Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (10): 2494-2504.doi: 10.3724/SP.J.1006.2022.14150

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Cloning and functional study of lysophosphatidic acid acyltransferase gene in Perilla frutescens

XU Hua-Xiang(), LU Geng, GUO Xi, LI Yuan-Yuan, ZHANG Tao()   

  1. College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
  • Received:2021-08-17 Accepted:2022-02-25 Online:2022-10-12 Published:2022-03-31
  • Contact: ZHANG Tao E-mail:xhx990123@163.com;zht2188@126.com
  • Supported by:
    National Natural Science Foundation of China(31171588);Chongqing Normal University Postgraduate Research and Innovation Project(YKC21033)

Abstract:

Lysophosphatidic acid acyltransferase (LPAAT) is a key enzyme in plant triacylglycerol biosynthesis. Investigating the function of Perilla frutescens LPAAT gene (PfLPAAT) in oil biosynthesis can help to reveal the molecular mechanism of plant oil accumulation. In this study, RT-PCR was used to obtain PfLPAAT, and the basic physical and chemical properties, transmembrane domain, and subcellular localization of the putative protein of PfLPAAT was analyzed by bioinformatics methods, and phylogenetic analysis of homologous proteins was conducted. The qRT-PCR was used to analyze the relative expression level of PfLPAAT in different tissues and developmental stages of seeds in Perilla. The expression vector pCAMBIA1303-PfLPAAT was constructed and transformed into Arabidopsis thaliana by floral dip method, and the oil content and fatty acid composition of transgenic Arabidopsis seeds were analyzed. The results showed that the PfLPAAT sequence was 1149 bp in length and encoded 382 amino acids. The theoretical isoelectric point of the putative protein was 9.60, and the molecular mass was 43.02 kD. Bioinformatics indicated that PfLPAAT functioned in endoplasmic reticulum and belonged to the PLN02380 superfamily. The qRT-PCR revealed that PfLPAAT expressed in all tissues of Perilla, and the highest level was observed in leaves and seeds of 15 days after flowering. Compared with wild-type Arabidopsis, the overexpression of PfLPAAT in Arabidopsis improved seed oil content significantly, with a range of 2.04% to 13.40%. Fatty acid composition analysis demonstrated that the content of oleic acid, linoleic acid, linolenic acid, and arachidic acid increased significantly, while the content of palmitic acid, stearic acid, arachidic acid, arachidonic acid, and docosaenoic acid decreased. In short, the overexpression of the PfLPAAT in Arabidopsis could not only increase the oil content of transgenic Arabidopsis seeds, but also increase the content of unsaturated fatty acids with varying degrees. The results provide novel candidate genes for the mining and innovative utilization of germplasm resources of the oil crop Perilla.

Key words: Perilla frutescens, lysophosphatidic acid acyltransferase, oil content, unsaturated fatty acids

Table 1

Primer sequences used in this study"

引物代码
Primer name
引物序列
Primer sequence (5'-3')
PfLPAAT-F GGTTTTACTCATTATGGCGAT
PfLPAAT-R TCACCTCACCGCTCTCTGT
PfLPAAT-Bgl II-F GGGACTCTTGACCATGGTAGATCTGGCGATCCCAGCCGCGATTGTTG
PfLPAAT-Bgl II-R ACAGGACGTAAACTAGTCAGATCTCGCTGTCTGTCTTGTCTCGTTGAG
PfLPAAT-q-F TACATGCCATACTGCACTCACAGTT
PfLPAAT-q-R TATTTCCGGCCTGGGATTCA
β-Actin-F AGACCTTCAATGTGCCAGCCA
β-Actin-R CACGACCAGCAAGATCCAACCA

Fig. 1

Cloning and analysis of PfLPAAT A: PCR amplification product of PfLPAAT, M: DL2000 marker, 1: PfLPAAT ORF amplification product; B, C: transmembrane structure and hydrophobicity analysis of PfLPAAT, respectively; D, E: prediction of secondary structure and conserved domains of PfLPAAT, respectively."

