Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2022, Vol. 48 ›› Issue (11): 2908-2919.doi: 10.3724/SP.J.1006.2022.23005

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Effect of potassium application on vascular tissue structure and material transport properties in summer maize (Zea mays L.)

SONG Jie1(), REN Hao1, ZHAO Bin1, ZHANG Ji-Wang1, REN Bai-Zhao1, LI Liang2, WANG Shao-Xiang2, HUANG Jin-Ling2, LIU Peng1,*()   

  1. 1State Key Laboratory of Crop Biology/ College of Agriculture, Shandong Agricultural University, Tai’an 271018, Shandong, China
    2Dongping County Agricultural and Rural Bureau, Tai’an 271500, Shandong, China
  • Received:2022-01-11 Accepted:2022-05-05 Online:2022-11-12 Published:2022-05-23
  • Contact: LIU Peng E-mail:1253500871@qq.com;liup@sdau.edu.cn
  • Supported by:
    The Shandong Province Key Research and Development Program(LJNY202103);The Shandong Agriculture Research System(SDAIT-02-08)

Abstract:

Field experiments were conducted at the Dongping Agricultural Science Institute, Tai’an city, Shandong province from 2020 to 2021, using Denghai 605 (DH605) as the experimental material. The objective of the study is to explore the effects of K application on vascular system structure and material transport properties in summer maize, five K2O application rates of 0 kg hm-2 (K0), 150 kg hm-2 (K1), 225 kg hm-2 (K2), 300 kg hm-2 (K3), and 375 kg hm-2 (K4) were set under uniform N and P fertilizer rates (N 225 kg hm-2 and P2O5 110 kg hm-2). The results showed that maize leaf thickness, leaf vein cross-sectional area, and xylem area increased and then decreased with the increase of K application rates, and reached the maximum at K3 treatment. K application significantly increased the cross-sectional area, the number and area of small and big vascular bundles at the basal stalk and ear-pedicel in maize. The ratio of stalk vascular area to cross-sectional area reached the highest value at K2 treatment, while the ratio of ear-pedicel vascular was significantly higher in K2 and K4 treatments than in other treatments. The number and area of vascular bundles of ear-axis revealed a trend of increasing first and then decreasing with K fertilization, and the total area of vascular bundles was significantly higher in K2 and K3 treatments than in other treatments. K application significantly increased the bleeding intensity of stem and ear-pedicel, both of which were the highest under K2 treatment at filling stage. Correlation analysis revealed that the total area and number of vascular bundles of the stem, the total area and total number of vascular bundles of the ear-pedicel were significantly and positively correlated with grain yield. The total area of vascular bundles of ear-axis were significantly and positively correlated with 1000-grain weight. In conclusion, K2 conditions promoted the development of the vascular systems in the leaves, stems, and ears of maize, increased the bleeding sap, and enhanced the fluidity of the “flow” system, thus improving grain yield in summer maize.

Key words: potassium application, summer maize, vascular bundles, bleeding intensity, grain yield

Table 1

Effects of different potassium fertilizers on yield and yield components of summer maize"

年份 Year 处理
Treatment
单位面积穗数
Ear number
(×104 hm-2)
穗粒数
Grains number
(Grain per ear)
千粒重
1000-kernel weight (g)
籽粒产量
Grain yield (t hm-2)
2020 K0 6.52±0.07 a 558.28±3.71 c 324.03±0.15 c 11.79±0.10 c
K1 6.62±0.13 a 581.18±9.69 ab 346.07±4.39 a 13.34±0.32 a
K2 6.56±0.04 a 590.29±4.31 a 351.15±2.56 a 13.59±0.15 a
K3 6.62±0.10 a 575.71±6.71 b 336.02±1.03 b 12.79±0.30 b
K4 6.58±0.04 a 584.44±4.66 ab 333.97±2.37 b 12.84±0.20 b
2021 K0 6.54±0.78 a 544.05±2.64 b 326.38±1.29 b 11.61±0.44 c
K1 6.42±0.16 a 564.08±17.58 a 342.28±5.23 a 12.65±0.32 b
K2 6.61±0.17 a 557.32±15.11 a 338.16±1.58 a 13.43±0.53 a
K3 6.48±0.10 a 574.65±15.97 a 334.39±6.35 a 12.50±0.24 b
K4 6.62±0.21 a 581.56±14.62 a 326.76±3.46 b 12.58±0.13 b

Fig. 1

Cross-section of maize ear leaf of different treatments at silking stage in 2021 Treatments are the same as those given in Table 1. Bar: 50 µm."

