Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (11): 2891-2907.doi: 10.3724/SP.J.1006.2022.14206

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Characteristics of water supply-demand equilibrium and water production benefits of the dryland multiple cropping patterns in the Yangtze River basin

ZHANG Jia-Yun1(), MA Shu-Mei2, YU Chang-Bing3, WANG Shu-Bin4, WEI Ya-Feng5, YANG Wen-Yu1, WANG Xiao-Chun1,*()   

  1. 1College of Agronomy, Sichuan Agricultural University / Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs / Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Chengdu 611130, Sichuan, China
    2Crop Research Institute of Hunan Province, Changsha 410125, Hunan, China
    3Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, Hubei, China
    4College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
    5Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226541, Jiangsu, China
  • Received:2021-11-03 Accepted:2022-03-25 Online:2022-11-12 Published:2022-04-20
  • Contact: WANG Xiao-Chun E-mail:3305298443@qq.com;xchwang@sicau.edu.cn
  • Supported by:
    The National Key Research and Development Program of China(2016YFD0300209)

Abstract:

The seasonal drought is a serious problem because of the unevenly distributed rainfall during the years in the Yangtze River basin. To construct multi-cropping patterns of intercropping with drought avoidance and disaster reduction as the main body is the fundamental way to realize the efficient utilization of water resources. Therefore, we carried out dryland multiple cropping patterns evaluation in test in the Yangtze River (Sichuan, Hubei, Hunan, Jiangxi, and Jiangsu) from 2016 to 2020, the cropping patterns was set as wheat-summer maize (C1), wheat-summer maize ‖ summer soybean (C2), forage rape-spring maize/summer soybean (C3), and potato-spring maize/summer soybean (C4) in Sichuan. Rape-maize‖summer soybean (B1), forage rape-spring maize ‖ spring soybean (B2), and potato / spring maize / summer soybean (B3) in Hubei; rape-maize ‖ summer soybean (N1), forage rape-spring maize/summer soybean (N2), and forage rape-spring maize ‖ spring soybean-autumn soybean (N3) in Hunan; potato/spring maize/summer soybean (X1), rape-maize ‖ summer soybean (X2), ryegrass-spring maize/summer soybean (X3), and ryegrass-spring maize ‖ spring soybean (X4). Wheat-fresh maize/fresh maize (S1), wheat-fresh maize/fresh soybean (S2), fresh broad bean/fresh maize-fresh maize (S3), and fresh broad bean/fresh maize-fresh soybean (S4) in Jiangsu. We compared the characteristics of supply-demand equilibrium, the paddy of the overall productions and the water benefits of different cropping patterns with the AquaCrop model. These results showed that the water satisfy rate of C4 was 5.28%, 2.91%, and 6.00% higher than C1, C2, and C4, and the paddy of the overall production was 71.2%, 49.3%, and 25.6% higher, respectively, and the water benefit was 329.29%, 123.42%, and 45.52% higher in Sichuan. The water satisfy rate of B3 was 3.99% and 3.51% higher than B1 and B2, and the paddy of the overall production was 36.8% and 25.8% higher, and the water benefit was 295.60% and 69.01% higher in Hubei, respectively. The water satisfy rate of N2 was 9.08% and 2.93% higher than N1 and N3, and the water benefit was 58.47% and 183.33% higher in Hunan, respectively. The water satisfy rate of X1 was 7.94%, 6.70%, and 4.05% higher than X2, X3, and X4, and paddy of the overall production was 112.4%, 152.5%, and 116.8% higher, respectively, and the water benefit was 97.03%, 126.14%, and 77.68% higher in Jiangxi, respectively. The water satisfy rate of S4 was 7.94%, 6.70%, and 4.05% higher than X2, X3, and X4, and paddy of the overall production was respectively 35.4%, 17.5%, and 12.6% higher, and the water benefit was 60.25%, 14.93%, and 45.56% higher in Jiangsu, respectively. Potato-spring maize/summer soybean in Sichuan, potato/spring maize/summer soybean in Hubei, forage rape-spring maize/summer soybean in Hunan, potato/spring maize/summer soybean in Jiangxi and fresh broad bean/fresh maize-fresh soybean in Jiangsu were the appropriate cropping patterns that can improve the water supply-demand equilibrium, paddy of the overall production, and water benefit. To avoid seasonal drought and achieve annual high yield, the appropriate multiple cropping patterns of intercropping should be selected depending on the rainfall conditions in the dryland of the Yangtze River basin.

Key words: Yangtze River basin, multiple cropping patterns, water supply-demand equilibrium, water benefit

Table 1

Basic information of different test sites of different regions in the Yangtze River basin"

试验点
Test plot
经度
Longitude
纬度
Latitude
土壤
Soil
海拔
Elevation (m)
平均气温
Average
temperature (℃)
无霜期
Frost-free season (d)
全年日照
Year-round sunshine (h)
四川 Sichuan 109.13 29.99 棕紫泥土 Brown purple soil 500 16-18 230-340 1000-1400
湖北 Hubei 109.47 30.29 黄壤黏土 Yellow soil clay 900 15-17 230-300 1400-2200
湖南 Hunan 112.90 28.68 红土 Red soil 500 15-17 253-311 1400-2200
江西 Jiangxi 115.89 28.68 红土 Red soil 25-30 17-18 240-307 1400-2200
江苏 Jiangsu 120.55 32.37 黄棕土 Yellow brown soil 2-6 14-16 256-326 2200-3000

Table 2

Multiple cropping patterns of dry land of different regions in the Yangtze River basin"