Fig. 2

Prediction of two motifs of LPAAT by MEME The logo was generated from an alignment of eight plant sequences of the LPAAT protein, the outlined boxes indicate the highly conserved motifs NHX4D (A, catalytic domain) and EGTR (B, binding domain)."

Fig. 3

Mutiple sequence alignment of LPAAT in different plants"

Fig. 4

Phylogenetic analysis of PfLPAAT and its homologous proteins The number on the branches represents the reliability percent of bootstraps values based on 1000 replications."

Fig. 5

Relative expression of PfLPAAT in different tissues (A) and seeds at different development stages (B)"

Fig. 6

Identification and acquisition of transgenic Arabidopsis A: T-DNA element of plasmid pCAMBIA1303 containing the PfLPAAT coding region; LB: left border; CaMV 35S: cauliflower mosaic virus 35S promoter; PfLPAAT: lysophosphatidic acid acyltransferase gene from Perilla; GUS: β-glucuronidase; GFP: green fluorescent protein; NOS: nopaline synthase terminator; RB: right border. B: identification of T3 generation transgenic Arabidopsis; M: DL2000 marker; 1-10: amplification products of transgenic Arabidopsis lines. C-E: GUS staining of transgenic Arabidopsis seedlings, rosette leaves, and fruit pods, respectively."

Fig. 7

Phenotypic observation of transgenic Arabidopsis seeds A, B: dry seeds of wild-type and transgenic Arabidopsis were viewed under a stereo microscope, respectively, scale bar in the lower right corner indicates 1mm; C, D: length and width of wild-type and transgenic Arabidopsis (lines 1-10) seeds, respectively. The data are means ± standard errors (n = 31)."

Table 2

Oil content and fatty acid composition of transgenic Arabidopsis seeds"

