winter line ‘SWU07’ (male), were used to detect QTLs related to salt and drought tolerance. The seeds were germinated in Petri dishes under 1.2% NaCl and 20% PEG-6000, respectively. The control was under the sterile dH2O. Three tolerance related traits, root length, fresh weight and germination rate of each line were measured on the 7th day after planting. The relative value of root length, fresh weight and germination rate under the salt and drought tolerance condition were calculated. Composite interval mapping (CIM) was used to identify the related QTLs according to the constructed genetic map. A total of 12 QTLs were detected for salt tolerance related traits and located on A02, A03, A05, A09, C01, and C09 chromosome, explaining phenotypic variation ranging from 3.61% to 10.59%. Five of these QTLs were persistently expressed in different repetitions. A total of 9 QTLs were detected for drought tolerance related traits and located on A01, A02, A03, A05, A09, A10, and C03 chromosome, explaining phenotypic variation ranging from 3.94% to 12.90%. Two of these QTLs were persistently expressed in different repetitions. In addition, the overlapped QTLs, located on A02 and A03, were detected under salt stress and drought stress. These results provide more genetic information for improving salt and drought tolerance in rapeseed.

Key words: Brassica napus L., salt tolerance, drought tolerance, QTL

Table 1

Phenotypic analysis under different stress environments in parents and the DH population"

胁迫环境
Stress environment
性状
Trait
亲本 Parent DH群体 DH population
SWU07 表达
Express
Pt-test 最小值
Min.
最大值
Max.
平均值
Mean
标准差
SD
变异系数
CV (%)
1.2% NaCl 发芽率 Germination rate 0.036 0.173 0 0 0.590 0.151 0.130 86.333
根长 Root length 0.046 0.032 0.007 0.019 0.313 0.082 0.048 58.970
鲜重 Fresh weight 0.155 0.184 0.028 0.119 0.773 0.272 0.104 38.206
20% PEG-6000 发芽率 Germination rate 0.894 0.959 0.017 0.120 0.980 0.845 0.172 20.377
根长 Root length 0.402 0.694 0 0.242 0.995 0.583 0.157 26.840
鲜重 Fresh weight 0.960 0.744 0.001 0.304 0.993 0.744 0.162 21.824

Fig. 1

Phenotype frequency distribution of salt tolerance related traits in DH population Figures a, b, and c show the frequency distribution of relative value of germination rate, relative value of root length, and relative value of fresh weight under salt stress, respectively."

Fig. 2

Phenotype frequency distribution of drought tolerance related traits in DH population Figures a, b, and c show the frequency distribution of relative value of germination rate, relative value of root length, and relative value of fresh weight under drought stress, respectively."

Table 2

Correlation analysis of different traits in the DH population"


性状
Trait
1.2% NaCl 20% PEG-6000
SGR SRL SFW DGR DRL DFW
1.2% NaCl SGR
SRL 0.2564**
SFW 0.1317* 0.4273**
20% PEG-6000 DGR 0.0439 0.1294 0.1817*
DRL 0.0559 0.0166 0.1267 0.3238**
DFW -0.0433 0.0032 0.1729* 0.4494** 0.2656**

Table 3

Putative QTLs for salt and drought tolerance-related traits detected in DH population"