Table 2

Effects of different potassium fertilizers on ear leaf microstructure of summer maize at silking stage"

年份
Year
处理
Treatment
上表皮厚度
Upper epidermis thickness (μm)
下表皮厚度
Under epidermis thickness (μm)
叶片厚度
Leaf thickness
(μm)
叶脉横截面积
Cross section area of veins (μm2)
叶脉木质部面积
Xylem area of veins
(μm2)
2020 K0 20.09±0.91 b 15.03±0.49 c 74.01±3.25 c 2961.24±13.62 c 326.34±9.25 c
K1 19.82±0.40 b 15.06±0.82 c 80.52±1.76 b 3220.31±61.25 b 354.63±21.39 b
K2 21.22±1.61 a 16.57±0.27 a 88.75±2.51 a 3516.26±24.56 a 407.36±15.57 a
K3 20.69±0.33 a 15.55±0.53 b 84.50±1.75 a 3385.21±72.65 a 396.93±13.68 a
K4 21.13±1.07 a 15.96±0.18 b 87.75±2.58 a 3551.31±47.34 a 409.61±21.29 a
2021 K0 15.15±0.37 c 11.25±0.22 d 88.86±0.88 c 2316.71±35.35 c 277.44±13.64 d
K1 16.82±0.38 b 15.55±0.42 a 113.86±1.55 b 2655.25±37.03 b 293.59±16.53 c
K2 19.68±0.38 a 15.08±0.68 ab 111.07±1.23 b 2750.35±59.88 b 371.00±10.98 b
K3 16.89±0.39 b 12.55±10.31 c 120.70±3.13 a 3539.24±52.28 a 417.32±14.75 a
K4 20.69±0.25 a 14.22±0.33 b 112.05±1.86 b 3431.80±68.34 a 364.56±12.26 b

Fig. 2

Effect of potassium application on net photosynthesis rate in summer maize Treatments are the same as those given in Table 1. Different lowercase letters are significantly different at the 0.05 probability level among different treatments."

Fig. 3

Structure of small vascular bundle (A) and big vascular bundle (B) of the third stem under different treatments at silking stage in maize in 2021 Treatments are the same as those given in Table 1. Bar: 500 µm."

Table 3

Effect of different potassium applications on the anatomical structure of the third stem at filling stage in maize"

年份 Year 处理
Treatment
N1 N2 N0 Stotal (mm2) N0/Stotal A1 (mm2) A2 (mm2) A0 (mm2) A0/Stotal (%)
2020
K0
196.64±
9.82 b
227.83±
4.91 c
424.45±
10.27 c
320.03±
12.31 d
1.33±
0.04 a
0.101±
0.004 c
0.071±
0.007 c
36.03±
1.36 c
11.26±
0.79 c
K1
198.87±
5.40 b
254.75±
7.80 b
453.62±
8.59 b
337.77±
7.68 c
1.34±
0.02 a
0.116±
0.006 b
0.091±
0.001 a
46.25±
1.05 b
13.69±
0.83 ab
K2
226.01±
11.32 a
272.88±
10.06 a
498.88±
12.58 a
369.41±
13.28 a
1.35±
0.05 a
0.121±
0.005 a
0.102±
0.005 a
55.18±
2.36 a
14.94±
1.02 a
K3
232.67±
12.31 a
284.28±
6.28 a
516.95±
9.75 a
389.6±
11.94 b
1.33±
0.03 a
0.111±
0.006 b
0.075±
0.004 bc
47.15±
1.37 b
12.10±
1.24 b
K4
229.09±
11.34 a
255.04±
14.03 b
484.13±
15.29 a
364.25±
8.75 b
1.33±
0.02 a
0.113±
0.004 b
0.086±
0.005 b
47.82±
2.96 b
13.13±
0.91 b
2021
K0
180.85±
3.73 b
263.73±
9.31 b
448.29±
15.38 c
322.19±
6.64 b
1.39±
0.06 a
0.106±
0.007 c
0.080±
0.003 c
40.57±
2.10 d
12.58±
0.47 d
K1
198.84±
10.89 ab
265.27±
8.55 b
464.11±
17.49 b
354.22±
19.41 ab
1.32±
0.03 a
0.145±
0.005 a
0.114±
0.003 a
59.07±
2.31 b
16.74±
0.36 a
K2
220.17±
12.53 a
297.07±
10.44 a
518.89±
7.31 a
392.21±
22.33 a
1.33±
0.05 a
0.153±
0.015 a
0.116±
0.002 a
68.33±
2.41 a
16.95±
0.05 a
K3
200.27±
5.59 ab
284.58±
6.79 ab
482.17±
11.75 ab
374.41±
10.45 ab
1.29±
0.02 a
0.123±
0.007 b
0.091±
0.004 bc
50.28±
1.23 c
13.44±
0.15 c
K4
199.38±
4.87 ab
292.06±
9.54 ab
491.44±
11.04 ab
372.76±
20.65 ab
1.33±
0.04 a
0.141±
0.009 a
0.098±
0.005 b
56.73±
1.56 b
15.31±
0.40 b