株系
Line
含油量
Oil content (%)
C16:0
(%)
C18:0 (%) C18:1 (%) C18:2 (%) C18:3 (%) C20:0 (%) C20:1 (%) C20:2 (%) C22:1 (%)
Col 31.260 11.02 3.45 17.64 30.86 17.86 1.09 15.12 1.81 1.15
1 33.471* 5.32* 2.63* 20.71* 36.74* 17.52 0.45* 15.26 0.46* 0.91*
2 31.896 4.76* 2.47* 18.57 35.6* 15.6* 0.7* 21.07* 0.32* 0.91*
3 33.400* 7.57* 2.37* 16.53* 40.19* 20.08* 0.51* 11.98* 0.34* 0.43*
4 32.640* 3.32* 0.47* 20.83* 38.88* 19.5* 0.71* 14.99 0.37* 0.93
5 32.005 6.85* 3.44 19.92* 35.83* 16.39* 0.47* 16.05 0.53* 0.52*
6 32.150* 7.23* 2.87 19.5* 37.48* 14.9* 0.68* 16.22 0.6* 0.52*
7 33.117* 6.23* 2.44* 16.24* 40.08* 18.19* 0.55* 14.64 0.75* 0.88*
8 35.092* 6.17* 2.3* 15.96* 39.36* 20.41* 0.56* 14.01* 0.51* 0.72*
9 32.205* 10.02 2.34* 14.42* 33.00* 20.23* 0.71* 17.56* 0.67* 1.05
10 35.450* 6.67* 2.53* 16.7 32.46* 21.69* 0.66* 17.48* 0.53* 1.28
[1] Choi S J, Oh S S, Kim C R, Kwon Y K, Suh S H, Kim J K, Park G G, Son S Y, Shin D H. Perilla frutescens extract ameliorates acetylcholinesterase and trimethyltin chloride-induced neurotoxicity. J Med Food, 2016, 19: 281-289.
doi: 10.1089/jmf.2015.3540
[2] Yu H, Qiu J F, Ma L J, Hu Y J, Li P, Wan J B. Phytochemical and phytopharmacological review of Perilla frutescens L. (Labiatae), a traditional edible-medicinal herb in China. Food Chem Toxicol, 2017, 108: 375-391.
doi: 10.1016/j.fct.2016.11.023
[3] Wang X, Zhang Z, Li H, Hou T, Zhao Y, Li H. Effects of ethanol, activated carbon, and activated kaolin on perilla seed oil: volatile organic compounds, physicochemical characteristics, and fatty acid composition. J Food Sci, 2021, 86: 4393-4404.
doi: 10.1111/1750-3841.15907 pmid: 34514602
[4] Okazaki K, Sato N, Tsuji N, Tsuzuki M, Nishida I. The significance of C16 fatty acids in the sn-2 positions of glycerolipids in the photosynthetic growth of Synechocystis sp. PCC6803. Plant Physiol, 2006, 141: 546-556.
[5] Maisonneuve S, Bessoule J J, Lessire R, Delseny M, Roscoe T J. Expression of rapeseed microsomal lysophosphatidic acid acyltransferase isozymes enhances seed oil content in Arabidopsis. Plant Physiol, 2010, 152: 670-684.
doi: 10.1104/pp.109.148247 pmid: 19965969
[6] Zhao J, Bi R, Li S, Zhou D, Bai Y, Jing G, Zhang K, Zhang W. Genome-wide analysis and functional characterization of Acyl-CoA:diacylglycerol acyltransferase from soybean identify GmDGAT1A and 1B roles in oil synthesis in Arabidopsis seeds. J Plant Physiol, 2019, 242: 153019.
[7] Brown A P, Brough C L, Kroon J T, Slabas A R. Identification of a cDNA that encodes a 1-acyl-sn-glycerol-3-phosphate acyltransferase from Limnanthes douglasii. Plant Mol Biol, 1995, 29: 267-278.
[8] Benghezal M, Roubaty C, Veepuri V, Knudsen J, Conzelmann A. SLC1 and SLC4encode partially redundant acyl-coenzyme A 1-acylglycerol-3-phosphate O-acyltransferases of budding yeast. J Biol Chem, 2007, 282: 30845-30855.
doi: 10.1074/jbc.M702719200 pmid: 17675291
[9] Woodfield H K, Fenyk S, Wallington E, Bates R E, Brown A, Guschina I A, Marillia E F, Taylor D C, Fell D, Harwood J L, Fawcett T. Increase in lysophosphatidate acyltransferase activity in oilseed rape (Brassica napus) increases seed triacylglycerol content despite its low intrinsic flux control coefficient. New Phytol, 2019, 224: 700-711.
doi: 10.1111/nph.16100 pmid: 31400160