地区Region 种植模式Cropping pattern
四川仁寿
Renshou, Sichuan
C1: 小麦-夏玉米 Wheat-Summer maize
C2: 小麦-夏玉米‖夏大豆 Wheat-Summer maize‖Summer soybean
C3: 饲草油菜-春玉米/夏大豆 Forage rape-Spring maize/Summer soybean
C4: 马铃薯-春玉米/夏大豆 Potato-Spring maize/Summer soybean
湖北恩施
Enshi, Hubei
B1: 油菜-夏玉米‖夏大豆 Rape-Summer maize‖Summer soybean
B2: 饲草油菜-春玉米‖春大豆 Forage rape-Spring maize‖Spring soybean
B3: 马铃薯/春玉米/夏大豆 Potato/Spring maize/Summer soybean
湖南湘阴
Xiangyin, Hunan
N1: 油菜-夏玉米‖夏大豆 Rape-Summer maize‖Summer soybean
N2: 饲草油菜-春玉米/夏大豆 Forage rape-Spring maize/Summer soybean
N3: 饲草油菜-春玉米‖春大豆-秋大豆Forage rape-Spring maize‖Spring soybean-Autumn soybean
江西南昌
Nanchang, Jiangxi
X1: 马铃薯/春玉米/夏大豆 Potato/Spring maize/Summer soybean
X2: 油菜-夏玉米‖夏大豆 Rape-Summer maize‖Summer soybean
X3: 黑麦草-春玉米/夏大豆 Ryegrass-Spring maize/Summer soybean
X4: 黑麦草-春玉米‖春大豆 Ryegrass-Spring maize‖Spring soybean
江苏如皋
Rugao, Jiangsu
S1: 小麦-鲜食玉米/鲜食玉米 Wheat-Fresh maize/Fresh maize
S2: 小麦-鲜食玉米/鲜食大豆 Wheat-Fresh maize/Fresh soybean
S3: 鲜食蚕豆/鲜食玉米-鲜食玉米 Fresh broad bean/Fresh maize-Fresh maize
S4: 鲜食蚕豆/鲜食玉米-鲜食大豆 Fresh broad bean/Fresh maize-Fresh soybean

Table 3

Varieties and densities of different crops"

地区
Region
冬季作物
Winter crop
品种
Variety
密度
Density
(×104 plants hm-2)
其他作物
Other crops
品种
Variety
密度
Density
(×104 plants hm-2)
四川仁寿
Renshou, Sichuan
小麦
Wheat
蜀麦969
Shumai 969
240 玉米
Maize
荣玉1210
Rongyu 1210
6
饲草油菜
Forage rape
德选油 569
Dexuanyou 569
18 大豆
Soybean
南豆 25
Nandou 25
15
马铃薯
Potato
费乌瑞它
Feiwuruita
10
湖北恩施Enshi,
Hubei
饲草油菜
Forage rape
大地199
Dadi 199
4.5 玉米
Maize
青青500
Qingqing 500
4.5
马铃薯
Potato
鄂马铃薯10号
Emalingshu 10
5.5 春大豆
Spring soybean
05-48 12
油菜
Rape
大地199
Dadi 199
1.5 夏大豆
Summer soybean
十月黄
Shiyuehuang
12
湖南湘阴Xiangyin, Hunan 油菜
Rape
沣油823
Fengyou 823
25 玉米
Maize
登海605
Denghai 605
6
饲草油菜
Forage rape
油肥1号
Youfei 1
25 春大豆
Spring soybean
湘春豆24
Xiangchundou 24
16.5
夏大豆
Summer soybean
中豆41
Zhongdou 41
16.5
秋大豆
Autumn soybean
湘春豆24
Xiangchundou 24
25
江西南昌Nanchang, Jiangxi 油菜
Rape
沣油730
Fengyou 730
30 玉米
Maize
登海605
Denghai 605
6
马铃薯
Potato
田园春
Tianyuanchun
2.5 春大豆
Spring soybean
天隆2号
Tianlong 2
12
黑麦草
Ryegrass
鑫大叶
Xindaye
850 夏大豆
Summer soybean
南豆12
Nandou 12
12
江苏如皋Rugao,
Jiangsu
小麦
Wheat
扬麦16
Yangmai 16
240 鲜食玉米
Fresh maize
苏玉糯14
Suyunuo 14
6
鲜食蚕豆
Fresh broad bean
通蚕鲜7号
Tongcanxian 7
7.5 鲜食大豆
Fresh soybean
通豆6号
Tongdou 6
15

Table 4

Fertilizing amount of different crops (kg hm-2)"

肥料
Fertilizer
玉米(鲜食)
Maize
(fresh)
大豆(鲜食)
Soybean (fresh)
小麦
Wheat
油菜
Rape
饲草油菜
Forage rape
马铃薯
Potato
黑麦草
Ryegrass
鲜食蚕豆
Fresh broad bean
四川仁寿Renshou, Sichuan
尿素 Urea 489 0 326 293 326
过磷酸钙(含P2O5 12%)
Ca(H2PO4)2·H2O
625 375 90 375 250
氯化钾(含K2O 60%) KCl 125 0 90 75 250
湖北恩施Enshi, Hubei
复合肥Complex fertilizer (15%N-15%P-15%K) 60 30 50 50 50
生物有机肥Bio-organic fertilizer 50 0 50 100 100
尿铵磷(含N 29%, P2O5 12%)
Urine ammonium phosphate
100 0 0 100 100
湖南湘阴Xiangyin, Hunan
尿素 Urea 300 75 150 75
复合肥Complex fertilizer (15%N-15%P-15%K) 600 225 600 0
钙镁磷肥(含P 15%)
Calcium magnesium phosphate
750 750 750 0
江西南昌Nanchang, Jiangxi
尿素 Urea 0 0 450 750 0
复合肥Complex fertilizer
(15%N-15%P-15%K)
391 75 112 0 0
过磷酸钙(含P2O5 12%)
Ca(H2PO4)2·H2O
600 600 0 0 0
氯化钾(含K2O 60%) KCl 150 150 0 0 0
江苏如皋Rugao, Jiangsu
尿素 Urea 375 225 175 375
复合肥Complex fertilizer (15%N-15%P-15%K) 600 0 200 0

Table 5

Sowing and harvest time of combined crops of different cropping patterns (month/day)"