Fig. 4

Effect of different potassium applications on stem bleeding intensity of summer maize in 2021 Treatments are the same as those given in Table 1. R1: silking stage; R2: filling stage. Different lowercase letters are significantly different at the 0.05 probability level among different treatments."

Fig. 5

Structure of small vascular bundle (A) and big vascular bundle (B) of maize ear-pedicel under different treatments at filling stage in 2021 Treatments are the same as those given in Table 1. Bar: 500 µm."

Table 4

Effect of different potassium applications on the anatomical structure of ear-pedicel at filling stage in maize"

年份
Year
处理 Treatment N1 N2 N0 Stotal (mm2) N0/Stotal A1 (mm2) A2 (mm2) A0 (mm2) A0/Stotal (%)
2020
K0
55.93±
1.38 c
138.56±
2.34 d
194.50±
3.68 c
125.47±
2.17 c
1.55±
0.04 b
0.083±
0.004 c
0.067±
0.001 c
13.93±
0.67 c
11.10±
0.75 c
K1
65.52±
3.27 b
153.84±
5.37 c
219.37±
5.87 b
137.64±
5.78 b
1.59±
0.02 b
0.096±
0.005 b
0.086±
0.001 b
19.52±
0.85 b
14.18±
1.01 b
K2
82.44±
6.21 a
177.23±
4.28 b
256.68±
9.21 a
149.25±
3.73 a
1.74±
0.01 a
0.105±
0.005 ab
0.093±
0.002 a
25.14±
1.47 a
16.84±
0.98 a
K3
75.34±
4.28 ab
170.22±
4.35 b
245.56±
7.91 a
147.58±
5.32 a
1.66±
0.06 a
0.098±
0.004 b
0.086±
0.006 b
22.02±
1.25 ab
14.92±
0.84 b
K4
74.92±
4.38 ab
190.66±
2.29 a
265.57±
5.41 a
156.87±
4.73 a
1.69±
0.05 a
0.118±
0.006 a
0.098±
0.003 a
27.52±
0.39 a
17.55±
0.51 a
2021
K0
73.46±
3.98 c
194.85±
6.72 b
268.32±
8.28 c
130.86±
5.74 b
2.05±
0.02 a
0.078±
0.004 b
0.066±
0.005 b
18.59±
1.34 c
14.21±
0.25 c
K1
76.44±
4.36 b
207.10±
5.82 b
283.54±
9.32 b
136.17±
3.15 b
2.08±
0.03 a
0.098±
0.006 a
0.065±
0.006 b
20.95±
1.95 c
15.38±
0.67 b
K2
88.78±
5.29 a
243.37±
9.53 a
332.15±
13.27 a
158.17±
3.57 a
2.10±
0.05 a
0.108±
0.005 a
0.073±
0.005 ab
27.44±
1.57 b
17.35±
0.53 a
K3
87.40±
6.29 a
237.99±
12.45 a
325.39±
16.28 a
163.40±
1.85 a
1.99±
0.06 a
0.100±
0.005 a
0.071±
0.064 b
25.64±
2.19 b
15.69±
0.64 b
K4
88.13±
2.98 a
256.11±
8.29 a
344.23±
11.77 a
164.76±
2.34 a
2.09±
0.04 a
0.109±
0.004 a
0.080±
0.005 a
30.01±
2.41 a
18.21±
0.71 a

Fig. 6

Effect of different potassium applications on ear-pedicel bleeding intensity of summer maize in 2021 Treatments are the same as those given in Table 1. R1: silking stage; R2: filling stage. Different letters are significantly different at the 0.05 probability level among different treatments."