[10] 叶雪影. 在油菜中分别超量表达AhLEC1AhLPAAT基因对油菜含油量的影响. 湖北大学硕士学位论文, 湖北武汉, 2014.
Ye X Y. Influence of Arachis hypogaea LPAAT and LEC1 Respectively Over-expression on Oil Content in Brassica napus L. MS Thesis of Hubei University, Wuhan, Hubei, China, 2014. (in Chinese with English abstract)
[11] Yu B, Wakao S, Fan J, Benning C. Loss of plastidic lysophosphatidic acid acyltransferase causes embryo-lethality in Arabidopsis. Plant Cell Physiol, 2004, 45: 503-510.
doi: 10.1093/pcp/pch064
[12] Angkawijaya A E, Nguyen V C, Nakamura Y. Enhanced root growth in phosphate-starved Arabidopsis by stimulating de novo phospholipid biosynthesis through the overexpression of LYSOPHOSPHATIDIC ACID ACYLTRANSFERASE 2 (LPAT2). Plant Cell Environ, 2017, 40: 1807-1818.
doi: 10.1111/pce.12988
[13] Kim H U, Li Y, Huang A H. Ubiquitous and endoplasmic reticulum-located lysophosphatidyl acyltransferase, LPAT2, is essential for female but not male gametophyte development in Arabidopsis. Plant Cell, 2005, 17: 1073-1089.
doi: 10.1105/tpc.104.030403
[14] Angkawijaya A E, Nguyen V C, Nakamura Y. LYSOPHOSPHATIDIC ACID ACYLTRANSFERASES 4 and 5 are involved in glycerolipid metabolism and nitrogen starvation response in Arabidopsis. New Phytol, 2019, 224: 336-351.
doi: 10.1111/nph.16000 pmid: 31211859
[15] 于蕊, 赵永青, 张庆雨, 白章振, 孙道阳, 胡佳媛, 牛立新, 张延龙. 拟南芥异源表达紫斑牡丹PrLPAAT1对种子脂肪酸含量的影响. 园艺学报, 2018, 45: 2188-2198.
Yu R, Zhao Y Q, Zhang Q Y, Bai Z Z, Sun D Y, Hu J Y, Niu L X, Zhang Y L. Effect of ectopic expression of Paeonia rockii PrLPAAT1 on fatty acids content of seed. Acta Hortic Sin, 2018, 45: 2188-2198. (in Chinese with English abstract)
[16] 汪慧慧, 刘少锋, 岳宁燕, 熊兴华. 甘蓝型油菜BnaLPAT2基因克隆与生物信息学分析及载体构建. 基因组学与应用生物学, 2019, 38: 1666-1673.
Wang H H, Liu S F, Yue N Y, Xiong X H. Cloning and bioinformatics analysis of BnaLPAT2genes in Brassica napus and construction of their plant expression vector. Genomics Appl Biol, 2019, 38: 1666-1673. (in Chinese with English abstract)
[17] 丁检, 吴双, 蔡彩平, 郭旺珍. 棉花溶血磷酸酯酰转移酶(LPAT)家族基因的发掘和表达分析. 作物学报, 2015, 41: 378-385.
doi: 10.3724/SP.J.1006.2015.00378
Ding J, Wu S, Cai C P, Guo W Z. Genome-wide identification of Lysophosphatidic Acid Acyltransferase gene family and their expression analysis in cotton. Acta Agron Sin, 2015, 41: 378-385. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00378
[18] Liao B, Hao Y, Lu J, Bai H, Guan L, Zhang T. Transcriptomic analysis of Perilla frutescens seed to insight into the biosynthesis and metabolic of unsaturated fatty acids. BMC Genomics, 2018, 19: 213.
[19] Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, Castro E D, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res, 2012, 40: W597-W603.
[20] Chou K C, Shen H B. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One, 2010, 5: e11335.
[21] Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[22] 余云舟, 杜娟, 王罡, 季静. 重组质粒导入根癌农杆菌冻融法的研究. 吉林农业大学学报, 2003, 25: 257-259.
Yu Y Z, Du J, Wang G, Ji J. Studies on the freeze-thaw method of transforming recombinant plasmid DNA into Agrobacterium tumefaciens. J Jilin Agric Univ, 2003, 25: 257-259. (in Chinese with English abstract)
[23] Zhang X, Henriques R, Lin S S, Niu Q W, Chua N H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc, 2006, 1: 641-646.
doi: 10.1038/nprot.2006.97