地区
Region
种植
模式
Patterns
第1熟 1st mature 第2熟 2nd mature 第3熟 3rd mature 第4熟 4th mature
播种日期
Sowing date
收获日期
Harvest date
播种日期
Sowing date
收获日期
Harvest date
播种日期
Sowing date
收获日期
Harvest date
播种日期
Sowing date
收获日期
Harvest date
四川仁寿Renshou, Sichuan C1 11/1 5/15 5/16 9/14
C2 11/1 5/15 5/16 9/14 6/5 10/31
C3 11/1 3/30 4/1 7/31 6/5 10/31
C4 12/1 4/20 4/21 8/20 6/5 10/31
湖北恩施Enshi,
Hubei
B1 11/4 5/16 6/5 9/12 7/8 11/3
B2 10/30 4/16 4/19 8/12 4/29 8/5
B3 12/27 6/7 4/19 9/12 7/8 11/3
湖南湘阴Xiangyin, Hunan N1 10/10 5/5 5/24 9/27 5/24 9/29
N2 11/18 3/23 4/6 7/27 5/24 9/29
N3 11/18 3/23 4/6 7/27 4/16 7/21 8/5 11/10
江西南昌Nanchang, Jiangxi X1 1/13 5/24 4/6 7/25 6/14 11/5
X2 11/25 4/25 6/14 8/30 6/14 11/5
X3 11/25 3/18 4/6 7/25 6/14 11/5
X4 11/25 3/18 4/6 7/25 4/6 7/13
江苏如皋Rugao, Jiangsu S1 11/7 6/1 6/27 9/5 7/29 10/28
S2 11/7 6/1 6/27 9/5 7/29 10/21
S3 11/7 5/22 4/4 7/18 7/29 10/28
S4 11/7 5/22 4/4 7/18 7/29 10/21

Table 6

Average marker prices for different crops of different regions in the Yangtze River basin (Yuan kg-1)"

地区
Region
玉米(鲜食)
Maize (fresh)
大豆(鲜食)
Soybean (fresh)
小麦
Wheat
马铃薯
Potato
油菜
Rape
饲草油菜(鲜重)
Forage rape
黑麦草
(鲜重)
Ryegrass
鲜食蚕豆
Fresh broad bean
四川仁寿Renshou, Sichuan 2.0 5 2.0 1.2 0.2
湖北恩施Enshi, Hubei 2.0 6 1.7 6.0 0.4
湖南湘阴Xiangyin, Hunan 2.0 5.0 6.0 0.2
江西南昌Nanchang, Jiangxi 1.7 4.6 2 6.0 0.3
江苏如皋Rugao, Jiangsu 1.5 3.0 2.0 1.0

Fig. 1

Comparison of simulated and observed yield"

Fig. 2

Relative wetting index (M) of different regions in the Yangtze River basin in 1990 and 2020"

Fig. 3

Water demand of different crops"

Table 7

Water supply-demand equilibrium of different patterns in Sichuan"

种植模式
Cropping pattern
项目
Item
2017 2018 2019 2020 平均
Mean
C1 需水量Water demand (mm) 637.9 645.4 631.4 751.4 666.5
耗水量Water consumption (mm) 443.0 513.9 487.9 517.3 490.5
盈亏量Deficiency (mm) -194.9 -131.5 -143.5 -234.1 -176.0
水分满足率Water satisfy rate (%) 69.5 79.6 77.3 68.8 73.8
C2 需水量Water demand (mm) 639.1 657.9 645.1 750.9 673.2
耗水量Water consumption (mm) 460.2 531.9 511.2 525.7 507.2
盈亏量Deficiency (mm) -179.0 -126.0 -133.9 -225.1 -166.0
水分满足率Water satisfy rate (%) 72.0 80.8 79.3 70.0 75.5
C3 需水量Water demand (mm) 553.4 567.5 570.1 642.3 583.3
耗水量Water consumption (mm) 400.9 425.0 440.7 441.4 427.0
盈亏量Deficiency (mm) -152.6 -142.5 -129.4 -200.8 -156.3
水分满足率Water satisfy rate (%) 72.4 74.9 77.3 68.7 73.3
C4 需水量Water demand (mm) 552.8 546.5 532.5 632.0 565.9
耗水量Water consumption (mm) 410.2 453.0 441.7 447.9 438.2
盈亏量Deficiency (mm) -142.6 -93.5 -90.8 -184.1 -127.7
水分满足率Water satisfy rate (%) 74.2 82.9 83.0 70.9 77.7

Table 8

Water supply-demand equilibrium of different patterns in Hubei"

种植模式
Cropping pattern
项目
Item
2017 2018 2019 2020 平均
Mean
B1 需水量Water demand (mm) 573.4 562.5 529.0 516.0 545.2
耗水量Water consumption (mm) 525.2 443.8 477.0 467.0 478.2
盈亏量Deficiency (mm) -48.1 -118.8 -52.0 -49.0 -67.0
水分满足率Water satisfy rate (%) 91.6 78.9 90.2 90.5 87.8
B2 需水量Water demand (mm) 572.4 536.9 519.6 515.8 536.2
耗水量Water consumption (mm) 525.2 472.2 463.5 433.3 473.5
盈亏量Deficiency (mm) -47.2 -64.7 -56.1 -82.6 -62.7
水分满足率Water satisfy rate (%) 91.8 88.0 89.2 84.0 88.2
B3 需水量Water demand (mm) 512.9 515.6 461.7 445.1 483.8
耗水量Water consumption (mm) 478.3 463.6 419.1 406.5 441.9
盈亏量Deficiency (mm) -34.6 -52.0 -42.6 -38.6 -41.9
水分满足率Water satisfy rate (%) 93.3 89.9 90.8 91.3 91.3

Table 9

Water supply-demand equilibrium of different patterns in Hubei"

种植模式
Cropping pattern
项目
Item
2017 2018 2019 2020 平均
Mean
N1 需水量Water demand (mm) 736.4 798.0 721.7 708.6 741.2
耗水量Water consumption (mm) 607.3 588.2 532.4 648.3 594.0
盈亏量Deficiency (mm) -129.2 -209.9 -189.3 -60.3 -147.1
水分满足率Water satisfy rate (%) 82.5 73.7 73.8 91.5 80.4
N2 需水量Water demand (mm) 645.1 665.6 591.4 587.1 622.3
耗水量Water consumption (mm) 600.7 552.5 471.8 557.8 545.7
盈亏量Deficiency (mm) -44.4 -113.1 -119.6 -29.2 -76.6
水分满足率Water satisfy rate (%) 93.1 83.0 79.8 95.0 87.7
N3 需水量Water demand (mm) 874.7 898.7 831.5 803.6 852.1
耗水量Water consumption (mm) 799.8 718.7 636.1 747.0 725.4
盈亏量Deficiency (mm) -74.9 -180.0 -195.4 -56.5 -126.7
水分满足率Water satisfy rate (%) 91.4 80.0 76.5 93.0 85.2