Table 5

Effect of different potassium applications on the anatomical structure of summer maize ear-axis at filling stage in 2021"

处理 Treatment N1 N2 A1 (mm2) A1 (mm2) A01 (mm2) A01 (mm2) A0 (mm2)
K0 67.12±2.52 c 76.32±1.63 c 0.187±0.01 c 0.035±0.01 ab 12.59±0.15 c 2.66±0.06 c 15.19±0.51 c
K1 70.67±4.81 c 88.51±2.54 b 0.199±0.02 b 0.037±0.01 a 14.06±0.10 bc 3.25±0.44 bc 17.32±01.21 c
K2 90.32±4.12 ab 106.35±4.48 a 0.214±0.10 a 0.038±0.01 a 19.47±0.88 a 4.41±0.28 a 23.88±0.80 a
K3 95.33±2.52 a 110.35±5.74 a 0.211±0.08 a 0.037±0.01 a 20.04±0.54 a 3.95±0.32 ab 23.99±0.31 a
K4 78.67±7.43 bc 113.54±3.21 a 0.207±0.01 a 0.033±0.01 b 16.28±1.53 b 4.16±0.19 ab 20.44±1.52 b

Table 6

Correlation analysis of vascular bundle structures and yield traits"

参数
Parameter
茎秆维管束
总数
Number of total Vb
茎秆维管束
总面积
Total area of Vb
穗柄维管束
总数目
Number of total Vb
穗柄维管束总面积
Total area of Vb
穗轴大维管束数目
Number of big Vb
穗轴小维管束数目
Number of small Vb
穗轴维管束
总面积
Total area of Vb
茎秆维管束总面积
Total area of Vb
0.827
穗柄维管束总数目
Number of total Vb
0.853 0.570
穗柄维管束总面积
Total area of Vb
0.839 0.589 0.991**
穗轴大维管束数目
Number of big Vb
0.741 0.418 0.748 0.655
穗轴小维管束数目
Number of small Vb
0.793 0.536 0.979** 0.956** 0.797
穗轴维管束总面积
Total area of Vb
0.851 0.569 0.840 0.767 0.980** 0.870
每公顷穗数
Ear numbers
0.031 0.268 0.137 0.259 -0.504 0.096 -0.436
穗粒数
Grains numbers
0.403 0.357 0.607 0.672 0.027 0.555 0.115
千粒重
1000-kernel weight
0.837 0.639 0.817 0.737 0.989** 0.839 0.991**
籽粒产量
Grain yield
0.882* 0.972** 0.934* 0.937* 0.765 0.912* 0.777
[1] He H Y, Hu Q, Li R, Pan X B, Huang B X, He Q J. Regional gap in maize production, climate and resource utilization in China. Field Crops Res, 2020, 254: 107830.
doi: 10.1016/j.fcr.2020.107830
[2] 汪顺义, 刘庆, 史衍玺, 李欢. 氮钾配施对甘薯光合产物积累及分配的影响. 中国农业科学, 2017, 50: 2706-2716.
Wang S Y, Liu Q, Shi Y X, Li H. Interactive effects of nitrogen and potassium on photosynthesis product distribution and accumulation of sweet potato. Sci Agric Sin, 2017, 50: 2706-2716. (in Chinese with English abstract)
[3] 张国伟, 李凯, 李思嘉, 王晓婧, 杨长琴, 刘瑞显. 减库对大豆叶片碳代谢的影响. 作物学报, 2022, 48: 529-537.
Zhang G W, Li K, Li S J, Wang X J, Yang C Q, Liu R X. Effects of sink-limiting treatments on leaf carbon metabolism in soybean. Acta Agron Sin, 2022, 48: 529-537 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2022.14024
[4] 慕美财, 张曰秋, 崔从光, 衣淑玉, 麻常运, 荀艳波. 冬小麦高产群体源-库-流特征及指标研究. 中国生态农业学报, 2010, 18: 35-40.
Mu M C, Zhang Y Q, Cui C G, Yi S Y, Ma C Y, Xun Y B. Analysis of source-sink-translocation characteristics and indicators for high-yield colony of winter wheat. Chin J Eco-Agric, 2010, 18: 35-40. (in Chinese with English abstract)
doi: 10.3724/SP.J.1011.2010.00035
[5] Liang X G, Gao Z, Zhang L, Shen S, Zhao X, Liu Y P, Zhou L L, Paul M, Zhou S L. Seasonal and diurnal patterns of non-structural carbohydrates in source and sink tissues in field maize. BMC Plant Biol, 2019, 19: 508.
doi: 10.1186/s12870-019-2068-4
[6] Li Y B, Tao H B, Zhang B C, Huang S B, Wang P. Timing of water deficit limits maize kernel setting in association with changes in the source-flow-sink relationship. Front Plant Sci, 2018, 9: 1326.