胁迫环境
Stress
environment
性状
Trait
重复
Repetition
QTL名称
QTL name
染色体
Chr.
位置
Position
加性效应
Additive
贡献率
R2 (%)
LOD 值
LOD score
置信区间
Confidence
interval
1.2% NaCl 发芽率 Germination rate REP1 qSGR-A03-1 A03 27.11 -0.03 7.06 4.13 22.1-32.0
REP1 qSGR-A03-2 A03 35.61 -0.03 4.46 3.07 33.4-38.3
REP1 qSGR-A05 A05 45.11 0.03 3.61 2.53 40.1-52.0
REP1 qSGR-C01-1 C01 37.01 0.04 10.40 4.72 36.0-37.4
REP1 qSGR-C09 C09 8.50 -0.03 3.74 2.61 5.0-16.4
REP 3 qSGR-A03-3 A03 27.11 -0.04 9.37 5.47 22.7-32.0
REP 3 qSGR-A03-4 A03 35.61 -0.03 5.62 3.82 33.4-39.1
REP 3 qSGR-C01-2 C01 37.01 0.04 10.59 4.75 36.0-39.1
根长
Root length
REP 1 qSRL-A03-1 A03 28.81 -0.01 5.14 3.44 22.3-32.0
REP 1 qSRL-A03-2 A03 35.61 -0.01 3.78 2.50 33.4-39.1
REP 1 qSRL-A09 A09 86.41 -0.01 8.53 5.03 77.8-95.0
REP 1 qSRL-C09-1 C09 7.91 -0.01 6.61 4.31 3.5-11.9
REP 1 qSRL-C09-2 C09 14.91 -0.01 4.99 3.06 11.9-17.5
REP 2 qSRL-C09-3 C09 7.91 -0.03 4.14 2.52 3.0-17.4
REP 3 qSRL-A03-3 A03 30.81 0.26 6.30 3.44 28.4-33.4
鲜重
Fresh weight
REP 2 qSFW-C09 C09 19.61 0.00 4.64 2.94 17.5-31.8
REP 3 qSFW-A02 A02 46.00 -0.03 5.79 3.52 44.9-50.0
20% PEG-6000 发芽率 Germination rate REP 1 qDGR-A02 A02 47.00 -0.01 4.41 2.57 44.9-51.0
REP 1 qDGR-A03 A03 35.60 0.01 5.45 3.40 33.4-37.0
REP 1 qDGR-A05-1 A05 65.00 0.04 6.05 3.00 59.0-78.6
REP 2 qDGR-A05-2 A05 66.11 0.04 4.90 3.28 59.3-78.1
根长
Root length
REP 1 qDRL-A02 A02 40.80 0.04 12.90 2.96 40.2-42.1
REP 3 qDRL-A01 A01 10.31 0.16 4.92 2.98 7.9-12.7
REP 3 qDRL-A10 A10 0.51 0.16 4.32 2.62 0-2.7
鲜重
Fresh weight
REP 1 qDFW-A09 A09 73.41 0.00 7.11 4.43 72.2-74.7
REP 2 qDFW-A01-1 A01 25.50 0.07 3.94 2.51 15.6-37.1
REP 2 qDFW-C03 C03 25.60 -0.06 9.21 3.87 21.4-34.1
REP 3 qDFW-A01-2 A01 25.51 0.07 3.97 2.53 15.6-37.1

Fig. 3

Distribution of salt and drought tolerance-related QTLs detected in DH population on linkage groups The white-filled block diagrams represent the QTLs detected under salt stress and the black-filled block diagrams represent the QTLs detected under drought stress."