Table 10

Water supply-demand equilibrium of different patterns in Jiangxi"

种植模式
Cropping pattern
项目
Item
2017 2018 2019 2020 平均
Mean
X1 需水量Water demand (mm) 417.7 446.9 480.2 405.6 437.6
耗水量Water consumption (mm) 385.1 418.9 438.7 374.8 404.4
盈亏量Deficiency (mm) -32.5 -28.0 -41.5 -30.8 -33.2
水分满足率Water satisfy rate (%) 92.2 93.7 91.4 92.4 92.4
X2 需水量Water demand (mm) 448.4 474.1 561.4 424.2 477.0
耗水量Water consumption (mm) 406.0 431.5 429.7 356.8 406.0
盈亏量Deficiency (mm) -42.4 -42.6 -131.7 -67.3 -71.0
水分满足率Water satisfy rate (%) 90.5 91.0 76.5 84.1 85.6
种植模式
Cropping pattern
项目
Item
2017 2018 2019 2020 平均
Mean
X3 需水量Water demand (mm) 451.7 472.1 500.3 441.1 466.3
耗水量Water consumption (mm) 403.8 430.2 403.6 375.0 403.2
盈亏量Deficiency(mm) -47.9 -41.9 -96.6 -66.1 -63.1
水分满足率Water satisfy rate (%) 89.4 91.1 80.7 85.0 86.6
X4 需水量Water demand (mm) 442.0 436.9 423.5 429.1 432.9
耗水量Water consumption (mm) 395.4 395.8 382.6 363.4 384.3
盈亏量Deficiency (mm) -46.6 -41.1 -41.0 -65.7 -48.6
水分满足率Water satisfy rate (%) 89.5 90.6 90.3 84.7 88.8

Table 11

Water supply-demand equilibrium of different patterns in Jiangsu"

种植模式
Cropping pattern
项目
Item
2017 2018 2019 2020 平均
Mean
S1 需水量Water demand (mm) 582.1 559.3 592.2 545.4 569.8
耗水量Water consumption (mm) 505.6 487.3 418.6 523.5 483.7
盈亏量Deficiency (mm) -76.5 -72.0 -173.7 -21.9 -86.0
水分满足率Water satisfy rate (%) 86.9 87.1 70.7 96.0 85.2
S2 需水量Water demand (mm) 589.6 571.3 602.6 555.1 579.6
耗水量Water consumption (mm) 511.8 506.3 424.6 531.3 493.5
盈亏量Deficiency (mm) -77.7 -65.0 -178.0 -23.8 -86.1
水分满足率Water satisfy rate (%) 86.8 88.6 70.5 95.7 85.4
S3 需水量Water demand (mm) 564.2 594.0 591.8 509.5 564.9
耗水量Water consumption (mm) 503.1 516.3 488.0 471.5 494.7
盈亏量Deficiency (mm) -61.1 -77.6 -103.7 -38.1 -70.1
水分满足率Water satisfy rate (%) 89.2 86.9 82.5 92.5 87.8
S4 需水量Water demand (mm) 588.6 631.9 583.9 550.1 588.6
耗水量Water consumption (mm) 533.3 562.4 500.7 528.5 531.2
盈亏量Deficiency (mm) -55.3 -69.5 -83.2 -21.7 -57.4
水分满足率Water satisfy rate (%) 90.6 89.0 85.8 96.1 90.4

Table 12

Paddy of the overall productions of different patterns (kg hm-2)"

地区
Region
种植模式
Cropping pattern
2017 2018 2019 2020 平均
Mean
四川仁寿
Renshou,
Sichuan
C1 14,782.7 13,217.3 14,898.1 14,132.2 14,257.6 d
C2 17,478.0 17,040.5 16,161.6 16,147.8 16,707.0 c
C3 18,996.4 20,438.0 18,609.9 19,453.5 19,374.5 b
C4 26,060.5 25,081.3 25,502.2 21,002.4 24,411.6 a
湖北恩施
Enshi,
Hubei
B1 16,726.3 18,403.6 18,563.9 24,666.0 19,590.0 c
B2 19,137.3 16,471.1 18,922.0 28,159.4 20,672.4 b
B3 21,684.9 26,342.1 24,064.8 23,657.0 23,937.2 a
湖南湘阴
Xiangyin,
Hunan
N1 11,626.6 12,350.8 13,593.5 14,508.5 13,019.9 a
N2 12,523.0 12,774.0 10,478.0 13,899.0 12,418.5 a
N3 11,145.4 14,875.4 13,318.4 14,215.1 13,388.6 a
江西南昌
Nanchang,
Jiangxi
X1 11,313.7 21,516.4 25,112.8 16,966.0 18,727.2 a
X2 12,386.1 10,763.6 9578.8 6337.3 9766.4 c
X3 8813.9 6043.9 11,807.1 8824.9 8872.5 d
X4 10,038.4 7679.2 11,847.8 11,100.3 10,166.4 b
江苏如皋
Rugao,
Jiangsu
S1 25,378.4 26,777.3 28,487.8 30,542.7 27,796.5 d
S2 29,544.1 30,430.8 29,975.8 36,855.7 31,701.6 c
S3 32,292.9 30,439.9 36,065.5 34,817.7 33,404.0 b
S4 35,090.5 34,012.3 36,823.3 43,326.7 37,313.2 a

Fig. 4

Water benefits of different patterns Abbreviations are the same as those given in Table 2."