doi: 10.3389/fpls.2018.01326
[7] 柳开楼, 黄晶, 叶会财, 韩苗, 韩天富, 宋惠洁, 胡志华, 胡丹丹, 李大明, 余喜初, 黄庆海, 李文军, 陈国钧. 长期施钾对双季玉米钾素吸收利用和土壤钾素平衡的影响. 植物营养与肥料学报, 2020, 26: 2235-2245.
Liu K L, Huang J, Ye H C, Han M, Han T F, Song H J, Hu Z H, Hu D D, Li D M, Yu X C, Huang Q H, Li W J, Chen G Y. Effects of long-term potassium fertilization on potassium uptake, utilization and soil potassium balance in double maize cropping system. J Plant Nutr Fert, 2020, 26: 2235-2245. (in Chinese with English abstract)
[8] Ghulam H A, Javaid A, Rafiq A, Moazzam J, Muhammad A H, Shafaqat A, Muhammad I. Potassium application mitigates salt stress differentially at different growth stages in tolerant and sensitive maize hybrids. Plant Growth Regul, 2015, 76: 111-125.
doi: 10.1007/s10725-015-0050-1
[9] Li Z L, Liu Z G, Zhang M, Li C L, Li Y C, Wan Y S, Cliff G M. Long-term effects of controlled-release potassium chloride on soil available potassium, nutrient absorption and yield of maize plants. Soil Tillage Res, 2020, 196: 104438.
doi: 10.1016/j.still.2019.104438
[10] 王晓磊, 于海秋, 刘宁, 依兵, 曹敏建. 耐低钾玉米自交系延缓叶片衰老的生理特性. 作物学报, 2012, 38: 1672-1679.
Wang X L, Yu H Q, Liu N, Yi B, Cao M J. Physiological characteristics of delaying leaf senescence in maize inbred lines tolerant to potassium deficiency. Acta Agron Sin, 2012, 38: 1672-1679. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.01672
[11] 熊明彪, 雷孝章, 田应兵, 宋光煜, 曹叔尤. 钾素对小麦茎、叶解剖结构的影响. 麦类作物学报, 2003, 23(3): 53-57.
Xiong M B, Lei X Z, Tian Y B, Song G X, Cao S Y. Effects of potassium on wheat stem-leaf anatomical structure. J Triticeae Crops, 2003, 23(3): 53-57. (in Chinese with English abstract)
[12] 李波, 张吉旺, 崔海岩, 靳立斌, 董树亭, 刘鹏, 赵斌. 施钾量对高产夏玉米抗倒伏能力的影响. 作物学报, 2012, 38: 2093-2099.
doi: 10.3724/SP.J.1006.2012.02093
Li B, Zhang J W, Cui H Y, Jin L B, Dong S T, Liu P, Zhao B. Effects of K fertilization on yield, K use efficiency of summer maize under high yield conditions. Acta Agron Sin, 2012 38: 2093-2099. (in Chinese with English abstract)
[13] 姚培清, 王易琼, 彭正萍. 钾肥用量对夏玉米干物质和钾素积累、分配及抗倒性的影响. 中国土壤与肥料, 2016, (4): 113-117.
Yao P Q, Wang Y Q, Peng Z P. Effects of potash application rates on the accumulation and distribution of dry matter and potassium nutrient and lodging resistance of maize. Soil Fert Sci China, 2016, (4): 113-117. (in Chinese with English abstract)
[14] 杜雄, 张立峰, 李会彬. 钾素营养对饲用玉米养分吸收动态及产量品质形成的影响. 植物营养与肥料学报, 2007, 13: 393-397.
Du X, Zhang L F, Li H B. Effects of potassium application on nutrient absorption dynamics, biomass and quality formation of forage maize. Plant Nutr Fert Sci, 2007, 13: 393-397. (in Chinese with English abstract)
[15] 何萍, 金继运. 钾素对玉米茎髓和幼根超微结构的影响及其与茎腐病抗性的关系. 中国农业科学, 2010, 43: 729-736.
He P, Jin J Y. Effect of potassium on ultrastructure of maize stalk pith and young root and their relation to resistance to stalk rot. Sci Agric Sin, 2010, 43: 729-736. (in Chinese with English abstract)
[16] 郭艳青, 朱玉玲, 刘凯, 裴书君, 赵斌, 张吉旺. 水钾互作对高产夏玉米茎秆结构和功能的影响. 应用生态学报, 2016, 27(1): 143-149.
Guo Y Q, Zhu Y L, Liu K, Pei S J, Zhao B, Zhang J W. Effects of water-potassium interaction on stalk structure and function of high-yield summer maize. Chin J Appl Ecol, 2016, 27(1): 143-149. (in Chinese with English abstract)