[24] Li R, Yu K, Hildebrand D F. DGAT1, DGAT2and PDAT expression in seeds and other tissues of epoxy and hydroxy fatty acid accumulating plants. Lipids, 2010, 45: 145-157.
doi: 10.1007/s11745-010-3385-4
[25] 付松, 徐先顺, 向奋飞. 保健油脂中多不饱和脂肪酸的GC/MS分析. 中国卫生检验杂志, 2005, 15: 1042-1044.
Fu S, Xu X S, Xiang F F. Analysis of the multi-unsaturated fatty acids in healthy oils by GC/MS. Chin J Heaith Labor Technol, 2005, 15: 1042-1044. (in Chinese with English abstract)
[26] Chung C H, Kim J L, Lee Y C, Choi Y L. Cloning and characterization of a seed-specific ω-3 Fatty acid desaturase cDNA from Perilla frutescens. Plant Cell Physiol, 1999, 40: 114-118.
pmid: 10189709
[27] Hwang S K, Kim K H, Hwang Y S. Molecular cloning and expression analysis of 3-ketoacyl-ACP synthases in the immature seeds of Perilla frutescens. Mol Cells, 2000, 10: 533-539.
pmid: 11101144
[28] 鲁庚, 唐鑫, 陆俊杏, 李丹, 胡秋芸, 胡田, 张涛. 紫苏二酰基甘油酰基转移酶2基因克隆与功能研究. 作物学报, 2020, 46: 1283-1290.
doi: 10.3724/SP.J.1006.2020.94192
Lu G, Tang X, Lu J X, Li D, Hu Q Y, Hu T, Zhang T. Cloning and function analysis of a type 2 diacylglycerol acyltransferase (DGAT2) from Perilla frutescens. Acta Agron Sin, 2020, 46: 1277-1284. (in Chinese with English abstract)
[29] Lewin T M, Wang P, Coleman R A. Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry, 1999, 38: 5764-5771.
pmid: 10231527
[30] Cortés V A, Smalley S V, Goldenberg D, Lagos C F, Hodgson M I, Santos J L. Divergent metabolic phenotype between two sisters with congenital generalized lipodystrophy due to double AGPAT2 homozygous mutations. a clinical, genetic and in silico study. PLoS One, 2014, 9: e87173.
[31] 唐韶华. 油菜甘油磷酸酰基转移酶和溶血磷脂酸酰基转移酶基因的克隆及其在油脂代谢中的作用. 华中农业大学硕士学位论文, 湖北武汉, 2013.
Tang S H. The Roles of Glycerol-3-phosphate Acyltransferase and Lysophosphatidic Acid Acyltransferase in Lipid Metabolism in Brassica napus. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2013 (in Chinese with English abstract).
[32] Reynolds K B, Taylor M C, Zhou X R, Vanhercke T, Wood C C, Blanchard C L, Singh S P, Petrie J R. Metabolic engineering of medium-chain fatty acid biosynthesis in Nicotiana benthamiana plant leaf lipids. Front Plant Sci, 2015, 6: 164.
[33] Wang N, Ma J, Pei W, Wu M, Li H, Li X, Yu S, Zhang J, Yu J. A genome-wide analysis of the lysophosphatidate acyltransferase (LPAAT) gene family in cotton: organization, expression, sequence variation, and association with seed oil content and fiber quality. BMC Genomics, 2017, 18: 218.
[34] 马建江, 王诺菡, 吴嫚, 裴文锋, 王文魁, 李兴丽, 张金发, 喻树迅, 于霁雯. 雷蒙德氏棉和亚洲棉基因组数据中LPAAT基因家族的发掘及其同源基因在陆地棉材料中的表达分析. 遗传, 2015, 37: 692-701.
Ma J J, Wang N H, Wu M, Pei W F, Wang W K, Li X L, Zhang J F, Yu S X, Yu J W. Genome-wide analysis of the LPAAT gene family in Gossypium raimondii and G. arboreum, and expression analysis of its orthologs in G. hirsutum. Hereditas, 2015, 37: 692-701. (in Chinese with English abstract)
[35] Kim H U, Huang A H. Plastid lysophosphatidyl acyltransferase is essential for embryo development in Arabidopsis. Plant Physiol, 2004, 134: 1206-1216.
doi: 10.1104/pp.103.035832
[36] Chia T Y, Pike M J, Rawsthorne S. Storage oil breakdown during embryo development of Brassica napus (L.). J Exp Bot, 2005, 56: 1285-1296.
doi: 10.1093/jxb/eri129