[1] 孙惠惠, 章新平, 黎祖贤, 刘福基, 尚程鹏, 罗紫东, 周慧. 长江流域不同类型降水量的非均匀性分布特征. 长江流域资源与环境, 2021, 28: 1422-1433.
Sun H H, Zhang X P, Li Z X, Liu F J, Shang C P, Luo Z D, Zhou H. Inhomogeneity distribution of different types of precipitation in the Yangtze River Basin. Resour Environ Yangtze Basin, 2021, 28: 1422-1433. (in Chinese with English abstract)
[2] 谭云娟, 邱新法, 曾燕, 施国萍. 近50a来中国不同流域降水的变化趋势分析. 气象科学, 2016, 36: 494-501.
Tan Y J, Qiu X F, Zeng Y, Shi G P. Variation trend of precipitation in different river basins in recent 50 years. J Meteorol Sci, 2016, 36: 494-501. (in Chinese with English abstract)
[3] 王峰, 李萍, 陈家宙. 亚热带红壤坡地季节性干旱空间特征. 土壤通报, 2016, 47: 820-826.
Wang F, Li P, Chen J Z. The spatial characteristic of seasonal drought for sloping land in subtropical red soil. Chin J Soil Sci, 2016, 47: 820-826. (in Chinese with English abstract)
[4] 徐露, 张丹, 向宇国, 陈凡, 陈玉兰, 黄国钫. 季节性干旱区紫色土坡耕地土壤水分对降雨的响应. 水土保持学报, 2020, 34(6): 37-45.
Xu L, Zhang D, Xiang G Y, Chen F, Chen Y L, Huang G F. Response of soil moisture to rainfall in sloping farmland with purple soil in the seasonal arid area. J Soil Water Conserv, 2020, 34(6): 37-45. (in Chinese with English abstract)
[5] 龚艳冰, 胡娜, 刘高峰, 冯兰萍. 基于GEV干旱指数和DFA方法的苏北地区季节性干旱研究. 长江流域资源与环境, 2016, 25: 140-146.
Gong Y B, Hu N, Liu G F, Feng L P. Seasonal drought research based on GEV index and DFA method in the north of Jiangsu province. Resour Environ Yangtze Basin, 2016, 25: 140-146. (in Chinese with English abstract)
[6] 张菡, 张喜亮, 李金建, 王明田, 麻泽龙. 基于SPEI的四川省盆地区季节性干旱时空变化特征分析. 干旱地区农业研究, 2018, 36(5): 242-256.
Zhang H, Zhang X L, Li J J, Wang M T, Ma Z L. SPEI-based analysis pf temporal and spatial variation characteristics for seasonal drought in Sichuan Basin. Aric Res Arid Areas, 2018, 36(5): 242-256. (in Chinese with English abstract)
[7] 黄晚华, 隋月, 杨晓光, 代姝玮, 李茂松. 气候变化背景下中国南方地区季节性干旱特征与适应. III. 基于降水量距平百分率的南方地区季节性干旱时空特征. 应用生态学报, 2012, 23: 2467-2476.
Huang W H, Sui Y, Yang X G, Dai S W, Li M S. Characteristics and adaption of seasonal drought in southern China under the background of global climate change: III. Spatiotemporal characteristics of drought for wintering grain and oil crops based on crop water deficit index. Chin J Appl Ecol, 2012, 23: 2467-2476. (in Chinese with English abstract)
[8] 刘仲藜, 章新平, 黎祖贤, 王学界, 刘福基, 贺新光. 洞庭湖流域旱涝异常的时空分布及其与大气环流和水汽输送的关系. 长江流域资源与环境, 2021, 30: 721-733.
Liu Z L, Zhang X P, Li Z X, Wang X J, Liu F J, He X G. Analysis on spatial-temporal distribution and atmospheric circulation of seasonal droughts in the Dongting Lake Basin in recent 58 years. Resour Environ Yangtze Basin, 2021, 30: 721-733. (in Chinese with English abstract)
[9] 刘巽浩, 陈阜, 吴尧. 多熟种植——中国农业的中流砥柱. 作物杂志, 2015, (6): 1-9.
Liu X H, Chen F, Wu Y. Multiple cropping: the principal part of China’s agriculture. Crops, 2015, (6): 1-9 (in Chinese with English abstract)
[10] 黄国勤, 孙丹平. 中国多熟种植的发展现状与研究进展. 中国农学通报, 2017, 33(3): 35-43.
Huang G Q, Sun D P. Development situation and research progress of multiple cropping in China. Chin Agric Sci Bull, 2017, 33(3): 35-43. (in Chinese with English abstract)
[11] 李淑娅, 田少阳, 袁国印, 葛均筑, 徐莹, 王梦影, 曹凑贵, 翟中兵, 凌霄霞, 展茗, 赵明. 长江中游不同玉稻种植模式产量及资源利用效率的比较研究. 作物学报, 2015, 41: 1537-1547.
doi: 10.3724/SP.J.1006.2015.01537
Li S Y, Tian S Y, Yuan G Y, Ge J Z, Xu Y, Wang M Y, Cao C G, Zhai Z B, Ling X X, Zhan M, Zhao M. Comparison of yield and resource utilization efficiency among different maize and rice cropping systems in middle reaches of Yangtze River. Acta Agron Sin, 2015, 41: 1537-1547. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.01537
[12] 赵彦茜, 肖登攀, 齐永青, 柏会子. 华北平原不同降水年型和作物种植模式下的产量和耗水模拟. 农业工程学报, 2018, 34(20): 108-116.
Zhao Y Q, Xiao P D, Qi Y Q, Bai H Z. Crop yield and water consumption of different cropping patterns under different precipitation years in North China Plain. Trans CSAE, 2018, 34(20): 108-116. (in Chinese with English abstract)
[13] 李含婷, 柴强, 王琦明, 胡发龙, 于爱忠, 赵财, 殷文, 樊志龙, 范虹. 绿洲灌区不同施氮水平下玉米绿肥间作模式的水分利用特征. 中国农业科学, 2021, 54: 2608-2618.
Li H T, Chai Q, Wang Q M, Hu F L, Yu A Z, Zhao C, Yin W, Fan Z L, Fan H. Water use characteristics of maize-green manure intercropping under different nitrogen application levels in the oasis irrigation area. Sci Agric Sin, 2021, 54: 2608-2618. (in Chinese with English abstract)