[17] 黄孟雨.栽培方式对山栏稻源库流特性及稻米品质的影响. 海南大学硕士学位论文, 海南海口, 2020.
Huang M Y. Effect of Cultivation Methods on the Characteristics of Source-Sink-Flow and Grain Quality of Shanlan Upland Rice. MS Thesis of Hainan Agricultural University, Haikou, Hainan, China, 2020. (in Chinese with English abstract)
[18] 徐海, 朱春杰, 郭艳华, 刘宏光, 王嘉宇, 杨莉, 杨乾华, 郑家奎, 徐正进, 陈温福. 生态环境对籼粳稻杂交后代穗部性状的影响及其与亚种特性的关系. 中国农业科学, 2009, 42: 1540-1549.
Xu H, Zhu C J, Guo Y H, Liu H G, Wang J Y, Yang L, Yang Q H, Zheng J K, Xu Z J, Chen W F. Effect of ecological environments on panicle traits and its relationship with subspecies characteristics in filial generations of cross between indica and japonica. Sci Agric Sin, 2009, 42: 1540-1549 (in Chinese with English abstract).
[19] 冯海娟.夏玉米维管束系统结构与功能特性对种植密度的响应. 山东农业大学硕士学位论文, 山东泰安, 2014.
Feng H J. Effect of Plant Population on Microstructure and Function of Vascular Bundle of Summer Maize (Zea mays L.). MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2014. (in Chinese with English abstract)
[20] 慕瑞瑞.不同施钾量对滴灌水肥一体化春玉米产量和淀粉形成的影响. 宁夏大学硕士学位论文, 宁夏银川, 2019.
Mu R R. Effects of Different Potassium Rates on Yield and Starch Formation of Spring Maize Integrated with Drip Irrigation. MS Thesis of Ningxia Agricultural University, Yinchuan, Ningxia, China, 2019. (in Chinese with English abstract)
[21] 王寅, 高强, 李翠兰, 焉莉, 冯国忠, 王少杰, 刘振刚, 宋立新, 房杰. 吉林省玉米施钾增产效应及区域差异. 植物营养与肥料学报, 2019, 25: 1335-1344.
Wang Y, Gao Q, Li C L, Yan L, Feng G Z, Wang S J, Liu Z G, Song L X, Fang J. Maize yield responses to potassium fertilizer and regional differences in Jilin province. J Plant Nutr Fert, 2019, 25: 1335-1344. (in Chinese with English abstract)
[22] 王帅, 杨劲峰, 韩晓日, 刘小虎, 战秀梅, 刘顺国. 不同施肥处理对旱作春玉米光合特性的影响. 中国土壤与肥料, 2008, (6): 23-27.
Wang S, Yang J F, Han X R, Liu X H, Zhan X M, Liu S G. Effects of different fertilization treatments on photosynthetic characteristics of spring maize in dry farming. Soil Fert Sci China, 2008, (6): 23-27. (in Chinese with English abstract)
[23] 姜存仓, 郝艳淑, 王晓丽, 夏颖, 王运华. 钾对不同钾效率棉花基因型叶片解剖结构的影响. 植物营养与肥料学报, 2011, 17: 1538-1544.
Jiang C C, Hao Y S, Wang X L, Xia Y, Wang Y H. Effects of potassium fertilization on leaf anatomical structures of different cotton genotypes. Plant Nutr Fert Sci, 2011, 17: 1538-1544. (in Chinese with English abstract)
[24] 李文娟, 何萍, 金继运. 钾素营养对玉米生育后期干物质和养分积累与转运的影响. 植物营养与肥料学报, 2009, 15: 799-807.
Li W J, He P, Jin J Y. Potassium nutrition on dry matter and nutrients accumulation and translocation at reproductive stage of maize. Plant Nutr Fert Sci, 2009, 15: 799-807. (in Chinese with English abstract)
[25] 程艳双, 胡美艳, 杜志敏, 闫秉春, 李丽, 王祎玮, 鞠晓堂, 孙丽丽, 徐海. 减氮对辽粳5号/秋田小町RIL群体茎秆维管束、穗部和产量性状的影响及其相互关系. 作物学报, 2021, 47: 964-973.
doi: 10.3724/SP.J.1006.2021.02040
Cheng Y S, Hu M Y, Du Z M, Yan B C, Li L, Wang Z W, Ju X T, Sun L L, Xu H. Effects of nitrogen reduction on stem vascular bundles, panicle and yield characters of RIL populations in Liaojing 5/Akitakaomaqi and their correlation. Acta Agron Sin, 2021, 47: 964-973. (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2021.02040
