Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2021, Vol. 47 ›› Issue (5): 964-973.doi: 10.3724/SP.J.1006.2021.02040

• RESEARCH NOTES • Previous Articles     Next Articles

Effects of nitrogen reduction on stem vascular bundles, panicle and yield characters of RIL populations in Liaojing 5/Akitakaomaqi and their correlation

CHENG Yan-Shuang(), HU Mei-Yan, DU Zhi-Min, YAN Bing-Chun, LI Li, WANG Yi-Wei, JU Xiao-Tang, SUN Li-Li, XU Hai*()   

  1. Institute of Rice Research, Shenyang Agricultural University / Key Laboratory of Northeast Rice Biology and Breeding, Ministry of Agriculture and Rural Affairs / Key Laboratory of Northern Japonica Super Rice Breeding, Ministry of Education / Key Laboratory of Northern Japonica Genetics and Breeding of Liaoning Province, Shenyang 110866, Liaoning, China
  • Received:2020-05-30 Accepted:2020-11-13 Online:2021-05-12 Published:2020-12-15
  • Contact: XU Hai E-mail:18302427383@163.com;chinaxuhai@163.com
  • Supported by:
    National Key Research and Development Program of China(2017YFD0100502);Major Scientific and Technological Projects of Liaoning Province(2019JH1/10200001);China Agriculture Research System(CARS-01-11)

Abstract:

The recombinant inbred lines (RILs) population constructed by crossing between Liaojing 5 (a typical erect panicle type rice variety in Liaoning) and Akitakaomaqi (a good quality rice variety in Japan) were used as experimental materials and planted under high nitrogen and low nitrogen fertilization mode. In order to explore the possible ways to maintain stable yield while reducing the amount of nitrogen application, we investigated the stem vascular, panicle and yield traits of the RIL population and analyzed the effects of nitrogen reduction on them and their correlation. The results showed that the traits of stem vascular bundle, spike and yield of RIL population showed continuous variation under two different fertilization models, which was consistent with the genetic characteristics of quantitative traits controlled by multiple genes. The number of vascular bundles of panicle neck and penultimate internode in a stem, the area of vascular bundles of panicle neck and penultimate internode in a plant were decreased, the number of primary branches decreased, the seed setting rate of primary and secondary branches, the total seed setting rate and 1000-grain weight increased, the weight of single panicle increased, the number of panicle decreased, and the yield was decreased after nitrogen fertilizer reduction. The traits of vascular bundle in stem were closely related to the traits of panicle and yield. The traits of vascular bundle in single stem were positively correlated with the thickness of panicle neck, number of primary branches, number of secondary branches, number of panicle grains, kernel density, 1000-seed weight, and the number of panicles. The area of vascular bundle per plant was positively correlated with the number of panicles and yield. After nitrogen decrease treatment, the main characteristics of no reduction yield type in RIL populations were as follows: under the condition of low nitrogen, there was a stable differentiation of tiller and stem vascular bundle, ensuring the stable number of panicles and neck diameter; there was not significant differences in the number of big and small vascular bundles of panicle necks and penultimate internodes in a stem, the area of big vascular bundles of penultimate internodes in a stem and in a plant, and number of stems and branches. Under the condition of reducing nitrogen fertilizer, it is possible to achieve the goal of reducing nitrogen without reducing yield by selecting rice varieties with developed vascular bundles in stems and stable panicle numbers and panicle necks.

Key words: nitrogen reduction, stem vascular bundles traits, panicle traits, yield

Table 1

Two nitrogen patterns (kg hm-2)"

施肥模式
Fertilizer pattern
基肥
Basal fertilizer
促蘖肥Topdressing for tillering 保蘖肥
Fertilizer for tiller growth
穗肥
Panicle fertilizer
粒肥
Grain fertilizer
尿素
Urea
磷酸二铵
DAP
氯化钾
KCl
尿素
Urea
尿素
Urea
尿素
Urea
氯化钾
KCl
尿素
Urea
高氮区HNP 150 150 112.5 150 75 90 75 0
低氮区LNP 0 10 112.5 75 0 45 75 18