[14] 叶林, 杨峰, 苏本营, 张静, 刘卫国, 杨文钰. 不同田间配置对玉豆带状套作系统水分分布及水分利用率的影响. 干旱地区农业研究, 2015, 33(4): 41-48.
Ye L, Yang F, Su B Y, Zhang J, Liu W G, Yang W Y. Effects of different field patterns on water distribution and water use efficiency in maize-soybean relay strip intercropping systems. Agric Res Arid Areas, 2015, 33(4): 41-48. (in Chinese with English abstract)
[15] 汤文光, 肖小平, 唐海明, 杨光立. 不同种植模式对南方丘陵旱地土壤水分利用与作物周年生产力的影响. 中国农业科学, 2014, 47: 3606-3617.
Tang W G, Xiao X P, Tang H M, Yang G L. Effects of different planting patterns on water use of soil and crops annual productivity in southern hilly dryland. Sci Agric Sin, 2014, 47: 3606-3617. (in Chinese with English abstract)
[16] Hsiao T C, Heng L, Steduto P, Rojas-Lara B, Raes D, Fereres E. AquaCrop-The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agron J, 2009, 101: 448-459.
doi: 10.2134/agronj2008.0218s
[17] Heng L K, Hsiao T, Evett S, Howell T, Steduto P. Validating the FAO AquaCrop model for irrigated and water deficient field maize. Agron J, 2009, 101: 488-498.
doi: 10.2134/agronj2008.0029xs
[18] Mlkhabela M S, Bullock P R. Performance of the FAO AquaCrop model for wheat grain yield and soil moisture simulation in western Canada. Agric Water Manage, 2012, 110: 16-24.
doi: 10.1016/j.agwat.2012.03.009
[19] Farahani H J, Izzi G, Oweis T Y. Parameterization and evaluation of the AquaCrop model for full and deficit irrigated cotton. Agron J, 2009, 101: 469-476.
doi: 10.2134/agronj2008.0182s
[20] 卓拉, 王伟, 冯变变, 谢朋轩, 高学睿, 吴普特. 黄河流域小麦生产水足迹量化与评价. 农业机械学报, 2019, 50(9): 264-271.
Zhuo L, Wang W, Feng B B, Xie P X, Gao X R, Wu P T. Water footprint accounting and evaluation for wheat production in Yellow River Basin. Trans CSAM, 2019, 50(9): 264-271. (in Chinese with English abstract)
[21] 李会, 刘钰, 蔡甲冰, 毛晓敏. AquaCrop模型的适用性及应用初探. 灌溉排水学报, 2011, 30(3): 28-33.
Li H, Liu Y, Cai J B, Mao X M. The applicability and application of AquaCrop model. J Irrig Drain, 2011, 30(3): 28-33. (in Chinese with English abstract)
[22] Boehnert J, Bonan G B, Langseth M.Regridded harmonized world soil database v1. 2. Oak Ridge, Tennessee: Distributed Active Archive Center of Oak Ridge National Laboratory, 2014 [2021-06-08]. .
[23] 王朕, 梁川, 赵鹏, 詹存. 川中丘陵区地表干湿长程相关性及影响因素研究. 四川大学学报, 2016, 48(增刊1): 61-68.
Wang Z, Liang C, Zhao P, Zhan C. Long-range correlation of surface dry/ wet condition and its influential factors in hilly area of central Sichuan. J Sichuan Univ, 2016, 48(S1): 61-68. (in Chinese with English abstract)
[24] 姚玉璧, 张强, 王劲松, 尚军林, 王莺, 石界, 韩兰英. 中国西南干旱对气候变暖的响应特征. 生态环境学报, 2014, 23: 1409-1417.
Yao Y B, Zhang Q, Wang J S, Shang J L, Wang Y, Shi J, Han L Y. The response of drought to climate warming in southwest in China. Ecol Environ, 2014, 23: 1409-1417. (in Chinese with English abstract)
[25] Allen R G, Pereira L S, Raes D, Smith M. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrig Drain, 1998, 56: 65-69.
[26] 戴佳信.内蒙古河套灌区间作作物需水量与生理生态效应研究. 内蒙古农业大学博士学位论文, 内蒙古呼和浩特, 2011.
Dai J X. Crop Water Requirement and Physiological Ecological Effects Intercropping Patterns in Hetao Irrigation District in Inner Mongolia. PhD dissertation of Inner Mongolia Agricultural University, Huhhot, Inner Mongolia, China, 2011. (in Chinese with English abstract)
[27] 李玉义, 周宪龙, 张海林, 陈阜. 京郊山地旱作区作物水分生态适应性系统评价. 华北农学报, 2005, 20(2): 59-62.
Li Y Y, Zhou X L, Zhang H L, Chen F. Systematic analysis on water ecological adaptability of crops in mountainous arid zone in the suburb of Beijing. Acta Agric Boreali-Sin, 2005, 20(2): 59-62. (in Chinese with English abstract)
[28] 王龙昌, 谢小玉, 王立祥, 卞新民. 黄土丘陵区旱地作物水分生态适应性系统评价. 应用生态学报, 2004, 15: 758-762.
Wang L C, Xie X Y, Wang L X, Bian X M. Systematic analysis on water ecological adaptability of upland crops in loess hilly zone. Chin J Appl Ecol, 2004, 15: 758-762. (in Chinese with English abstract)
[29] 侯贤清, 牛有文, 吴文利, 徐金鹏, 时龙, 唐少颖, 马旭, 李荣. 不同降雨年型下种植密度对旱作马铃薯生长、水分利用效率及产量的影响. 作物学报, 2018, 44: 1560-1569.
Hou X Q, Niu Y W, Wu W L, Xu J P, Shi L, Tang S Y, Ma X, Li R. Effect of planting density on the growth, water use efficiency and yield of dry-farming potato under different rainfall year types. Acta Agron Sin, 2018, 44: 1560-1569. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2018.01560
[30] 詹静, 王秀萍, 杜子璇, 刘天学. 花期弱光持续时间对玉米果穗发育及产量的影响. 华北农学报, 2017, 32(2): 145-150.