[1] 王汉中. 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010,32:300-302.
Wang H Z. Review and future development of rapeseed industry in China. Chin J Oil Crop Sci, 2010,32:300-302 (in Chinese with English abstract).
[2] 杨真, 王宝山. 中国盐渍土资源现状及改良利用对策. 山东农业科学, 2015,47(4):125-130.
Yang Z, Wang B S. Present status of saline soil resources and countermeasures for improvement and utilization in China. Shandong Agric Sci, 2015,47(4):125-130 (in Chinese with English abstract).
[3] Kovda V A. Loss of productive land due to salinization. AMBIO-A J Human Environ, 1983,12:91-93.
[4] Ruan C J, da Silva J A T, Mopper S, Qin P, Lutts S. Halophyte improvement for a salinized world. Crit Rev Plant Sci, 2010,29:329-359.
doi: 10.1080/07352689.2010.524517
[5] 戴清明, 吕爱钦, 何维君, 谢年保, 陈欣, 张志远, 匡朝凌, 瞿科. 洞庭湖区油菜主要气象灾害发生规律与减灾避灾对策. 作物研究, 2006,20(1):60-63.
Dai Q M, Lyu A Q, He W J, Xie N B, Chen X, Zhang Z Y, Kuang C L, Qu K. The rule of principle weather disaster for rape planting in Dongting Lake region and the countermeasures to relief and avoid the disaster. Crop Res, 2006,20(1):60-63 (in Chinese with English abstract).
[6] 荐红举, 肖阳, 李加纳, 马珍珍, 魏丽娟, 刘列钊. 利用SNP遗传图谱定位盐、旱胁迫下甘蓝型油菜种子发芽率的QTL. 作物学报, 2014,40:629-635.
doi: 10.3724/SP.J.1006.2014.00629
Jian H J, Xiao Y, Li J N, Ma Z Z, Wei L J, Liu L Z. QTL mapping for germination percentage under salinity and drought stresses in Brassica napus L. using a SNP genetic map. Acta Agron Sin, 2014,40:629-635 (in Chinese with English abstract).
[7] 侯林涛, 王腾岳, 荐红举, 王嘉, 李加纳, 刘列钊. 甘蓝型油菜盐胁迫下幼苗鲜重和干重QTL定位及候选基因分析. 作物学报, 2017,43:179-189.
doi: 10.3724/SP.J.1006.2017.00179
Hou L T, Wang T Y, Jian H J, Wang J, Li J N, Liu L Z. QTL mapping for seedling dry weight and fresh weight under salt stress and candidate genes analysis in Brassica napus L. Acta Agron Sin, 2017,43:179-189 (in Chinese with English abstract).
[8] Lang L, Xu A X, Ding J, Zhang Y, Zhao N, Tian Z S, Liu Y P, Wang Y, Liu X, Liang F H, Zhang B B, Qin M F, Jazira D, Huang Z. Quantitative trait locus mapping of salt tolerance and identification of salt-tolerant genes inBrassica napus L. Front Plant Sci, 2017,8:1000.
doi: 10.3389/fpls.2017.01000 pmid: 28659949
[9] Zhang Y, Xu A X, Lang L N, Wang Y, Liu X, Liang F H, Zhang B B, Qin M F, Jazira D, Huang Z. Genetic mapping of a lobed-leaf gene associated with salt tolerance inBrassica napus L. Plant Sci, 2018,269:75-84.
doi: 10.1016/j.plantsci.2018.01.005 pmid: 29606219
[10] 张蕊, 邓文亚, 杨柳, 王亚萍, 肖芳枝, 禾健, 卢坤. 盐胁迫下甘蓝型油菜发芽期下胚轴和根长的全基因组关联分析. 中国农业科学, 2017,50:15-27.
doi: 10.3864/j.issn.0578-1752.2017.01.002
Zhang R, Deng W Y, Yang L, Wang Y P, Xiao F Z, He J, Lu K. Genome-wide association study of root length and hypocotyl length at germination stage under saline conditions in Brassica napus. Sci Agric Sin, 2017,50:15-27 (in Chinese with English abstract).
[11] 贺亚军, 吴道明, 游婧璨, 钱伟. 油菜耐盐相关性状的全基因组关联分析及其候选基因预测. 中国农业科学, 2017,50:1189-1201.
doi: 10.3864/j.issn.0578-1752.2017.07.002
He Y J, Wu D M, You J C, Qian W. Genome-wide association analysis of salt tolerance related traits in Brassica napus and candidate gene prediction. Sci Agric Sin, 2017,50:1189-1201 (in Chinese with English abstract).
[12] Yong H Y, Wang C L, Bancroft I, Li F, Wu X M, Hiroyasu K, Takeshi N. Identification of a gene controlling variation in the salt tolerance of rapeseed (Brassica napus L.). Planta, 2015,242:313-326.
doi: 10.1007/s00425-015-2310-8 pmid: 25921693
[13] Wan H P, Chen C L, Guo J B, Li Q, Wen J, Yi B, Mao C Z, Tu J X, Fu T D, Shen J X. Genome-wide association study reveals the genetic architecture underlying salt tolerance-related traits in rapeseed (Brassica napus L.). Front Plant Sci, 2017,8:593.
doi: 10.3389/fpls.2017.00593 pmid: 28491067
[14] 李真. 甘蓝型油菜苗期耐湿性和抗旱性相关QTL分析. 华中农业大学硕士学位论文, 湖北武汉, 2008.