Fig. 1

Frequency distribution of stem vascular bundle traits of the RIL population under high and low nitrogen patterns HNP: high nitrogen pattern; LNP: low nitrogen pattern; PN LVBN of a stem: panicle neck large vascular bundles number of a stem; PN SVBN of a stem: panicle neck small vascular bundles number of a stem; PN LVPA of a stem: panicle neck large vascular bundles phloem area of a stem; PN LVXA of a stem: panicle neck large vascular bundles xylem area of a stem; PN LVA of a stem: panicle neck large vascular bundles area of a stem; SI LVBN of a stem: penultimate internode large vascular bundles number of a stem; SI SVBN of a stem: penultimate internode small vascular bundles number of a stem; SI LVPA of a stem: penultimate internode large vascular bundles phloem area of a stem; SI LVXA of a stem: penultimate internode large vascular bundles xylem area of a stem; SI LVA of a stem: penultimate internode large vascular bundles area of a stem; PN LVPA of a plan: panicle neck large vascular bundles phloem area of a plant; PN LVXA of a plant: panicle neck large vascular bundles xylem area of a plant; PN LVA of a plant: panicle neck large vascular bundles area of a plant; SI LVPA of a plant: penultimate internode large vascular bundles phloem area of a plant; SI LVXA of a plant: penultimate internode large vascular bundles xylem area of a plant; SI LVA of a plant: penultimate internode large vascular bundles area of a plant."

Table 2

Variation of stem vascular bundle traits of the RIL population under high and low nitrogen patterns"

性状
Trait
高氮区
HNP
低氮区
LNP
单茎穗颈节大维管束个数PN LVBN of a stem 12.36±0.08 11.97±0.08**
单茎穗颈节小维管束个数PN SVBN of a stem 20.45±0.20 19.89±0.17**
单茎穗颈节大维管束韧皮部面积PN LVPA of a stem (×10-4 µm2) 3.22±0.05 3.35±0.05*
单茎穗颈节大维管束木质部面积PN LVXA of a stem (×10-4 µm2) 5.08±0.08 5.03±0.08
单茎穗颈节大维管束面积PN LVA of a stem (×10-4 µm2) 14.30±0.22 14.96±0.20**
单茎倒二节大维管束个数SI LVBN of a stem 31.17±0.12 30.67±0.13**
单茎倒二节小维管束个数SI SVBN of a stem 27.76±0.11 27.04±0.12**
单茎倒二节大维管束韧皮部面积SI LVPA of a stem (×10-4 µm2) 6.16±0.09 6.15±0.10
单茎倒二节大维管束木质部面积SI LVXA of a stem (×10-4 µm2) 12.54±0.13 12.12±0.14*
单茎倒二节大维管束面积SI LVA of a stem (×10-4 µm2) 30.97±0.31 31.93±0.33**
单株倒二节韧皮部面积SI LVPA of a plant (×10-4 µm2) 82.13±1.95 62.74±1.23**
单株倒二节木质部面积SI LVXA of a plant (×10-4 µm2) 167.18±3.68 124.72±2.43**
单株倒二节维管束面积SI LVA of a plant (×10-4 µm2) 415.14±9.66 328.50±6.12**
单株穗颈节韧皮部面积PN LVPA of a plant (×10-4 µm2) 43.25±1.17 34.39±0.75**
单株穗颈节木质部面积PN LVXA of a plant (×10-4 µm2) 68.01±1.86 51.84±1.15**
单株穗颈节维管束面积PN LVA of a plant (×10-4 µm2) 192.52±5.29 153.89±3.20**

Table 3

Variation of panicle traits of the RIL population under high and low nitrogen patterns"

性状
Trait
高氮区
HNP
低氮区
LNP
穗长PL (cm) 20.67±0.18 20.71±0.19
穗颈粗PND (mm) 1.24±0.01 1.31±0.01
一次枝梗数NPRB 11.75±0.08 11.29±0.09**
二次枝梗数NSRB 25.93±0.33 26.52±0.33
一次枝梗结实率SSRPRB (%) 94.01±0.28 95.89±0.13**
二次枝梗结实率SSRSRB (%) 77.21±0.88 86.99±0.55**
着粒密度GD (kernel 10 cm-1) 69.34±0.98 68.22±1.03
单穗重PPW (g) 3.43±0.03 3.52±0.03*