[26] 樊海潮, 顾万荣, 杨德光, 张倩, 李彩凤, 尉菊萍, 李文龙, 李晶, 魏湜. 不同化控剂对春玉米根系伤流液特性的影响及其激素调控机制. 玉米科学, 2018, 26(1): 56-63.
Fan H C, Gu W R, Yang D G, Zhang J, Li C F, Wei J P, Li W L, Li J, Wei T. Effects of mixed compound of DCPTA and ETH on root bleeding sap performance of spring maize and hormone regulation mechanism. J Maize Sci, 2018, 26(1): 56-63. (in Chinese with English abstract)
[27] 谭杰, 孔凡磊, 曾晖, 袁继超. 川中丘陵春玉米适宜钾肥用量研究. 植物营养与肥料学报, 2016, 22: 838-846.
Tan J, Kong F L, Zeng H, Yuan J C. The suitable potassium fertilizer rate in spring maize in hilly area of central Sichuan Basin, China. J Plant Nutr Fert, 2016, 22: 838-846. (in Chinese with English abstract)
[28] Wasaya A, Yasir T A, Sarwar N, Farooq O, Rehman A U, Mubeen K, Ali M, Affan M, Aziz A. Foliage applied potassium improves stay green, photosynthesis and yield of maize (Zea mays L.) under rainfed condition. Plant Physiol Rep, 2021, 26: 38-48.
doi: 10.1007/s40502-021-00572-6
[29] 何启平, 董树亭, 高荣岐. 玉米果穗维管束系统的发育及其与穗粒库容的关系. 作物学报, 2005, 31: 995-1000.
He Q P, Dong S T, Gao R Z. Relationship between development of spike vascular bundle and sink capacity of ear and kernel in maize (Zea mays L.). Acta Agron Sin, 2005, 31: 995-1000.
[1] ZHOU Qun, YUAN Rui, ZHU Kuan-Yu, WANG Zhi-Qin, YANG Jian-Chang. Characteristics of grain yield and nitrogen absorption and utilization of indica/japonica hybrid rice Yongyou 2640 under different nitrogen application rates [J]. Acta Agronomica Sinica, 2022, 48(9): 2285-2299.
[2] ZHANG Zhen-Bo, QU Xin-Yue, YU Ning-Ning, REN Bai-Zhao, LIU Peng, ZHAO Bin, ZHANG Ji-Wang. Effects of nitrogen application rate on grain filling characteristics and endogenous hormones in summer maize [J]. Acta Agronomica Sinica, 2022, 48(9): 2366-2376.
[3] PEI Li-Zhen, CHEN Yuan-Xue, ZHANG Wen-Wen, XIAO Hua, ZHANG Sen, ZHOU Yuan, XU Kai-Wei. Effects of organic material returned on photosynthetic performance and nitrogen metabolism of ear leaf in summer maize [J]. Acta Agronomica Sinica, 2022, 48(8): 2115-2124.
[4] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[7] LIU Yun-Jing, ZHENG Fei-Na, ZHANG Xiu, CHU Jin-Peng, YU Hai-Tao, DAI Xing-Long, HE Ming-Rong. Effects of wide range sowing on grain yield, quality, and nitrogen use of strong gluten wheat [J]. Acta Agronomica Sinica, 2022, 48(3): 716-725.
[8] XIE Cheng-Hui, MA Hai-Zhao, XU Hong-Wei, XU Xi-Yang, RUAN Guo-Bing, GUO Zheng-Yan, NING Yong-Pei, FENG Yong-Zhong, YANG Gai-He, REN Guang-Xin. Effects of nitrogen rate on growth, grain yield, and nitrogen utilization of multiple cropping proso millet after spring-wheat in Irrigation Area of Ningxia [J]. Acta Agronomica Sinica, 2022, 48(2): 463-477.
[9] ZHU Ya-Di, WANG Hui-Qin, WANG Hong-Zhang, REN Hao, LYU Jian-Hua, ZHAO Bin, ZHANG Ji-Wang, REN Bai-Zhao, YIN Fu-Wei, LIU Peng. Evaluation and identification index of heat tolerance in different summer maize varieties at V12 stage [J]. Acta Agronomica Sinica, 2022, 48(12): 3130-3143.