[37] Alessandri C, Pignatelli P, Loffredo L, Lenti L, Ben M D, Carnevale R, Perrone A, Ferro D, Angelico F, Violi F. Alpha-linolenic acid-rich wheat germ oil decreases oxidative stress and CD40 ligand in patients with mild hypercholesterolemia. Arterioscler Thromb Vasc Biol, 2006, 26: 2577-2578.
pmid: 17053175
[38] Yang Q, Cao W, Zhou X, Cao W, Xie Y, Wang S. Anti-thrombotic effects of α-linolenic acid isolated from Zanthoxylum bungeanum Maxim seeds. BMC Compl Altern Med, 2014, 14: 348.
[39] Wen J, Khan I, Li A, Chen X, Yang P, Song P, Jing Y, Wei J, Che T, Zhang C. Alpha-linolenic acid given as an anti-inflammatory agent in a mouse model of colonic inflammation. Food Sci Nutr, 2019, 7: 3873-3882.
doi: 10.1002/fsn3.1225
[40] Brown A P, Slabas A R, Denton H. Substrate selectivity of plant and microbial lysophosphatidic acid acyltransferases. Phytochemistry, 2002, 61: 493-501.
doi: 10.1016/S0031-9422(02)00290-X
[41] Zhang Q Y, Yu R, Xie L H, Rahman M M, Kilaru A, Niu L X, Zhang Y L. Fatty acid and associated gene expression analyses of three tree peony species reveal key genes for α-linolenic acid synthesis in seeds. Front Plant Sci, 2018, 9: 106.
[42] Fahs Z, Rossez Y, Guénin S, Gutierrez L, Thomasset B, Perrin Y. Cloning and molecular characterization of three lysophosphatidic acid acyltransferases expressed in flax seeds. Plant Sci, 2019, 280: 41-50.
doi: 10.1016/j.plantsci.2018.10.026
[1] ZHANG Yan-Bo, WANG Yuan, FENG Gan-Yu, DUAN Hui-Rong, LIU Hai-Ying. QTLs analysis of oil and three main fatty acid contents in cottonseeds [J]. Acta Agronomica Sinica, 2022, 48(2): 380-395.
[2] TANG Jing-Quan, WANG Nan, GAO Jie, LIU Ting-Ting, WEN Jing, YI Bin, TU Jin-Xing, FU Ting-Dong, SHEN Jin-Xiong. Bioinformatics analysis of SnRK gene family and its relation with seed oil content of Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(3): 416-426.
[3] LU Geng,TANG Xin,LU Jun-Xing,LI Dan,HU Qiu-Yun,HU Tian,ZHANG Tao. Cloning and function analysis of a type 2 diacylglycerol acyltransferase (DGAT2) from Perilla frutescens [J]. Acta Agronomica Sinica, 2020, 46(8): 1283-1290.
[4] CHEN Ying,ZHANG Sheng-Rui,WANG Lan,WANG Lian-Zheng,LI Bin,SUN Jun-Ming. Characteristics of oil components and its relationship with domestication of oil components in wild and cultivated soybean accessions [J]. Acta Agronomica Sinica, 2019, 45(7): 1038-1049.
[5] Yu-Ting ZHANG,Shao-Ping LU,Cheng JIN,Liang GUO. Transcriptional regulation of oil biosynthesis in different parts of Wanyou 20 (Brassica napus) seeds [J]. Acta Agronomica Sinica, 2019, 45(3): 381-389.
[6] Da-Yong WEI,Yi-Xin CUI,Jia-Qin MEI,Qing-Lin TANG,Jia-Na LI,Wei QIAN. Genome-wide Association Study on Seed Oil Content in Rapeseed and Construction of Integration System for Oil Content Loci [J]. Acta Agronomica Sinica, 2018, 44(9): 1311-1319.
[7] WU Kun1,2,WU Wen-Xiong1,YANG Min-Min1,LIU Hong-Yan1,HAO Guo-Cun1,ZHAO Ying-Zhong1,*. QTL Mapping for Oil, Protein and Sesamin Contents in Seeds of White Sesame [J]. Acta Agron Sin, 2017, 43(07): 1003-1011.
[8] NING Hai-Long,BAI Xue-Lian,LI Wen-Bin,XUE Hong,ZHUANG Xu,LI Wen-Xia,LIU Chun-Yan. Mapping QTL Protein and Oil Contents Using Population from Four-way Recombinant Inbred Lines for Soybean (Glycine max L. Merr.) [J]. Acta Agron Sin, 2016, 42(11): 1620-1628.