Table 4

Variation of yield traits of the RIL population under high and low nitrogen patterns"

性状
Trait
高氮区
HNP
低氮区
LNP
穗数Panicle number 13.64±0.30 10.43±0.18**
每穗粒数Grains number per panicle 139.45±1.36 136.71±1.39
结实率Seed setting rate (%) 83.76±0.54 89.52±0.34**
千粒重1000-grain weight (g) 23.69±0.15 24.90±0.14**
产量Yield (kg hm-2) 7966.92±186.41 6672.09±112.85**

Table 5

Relationship between stem vascular bundle traits and panicle traits of the RIL population under high and low nitrogen patterns"

性状
Trait
施肥模式
FP
穗长
PL
穗颈粗ND 一次枝梗数NPRB 二次枝梗数NSRB 一次枝梗结实率SSRPRB 二次枝梗结实率SSRSRB 着粒密度GD 单穗重PEW
单茎穗颈节大维管束个数
PN LVBN of a stem
高氮区HNP -0.034 0.189** 0.275** 0.266** -0.005 -0.042 0.255** 0.319**
低氮区LNP 0.074 0.239** 0.375** 0.379** -0.106 -0.075 0.223** 0.406**
单茎穗颈节小维管束个数
PN SVBN of a stem
高氮区HNP -0.132 0.212** 0.238** 0.310** -0.048 -0.091 0.321** 0.245**
低氮区LNP -0.086 0.167* 0.185** 0.395** -0.127 -0.043 0.310** 0.257**
单茎穗颈节大维管束韧皮部面积PN LVPA of a stem 高氮区HNP 0.024 0.160* 0.215** 0.249** 0.025 -0.011 0.173* 0.311**
低氮区LNP -0.076 0.308** 0.368** 0.262** -0.003 0.019 0.201** 0.334**
单茎穗颈节大维管束木质部面积
PN LVXA of a stem
高氮区HNP -0.032 0.137 0.115 0.204** 0.039 -0.018 0.166* 0.214**
低氮区LNP -0.139 0.260** 0.432** 0.309** -0.064 -0.077 0.293** 0.354**
单茎穗颈节大维管束面积
PN LVA of a stem
高氮区HNP -0.050 0.165* 0.144* 0.189** 0.062 -0.027 0.170* 0.220**
低氮区LNP -0.067 0.272** 0.360** 0.324** -0.012 -0.011 0.237** 0.356**
单茎倒二节大维管束个数
SI LVBN of a stem
高氮区HNP -0.131 0.143* 0.326** 0.204** -0.122 -0.231** 0.295** 0.185**
低氮区LNP -0.119 0.250** 0.435** 0.339** -0.156* -0.129 0.345** 0.339**
单茎倒二节小维管束个数
SI SVBN of a stem
高氮区HNP -0.096 0.160* 0.272** 0.200** 0.049 -0.06 0.259** 0.249**
低氮区LNP 0.001 0.263** 0.306** 0.322** -0.103 -0.011 0.217** 0.304**
单茎倒二节大维管束韧皮部面积
SI LVPA of a stem
高氮区HNP 0.006 0.194** 0.216** 0.174* 0.020 0.098 0.138 0.271**
低氮区LNP -0.068 0.226** 0.360** 0.264** 0.088 0.076 0.203** 0.357**
单茎倒二节大维管束木质部面积
SI LVXA of a stem
高氮区HNP 0.069 0.174* 0.136 0.134 -0.007 -0.045 0.052 0.172*
低氮区LNP -0.121 0.246** 0.375** 0.321** -0.092 -0.083 0.287** 0.320**
单茎倒二节大维管束面积
SI LVA of a stem
高氮区HNP 0.027 0.246** 0.173* 0.116 0.039 -0.021 0.082 0.190**
低氮区LNP -0.026 0.299** 0.344** 0.269** 0.008 0.035 0.179* 0.325**

Table 6

Relationship between stem vascular bundle traits and yield traits of the RIL population under high and low nitrogen patterns"