Li Z. Study on QTL Associated with Waterlogging Tolerance and Drought Resistance during Seedling Stage in Brassica napus L. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2008 (in Chinese with English abstract).
[15] 杨玉恒. 甘蓝型油菜耐旱性鉴定和耐旱相关性状QTL分析. 西南大学硕士学位论文, 重庆, 2011.
Yang Y H. Identification and QTL Analysis of Drought Tolerant Traits in Brassica napus L. MS Thesis of Southwest University, Chongqing, China, 2011 (in Chinese with English abstract).
[16] 王丹丹, 唐章林, 荆蓉蓉, 文均, 马宇嘶. 甘蓝型油菜遗传图谱构建及苗期耐旱相关性状的QTL定位. 西南大学学报(自然科学版), 2014,36(7):8-16.
Wang D D, Tang Z L, Jing R R, Wen J, Ma Y S. Mapping and QTL analysis of genes to drought tolerance in Brassica napus L. J Southwest Univ (Nat Sci Edn), 2014,36(7) : 8-16 (in Chinese with English abstract).
[17] Fletcher R S, Mullen J L, Heiliger A, McKay J K. QTL analysis of root morphology, flowering time, and yield reveals trade-offs in response to drought in Brassica napus. J Exp Bot, 2015,66:245-256.
doi: 10.1093/jxb/eru423 pmid: 25371500
[18] Fletcher R S, Herrmann D, Mullen J L, Li Q F, Schrider D R, Price N, Lin J J, Grogan K, Kern A, McKay J K. Identification of polymorphisms associated with drought adaptation QTL inBrassica napus by resequencing. G3: Genes Genom Genet, 2016,6:793-803.
[19] 许军红. 甘蓝型油菜苗期耐旱相关性状的QTL分析. 西南大学硕士学位论文, 重庆, 2016.
Xu J H. QTL Analysis of Drought Tolerance Traits at Seedling Stage in Brassica napus L. MS Thesis of Southwest University, Chongqing, China, 2016 (in Chinese with English abstract).
[20] 黄倩, 赵永国, 黄祥伟, 朱宗河, 刘云清, 马海清, 程勇, 邹锡玲, 徐劲松, 张学昆, 陆光远. 甘蓝型油菜蕾薹期抗旱相关性状的QTL分析. 干旱地区农业研究, 2017,35(6):88-94.
Huang Q, Zhao Y G, Huang X W, Zhu Z H, Liu Y Q, Ma H Q, Cheng Y, Zou X L, Xu J S, Zhang X K, Lu G Y. QTL mapping of traits associated with drought resistance at bolting stage in Brassica napus. Agric Res Arid Areas, 2017,35(6):88-94 (in Chinese with English abstract).
[21] Ashraf M, Mcneilly T. Salinity tolerance in brassica oilseeds. Crit Rev Plant Sci, 2011,23:157-174.
doi: 10.1080/07352680490433286
[22] Fu Y, Lu K, Qian L W, Mei J Q, Wei D Y, Peng X, Xu X F, Li J N, Frauen M, Dreyer F, Snowdon R J, Qian W. Development of genic cleavage markers in association with seed glucosinolate content in canola. Theor Appl Genet, 2015,128:1029-1037.
[23] 龙卫华, 浦惠明, 张洁夫, 戚存扣, 张学昆. 甘蓝型油菜发芽期的耐盐性筛选. 中国油料作物学报, 2013,35:271-275.
Long W H, Pu H M, Zhang J F, Qi C K, Zhang X K. Screening of Brassica napus for salinity tolerance at germination stage. Chin J Oil Crop Sci, 2013,35:271-275 (in Chinese with English abstract).
[24] Nasu S, Kitashiba H, Nishio T. ‘Na-no-hana Project’ for recovery from the tsunami disaster by producing salinity-tolerant oilseed rape lines: Selection of salinity-tolerant lines ofBrassica crops. J Integr Field Sci, 2012,9:33-37.
[25] Munns R, James R A. Screening methods for salinity tolerance: a case study with tetraploid wheat. Plant Soil, 2003,253:201-218.
[26] Wang S C, Bastern J, Zeng Z B. Windows QTL Cartographer 2.5. Department of Statistics. Raleigh, NC: North Carolina State University, 2012 [2012-03-08]. http://statgen.ncsu.edu/qtlcart/WQTL Cart.htm.
[27] Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics, 1994,138:963-971.
[28] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997,14:11-13.
[29] Anthony A. Molecular biology of salt tolerance in the context of whole-plant physiology. J Exp Bot, 1998,49:915-929.
[30] Flowers T J, Yeo A R. Breeding for salinity resistance in crop plants: where next? Aust J Plant Physiol, 1995,22:875-884.
[31] 陈新军, 胡茂龙, 戚存扣, 浦惠明, 张洁夫, 高建芹, 傅寿仲. 不同甘蓝型油菜品种种子萌发耐盐能力研究. 江苏农业科学, 2007,35(4):26-28.
Chen X J, Hu M L, Qi C K, Pu H M, Zhang J F, Gao J Q, Fu S Z. Comparative study on seed germination ratio of different Brassica napus L varieties under salt stress. Jiangsu Agric Sci, 2007,35(4):26-28 (in Chinese with English abstract).
[32] Altschul S F, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W, Lipman D J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res, 1997,25:3389-3402.