[9] SONG Guang-Lei,SUI Ning,YU Chao-Ran,ZHANG Fan,MENG Ya-Li,CHEN Bing-Lin,ZHAO Wen-Qing,WANG You-Hua. Effects of Straw-Returning Instead of Chemical Potassium Application on Oil Accumulation in Cottonseed Embryo in Wheat-Cotton Rotation System [J]. Acta Agron Sin, 2015, 41(10): 1548-1556.
[10] MA Zhen-Zhen,LI Jia-Na,Benjiamin WITTKOP,Martin FRAUEN,YAN Xing-Ying,LIU Lie-Zhao,XIAO Yang. Analysis of QTLs for Oil, Protein, Cellulose and Hemicellulose Contents of Seeds in Brassica napus L. [J]. Acta Agron Sin, 2013, 39(07): 1214-1222.
[11] CHEN Si-Long, HUANG Jia-Quan, LEI Yong, REN Xiao-Ping, WEN Qi-Gen, CHEN Yu-Ning, JIANG Hui-Fang, YAN Li-Yang, LIAO Bo-Shou. Cloning and Expression Analysis of Lysophosphatidic Acid Acyltransferase (LPAT) Encoding Gene in Peanut [J]. Acta Agron Sin, 2012, 38(02): 245-255.
[12] HUANG Li,ZHAO Xin-Yan,ZHANG Wen-Hua,FAN Zhi-Ming,REN Xiao-Ping,LIAO Bo-Shou,JIANG Hui-Fang,CHEN Yu-Ning. Identification of SSR Markers Linked to Oil Content in Peanut (Arachis hypogaea L.) through RIL Population and Natural Population [J]. Acta Agron Sin, 2011, 37(11): 1967-1974.
[13] LI Chao, LI Bei, QU Cun-Min, YAN Xing-Ying, FU Fu-You, LIU Li-Zhao, CHEN Li, LI Jia-Na. QTL Analysis of Oil Content Difference in Two Environments in Brassica napus L. [J]. Acta Agron Sin, 2011, 37(02): 249-254.
[14] LIAO Bo-Shou, LEI Yong, WANG Sheng-Yu, HUANG Jia-Quan, LIN Xiao-Peng, JIANG Hui-Fang, YAN Li-Ying. Novel High Oil Germplasm with Resistance to Aspergillus flavus and Bacterial Wilt Developed from Recombinant Inbred Lines [J]. Acta Agron Sin, 2010, 36(08): 1296-1301.
[15] XU Yi-Lan;GUAN Chun-Yun;TAN Tai-Long;YU Long-Xi. Changes of Oil Content and Oil Biosynthesis-Related Enzymes Activities and Their Correlation during Seed Formation in Brassica napus [J]. Acta Agron Sin, 2008, 34(10): 1854-1857.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[2] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[3] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[4] Wang Yiqun. Infection of Rhizobia to Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 32 -35 .
[5] KE Li-Ping;ZHENG Tao;WU Xue-Long;HE Hai-Yan;CHEN Jin-Qing. Analysis of Self-Incompatibility Locus Gene in Brassica napus[J]. Acta Agron Sin, 2008, 34(05): 764 -769 .
[6] CUI Xiu-Hui. Male Sterility Induced by Chemical Hybridizing Agent SQ-1 in Common Millet[J]. Acta Agron Sin, 2008, 34(01): 106 -110 .
[7] A JIA La-Tie;ZENG Long-Jun;XUE Da-Wei;HU Jiang;ZENG Da-Li;GAO Zhen-Yu;GUO Long-Biao;LI Shi-Gui;QIAN Qian
. QTL Analysis for Chlorophyll Content in Four Grain-Filling Stage in Rice[J]. Acta Agron Sin, 2008, 34(01): 61 -66 .
[8] YANG Wen-Xiong;YANG Fang-Ping;LIANG Dan;HE Zhong-Hu;SHANG Xun-Wu;XIA Xian-Chun. Molecular Characterization of Slow-Rusting Genes Lr34/Yr18 in Chinese Wheat Cultivars[J]. Acta Agron Sin, 2008, 34(07): 1109 -1113 .
[9] WANG Ying;WU Cun-Xiang;ZHANG Xue-Ming;WANG Yun-Peng;HAN Tian-Fu. Effects of Soybean Major Maturity Genes under Different Photoperiods[J]. Acta Agron Sin, 2008, 34(07): 1160 -1168 .
[10] WANG Guo-Li;GUO Zhen-Fei. Effects of Phosphorus Nutrient on the Photosynthetic Characteristics in Rice Cultivars with Different Cold-Sensitivity[J]. Acta Agron Sin, 2007, 33(08): 1385 -1389 .