Zhan J, Wang X P, Du Z X, Liu T X. Effects of low light duration since tasselling on maize ear development and yield. Acta Agric Boreali-Sin, 2017, 32(2): 145-150 (in Chinese with English abstract).
[31] 李有明, 席梅, 汤三明. 湖北省夏玉米生产发展思考. 湖北农业科学, 2010, 49: 2932-2934.
Li Y M, Xi M, Tang S M. Consideration of the production and development of Hubei summer maize. Hubei Agric Sci, 2010, 49: 2932-2934. (in Chinese with English abstract)
[32] 张莹, 孙占祥, 李爽, 冯良山, 杨宁, 刘洋, 侯志研, 白伟, 文凤. 辽西半干旱区玉米/大豆单间作田间耗水规律研究. 干旱地区农业研究, 2010, 28(5): 43-46.
Zhang Y, Sun Z X, Li S, Feng L S, Yang N, Liu Y, Hou Z Y, Bai W, Wen F. Study on water consumption of corn and soybean in different cropping patterns on the semi-arid region of western Liaoning province. Agric Res Arid Areas, 2010, 28(5): 43-46. (in Chinese with English abstract)
[33] 王秋华. 马铃薯-玉米-大豆高效高产模式及其关键配套技术. 南方农机, 2015, 46(6): 5-6.
Wang Q H. High efficiency and high yield model of potato-corn-soybean and its key supporting technologies. South Chin Agric Mech, 2015, 46(6): 5-6. (in Chinese)
[34] 汪波, 宋丽君, 王宗凯, 王积军, 熊明清, 甘丽, 刘芳, 张哲, 蒯婕, 傅廷栋, 周广生. 我国饲料油菜种植及应用技术研究进展. 中国油料作物学报, 2018, 40: 695-701.
Wang B, Song L J, Wang Z K, Wang J J, Xiong M Q, Gan L, Liu F, Zhang Z, Kuai J, Fu T D, Zhou G S. Production and feeding technology of fodder-rapeseed in China. Chin J Oil Crop Sci, 2018, 40: 695-701. (in Chinese with English abstract)
[35] 戴亨仁, 袁邦彬, 胡平华. 红壤土是江西发展马铃薯的最佳土壤. 现代园艺, 2010, (5): 63.
Dai H R, Yuan B B, Hu P H. Red loam is the best soil for potato development in Jiangxi province. Mod Hortic, 2010, (5): 63. (in Chinese)
[36] 李波.鲜食玉米及鲜食大豆周年配套种植方法. 中国专利: 202011098229, 2021-01-15.
Li B.Annual planting method of fresh broad bean, fresh corn and fresh soybean. Chinese Patent: 202011098229, 2021-01-15. (in Chinese)
[37] Altieri M A, Francis C A, Schoonhoven A V, Doll J D. A review of insect prevalence in maize (Zea mays L.) and bean (Phaseolus vulgaris L.) polycultural systems. Field Crops Res, 1979, 1: 22-49.
[38] 陈光荣, 杨文钰, 张国宏, 王立明, 杨如萍, 雍太文, 刘卫国. 薯/豆套作模式下不同熟期大豆品种的生长补偿效应. 中国农业科学, 2016, 49: 455-467.
Chen G R, Yang W Y, Zhang G H, Wang L M, Yang R P, Yong T W, Liu W G. Compensation effect of different soybean varieties in potato/ soybean intercropping systems. Sci Agric Sin, 2016, 49: 455-467. (in Chinese with English abstract)
[39] 黄承建, 赵思毅, 王龙昌, 王季春, 赵勇, 蔡叶茂, 滕艳, 杨国才. 马铃薯/玉米套作对马铃薯品种光合特性及产量的影响. 作物学报, 2013, 39: 330-342.
doi: 10.3724/SP.J.1006.2013.00330
Huang C J, Zhao S Y, Wang L C, Wang J C, Zhao Y, Cai Y M, Teng Y, Yang G C. Effect of potato/maize intercropping on photosynthetic characteristics and yield in two potato varieties. Acta Agron Sin, 2013, 39: 330-342. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2013.00330
[40] 殷文, 赵财, 于爱忠, 柴强, 胡发龙, 冯福学. 秸秆还田后少耕对小麦/玉米间作系统中种间竞争和互补的影响. 作物学报, 2015, 41: 633-641.
doi: 10.3724/SP.J.1006.2015.00633
Yin W, Zhao C, Yu A Z, Chai Q, Hu F L, Feng F X. Effect of straw returning and reduced tillage on interspecific competition and complementation in wheat/maize intercropping system. Acta Agron Sin, 2015, 41: 633-641. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00633
[41] 张绪成, 王红丽, 于显枫, 侯慧芝, 方彦杰, 马一凡. 半干旱区全膜覆盖垄沟间作种植马铃薯和豆科作物的水热及产量效应. 中国农业科学, 2016, 49: 468-481.
Zhang X C, Wang H L, Yu X F, Hou H Z, Fang Y J, Ma Y F. The study on the effect of potato and beans intercropping with whole field plastics mulching and ridge-furrow planting on soil thermal-moisture status and crop yield on semi-arid area. Sci Agric Sin, 2016, 49: 468-481. (in Chinese with English abstract)
[42] Mao L L, Zhang L Z, Li W Q, Werf W, Sun J, Spiertz H, Long L. Yield advantage and water saving in maize/pea intercrop. Field Crops Res, 2012, 138: 11-20.
doi: 10.1016/j.fcr.2012.09.019
[43] 柴强, 杨彩红, 黄高宝. 交替灌溉对西北绿洲区小麦间作玉米水分利用的影响. 作物学报, 2011, 37: 1623-1630.
doi: 10.3724/SP.J.1006.2011.01623
Chai Q, Yang C H, Huang G B. Water use characteristics of alternately irrigated wheat/maize intercropping in oasis region of northwestern China. Acta Agron Sin, 2011, 37: 1623-1630. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.01623
[44] 高砚亮, 孙占祥, 白伟, 冯良山, 杨宁, 蔡倩, 冯晨, 张哲. 辽西半干旱区玉米与花生间作对土地生产力和水分利用效率的影响. 中国农业科学, 2017, 50: 3702-3713.