pmid: 9254694
[33] Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Corréa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P. Early allopolyploid evolution in the post-NeolithicBrassica napus oilseed genome. Science, 2014,345:950-953.
pmid: 25146293
[34] 孙玉燕, 刘磊, 郑峥, 张春芝, 周龙溪, 宗园园, 李涛, 李君明. 番茄耐旱和耐盐遗传改良的研究进展及展望. 园艺学报, 2012,39:2061-2074.
Sun Y Y, Liu L, Zheng Z, Zhang C Z, Zhou L X, Zong Y Y, Li T, Li J M. A review and perspectives on genetic improvement of salt and drought tolerance in tomato. Acta Hortic Sin, 2012,39:2061-2074 (in Chinese with English abstract).
[35] Verslues P E, Agarwal M, Katiyar-Agarwal S, Zhu J H, Zhu J K. Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J, 2006,45:523-539.
doi: 10.1111/j.1365-313X.2005.02593.x pmid: 16441347
[1] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[2] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[3] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
[4] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[5] HUANG Li, CHEN Yu-Ning, LUO Huai-Yong, ZHOU Xiao-Jing, LIU Nian, CHEN Wei-Gang, LEI Yong, LIAO Bo-Shou, JIANG Hui-Fang. Advances of QTL mapping for seed size related traits in peanut [J]. Acta Agronomica Sinica, 2022, 48(2): 280-291.
[6] HU Liang-Liang, WANG Su-Hua, WANG Li-Xia, CHENG Xu-Zhen, CHEN Hong-Lin. Identification of salt tolerance and screening of salt tolerant germplasm of mungbean (Vigna radiate L.) at seedling stage [J]. Acta Agronomica Sinica, 2022, 48(2): 367-379.
[7] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[8] ZHANG Bo, PEI Rui-Qing, YANG Wei-Feng, ZHU Hai-Tao, LIU Gui-Fu, ZHANG Gui-Quan, WANG Shao-Kui. Mapping and identification QTLs controlling grain size in rice (Oryza sativa L.) by using single segment substitution lines derived from IAPAR9 [J]. Acta Agronomica Sinica, 2021, 47(8): 1472-1480.
[9] LUO Lan, LEI Li-Xia, LIU Jin, ZHANG Rui-Hua, JIN Gui-Xiu, CUI Di, LI Mao-Mao, MA Xiao-Ding, ZHAO Zheng-Wu, HAN Long-Zhi. Mapping QTLs for yield-related traits using chromosome segment substitution lines of Dongxiang common wild rice (Oryza rufipogon Griff.) and Nipponbare (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1391-1401.
[10] LI Hui, LI De-Fang, DENG Yong, PAN Gen, CHEN An-Guo, ZHAO Li-Ning, TANG Hui-Juan. Expression analysis of abiotic stress response gene HcWRKY71 in kenaf and transformation of Arabidopsis [J]. Acta Agronomica Sinica, 2021, 47(6): 1090-1099.
[11] HAN Yu-Zhou, ZHANG Yong, YANG Yang, GU Zheng-Zhong, WU Ke, XIE Quan, KONG Zhong-Xin, JIA Hai-Yan, MA Zheng-Qiang. Effect evaluation of QTL Qph.nau-5B controlling plant height in wheat [J]. Acta Agronomica Sinica, 2021, 47(6): 1188-1196.
[12] WANG Wu-Bin, TONG Fei, KHAN Mueen-Alam, ZHANG Ya-Xuan, HE Jian-Bo, HAO Xiao-Shuai, XING Guang-Nan, ZHAO Tuan-Jie, GAI Jun-Yi. Detecting QTL system of root hydraulic stress tolerance index at seedling stage in soybean [J]. Acta Agronomica Sinica, 2021, 47(5): 847-859.
[13] ZHOU Xin-Tong, GUO Qing-Qing, CHEN Xue, LI Jia-Na, WANG Rui. Construction of a high-density genetic map using genotyping by sequencing (GBS) for quantitative trait loci (QTL) analysis of pink petal trait in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 587-598.
[14] LI Shu-Yu, HUANG Yang, XIONG Jie, DING Ge, CHEN Lun-Lin, SONG Lai-Qiang. QTL mapping and candidate genes screening of earliness traits in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(4): 626-637.
[15] SHEN Wen-Qiang, ZHAO Bing-Bing, YU Guo-Ling, LI Feng-Fei, ZHU Xiao-Yan, MA Fu-Ying, LI Yun-Feng, HE Guang-Hua, ZHAO Fang-Ming. Identification of an excellent rice chromosome segment substitution line Z746 and QTL mapping and verification of important agronomic traits [J]. Acta Agronomica Sinica, 2021, 47(3): 451-461.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!