[10] DING Yong-Gang, CHEN Li, DONG Jin-Xing, ZHU Min, LI Chun-Yan, ZHU Xin-Kai, DING Jin-Feng, GUO Wen-Shan. Characteristics of yield components, nitrogen accumulation and translocation, and grain quality of semi-winter cultivars with high-yield and high-efficiency#br# [J]. Acta Agronomica Sinica, 2022, 48(12): 3144-3154.
[11] ZHANG Qian, HAN Ben-Gao, ZHANG Bo, SHENG Kai, LI Lan-Tao, WANG Yi-Lun. Reduced application and different combined applications of loss-control urea on summer maize yield and fertilizer efficiency improvement [J]. Acta Agronomica Sinica, 2022, 48(1): 180-192.
[12] LI Jing, WANG Hong-Zhang, LIU Peng, ZHANG Ji-Wang, ZHAO Bin, REN Bai-Zhao. Differences in photosynthetic performance of leaves at post-flowering stage in different cultivation modes of summer maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2021, 47(7): 1351-1359.
[13] KE Jian, CHEN Ting-Ting, XU Hao-Cong, ZHU Tie-Zhong, WU Han, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Effects of different application methods of controlled-release nitrogen fertilizer on grain yield and nitrogen utilization of indica-japonica hybrid rice in pot-seedling mechanically transplanted [J]. Acta Agronomica Sinica, 2021, 47(7): 1372-1382.
[14] LIU Qiu-Yuan, ZHOU Lei, TIAN Jin-Yu, CHENG Shuang, TAO Yu, XING Zhi-Peng, LIU Guo-Dong, WEI Hai-Yan, ZHANG Hong-Cheng. Relationships among grain yield, rice quality and nitrogen uptake of inbred middle-ripe japonica rice in the middle and lower reaches of Yangtze River [J]. Acta Agronomica Sinica, 2021, 47(5): 904-914.
[15] CHENG Yan-Shuang, HU Mei-Yan, DU Zhi-Min, YAN Bing-Chun, LI Li, WANG Yi-Wei, JU Xiao-Tang, SUN Li-Li, XU Hai. Effects of nitrogen reduction on stem vascular bundles, panicle and yield characters of RIL populations in Liaojing 5/Akitakaomaqi and their correlation [J]. Acta Agronomica Sinica, 2021, 47(5): 964-973.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[4] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .
[5] XING Guang-Nan, ZHOU Bin, ZHAO Tuan-Jie, YU De-Yue, XING Han, HEN Shou-Yi, GAI Jun-Yi. Mapping QTLs of Resistance to Megacota cribraria (Fabricius) in Soybean[J]. Acta Agronomica Sinica, 2008, 34(03): 361 -368 .
[6] ZHENG Yong-Mei;DING Yan-Feng;WANG Qiang-Sheng;LI Gang-Hua;WANG Hui-Zhi;WANG Shao-Hua. Effect of Nitrogen Applied before Transplanting on Tillering and Nitrogen Utilization in Rice[J]. Acta Agron Sin, 2008, 34(03): 513 -519 .
[7] QIN En-Hua;YANG Lan-Fang;. Selenium Content in Seedling and Selenium Forms in Rhizospheric Soil of Nicotiana tabacum L.[J]. Acta Agron Sin, 2008, 34(03): 506 -512 .
[8] LÜ Li-Hua;TAO Hong-Bin;XIA Lai-Kun; HANG Ya-Jie;ZHAO Ming;ZHAO Jiu-Ran;WANG Pu;. Canopy Structure and Photosynthesis Traits of Summer Maize under Different Planting Densities[J]. Acta Agron Sin, 2008, 34(03): 447 -455 .
[9] Zhang Shubiao;Yang Rencui. Some Biological Character of eui-hybrid Rice[J]. Acta Agron Sin, 2003, 29(06): 919 -924 .
[10] SHAO Rui-Xin;SHANG-GUAN Zhou-Ping. Effects of Exogenous Nitric Oxide Donor Sodium Nitroprusside on Photosynthetic Pigment Content and Light Use Capability of PS II in Wheat under Water Stress[J]. Acta Agron Sin, 2008, 34(05): 818 -822 .