Gao Y L, Sun Z X, Bai W, Feng L S, Yang N, Cai Q, Feng C, Zhang Z. Productivity and water use efficiency of maize-peanut intercropping systems in the semi-arid region of western Liaoning province. Sci Agric Sin, 2017, 50: 3702-3713. (in Chinese with English abstract)
[45] 唐明明, 董楠, 包兴国, 卢秉林, 张炜平, 张美俊, 章芳芳, 李隆. 西北地区不同间套作模式养分吸收利用及其对产量优势的影响. 中国农业大学学报, 2015, 20(5): 48-56.
Tang M M, Dong N, Bao X G, Lu B L, Zhang W P, Zhang M J, Zhang F F, Li L. Effects of nutrient uptake and utilization om yield of intercropping systems in Northwest China. J Chin Agric Univ, 2015, 20(5): 48-56. (in Chinese with English abstract)
[46] 刘国丹. 不同冬季作物与玉/豆套作模式效益比较及关键技术研究. 四川农业大学硕士学位论文, 四川成都, 2015.
Liu G D. Research on Techniques of Plant Population Configuration and Benefits of Cropping Patterns on Maize/Soybean Relay Intercropping Systems. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2015. (in Chinese with English abstract)
[47] Li L, Sun J H, Zhang F S, Guo T W, Bao X G, Smith F A, Smith S E. Root distribution and interactions between intercropped species. Oecologia, 2006, 147: 280-290.
doi: 10.1007/s00442-005-0256-4
[48] Li L, Li S M, Sun J H, Zhou L L, Bao X G, Zhang H G, Zhang F S. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc Nat Acad Sci USA, 2007, 104: 11192-11196.
doi: 10.1073/pnas.0704591104
[49] Horton J L, Hart S C. Hydraulic lift: a potentially important ecosystem process. Trends Ecol Evol, 1998, 13: 232-235.
pmid: 21238277
[50] Li L, Sun J H, Zhang F S, Li X L, Yang S C, Rengel Z. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res, 2001, 71: 123-137.
doi: 10.1016/S0378-4290(01)00156-3
[51] Zhang F S, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency. Plant Soil, 2003, 248: 305-312.
doi: 10.1023/A:1022352229863
[52] Morris R A, Garrity D P. Resource capture and utilization in intercropping: water. Field Crops Res, 1993, 34: 303-317.
doi: 10.1016/0378-4290(93)90119-8
[53] Mu Y P, Chai Q, Yu A Z, Yang C H, Qi W H, Feng F X, Kong X F. Performance of wheat/maize intercropping is a function of belowground interspecies interactions. Crop Sci, 2013, 53: 2186-2194.
doi: 10.2135/cropsci2012.11.0619
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[2] Qi Zhixiang;Yang Youming;Zhang Cunhua;Xu Chunian;Zhai Zhixi. Cloning and Analysis of cDNA Related to the Genes of Secondary Wall Thickening of Cotton (Gossypium hirsutum L.) Fiber[J]. Acta Agron Sin, 2003, 29(06): 860 -866 .
[3] NI Da-Hu;YI Cheng-Xin;LI Li;WANG Xiu-Feng;ZHANG Yi;ZHAO Kai-Jun;WANG Chun-Lian;ZHANG Qi;WANG Wen-Xiang;YANG Jian-Bo. Developing Rice Lines Resistant to Bacterial Blight and Blast with Molecular Marker-Assisted Selection[J]. Acta Agron Sin, 2008, 34(01): 100 -105 .
[4] DAI Xiao-Jun;LIANG Man-Zhong;CHEN Liang-Bi. Comparison of rDNA Internal Transcribed Spacer Sequences in Oryza sativa L.[J]. Acta Agron Sin, 2007, 33(11): 1874 -1878 .
[5] WANG Bao-Hua;WU Yao-Ting;HUANG Nai-Tai;GUO Wang-Zhen;ZHU Xie-Fei;ZHANG Tian-Zhen. QTL Analysis of Epistatic Effects on Yield and Yield Component Traits for Elite Hybrid Derived-RILs in Upland Cotton[J]. Acta Agron Sin, 2007, 33(11): 1755 -1762 .
[6] WANG Chun-Mei;FENG Yi-Gao;ZHUANG Li-Fang;CAO Ya-Ping;QI Zeng-Jun;BIE Tong-De;CAO Ai-Zhong;CHEN Pei-Du. Screening of Chromosome-Specific Markers for Chromosome 1R of Secale cereale, 1V of Haynaldia villosa and 1Rk#1 of Roegneria kamoji[J]. Acta Agron Sin, 2007, 33(11): 1741 -1747 .
[7] Zhao Qinghua;Huang Jianhua;Yan Changjing. A STUDY ON THE POLLEN GERMINATION OF BRASSICA NAPUS L.[J]. Acta Agron Sin, 1986, (01): 15 -20 .
[8] ZHOU Lu-Ying;LI Xiang-Dong;WANG Li-Li;TANG Xiao;LIN Ying-Jie. Effects of Different Ca Applications on Physiological Characteristics, Yield and Quality in Peanut[J]. Acta Agron Sin, 2008, 34(05): 879 -885 .
[9] WANG Li-Xin; LI Yun-Fu; CHANG Li-Fang; HUANG Lan ;; LI Hong-Bo ; GE Ling-Ling; Liu Li-Hua ;; YAO Ji ;; ZHAO Chang-Ping ;. Method of ID Constitution for Wheat Cultivars[J]. Acta Agron Sin, 2007, 33(10): 1738 -1740 .
[10] ZHENG Tian-Qing;XU Jian-Long;FU Bing-Ying;GAO Yong-Ming;Satish VERUKA;Renee LAFITTE;ZHAI Hu-Qu;WAN Jian-Min;ZHU Ling-Hua;LI Zhi-Kang. Preliminary Identification of Genetic Overlaps between Sheath Blight Resistance and Drought Tolerance in the Introgression Lines from Directional Selection[J]. Acta Agron Sin, 2007, 33(08): 1380 -1384 .