性状
Trait
施肥模式
FP
穗数
PN
每穗粒数
GNPS
结实率
SSR
千粒重
TGW
产量
Yield
单茎穗颈节大维管束个数
PN LVBN of a stem
高氮区HNP -0.091 0.322** -0.051 -0.012 0.019
低氮区LNP -0.104 0.421** -0.105 -0.020 0.106
单茎穗颈节小维管束个数
PN SVBN of a stem
高氮区HNP 0.005 0.316** -0.107 -0.112 0.072
低氮区LNP -0.070 0.368** -0.102 -0.176* 0.057
单茎穗颈节大维管束韧皮部面积
PN LVPA of a stem
高氮区HNP -0.055 0.263** -0.023 0.075 0.067
低氮区LNP -0.170* 0.257** 0.002 0.149* 0.020
单茎穗颈节大维管束木质部面积
PN LVXA of a stem
高氮区HNP -0.098 0.201** -0.024 0.021 -0.006
低氮区LNP -0.102 0.330** -0.096 0.048 0.068
单茎穗颈节大维管束面积
PN LVA of a stem
高氮区HNP -0.033 0.193** -0.025 0.046 0.052
低氮区LNP -0.144* 0.322** -0.034 0.067 0.044
单茎倒二节大维管束个数
SI LVBN of a stem
高氮区HNP -0.087 0.270** -0.235** -0.136 -0.088
低氮区LNP -0.170* 0.397** -0.159* -0.104 -0.014
单茎倒二节小维管束个数
SI SVBN of a stem
高氮区HNP -0.065 0.259** -0.046 -0.025 0.016
低氮区LNP -0.176* 0.323** -0.054 -0.028 -0.010
单茎倒二节大维管束韧皮部面积
SI LVPA of a stem
高氮区HNP -0.186** 0.184** 0.086 0.142* -0.030
低氮区LNP -0.292** 0.265** 0.074 0.158* -0.087
单茎倒二节大维管束木质部面积
SI LVXA of a stem
高氮区HNP -0.253** 0.114 -0.052 0.090 -0.178*
低氮区LNP -0.159* 0.327** -0.107 -0.012 -0.013
单茎倒二节大维管束面积
SI LVA of a stem
高氮区HNP -0.154* 0.134 -0.008 0.088 -0.068
低氮区LNP -0.189** 0.274** 0.021 0.089 -0.015
单株倒二节大维管束韧皮部面积
SI LVPA of a plant
高氮区HNP 0.816** 0.054 -0.006 -0.022 0.794**
低氮区LNP 0.640** 0.097 -0.097 -0.149* 0.647**
单株倒二节大维管束木质部面积
SI LVXA of a plant
高氮区HNP 0.870** -0.007 -0.092 -0.075 0.776**
低氮区LNP 0.806** 0.076 -0.216** -0.277** 0.732**
单株倒二节大维管束面积
SI LVA of a plant
高氮区HNP 0.900** -0.002 -0.069 -0.084 0.808**
低氮区LNP 0.838** 0.028 -0.153* -0.241** 0.764**
单株穗颈节大维管束韧皮部面积
PN LVPA of a plant
高氮区HNP 0.764** 0.107 -0.069 -0.054 0.734**
低氮区LNP 0.671** 0.086 -0.135 -0.131 0.672**
单株穗颈节大维管束木质部面积
SI LVXA of a plant
高氮区HNP 0.738** 0.072 -0.063 -0.090 0.691**
低氮区LNP 0.725** 0.120 -0.205** -0.216** 0.697**
单株穗颈节大维管束面积
SI LVA of a plant
高氮区HNP 0.790** 0.059 -0.069 -0.078 0.733**
低氮区LNP 0.744** 0.108 -0.173* -0.219** 0.719**

Table 7

Stem vascular bundle traits variation of the RIL population of different yield change under high and low nitrogen patterns"

性状
Trait
大幅减产类型
Significant reduction yield
小幅减产类型
Slight reduction yield
不减产类型
No reduction yield
高氮区
HNP
低氮区
LNP
高氮区
HNP
低氮区LNP 高氮区HNP 低氮区LNP
单茎穗颈节大维管束个数PN LVBN of a stem 12.45 11.87** 12.46 12.15 12.22 12.11
单茎穗颈节小维管束个数PN SVBN of a stem 20.63 19.87** 20.93 20.67 20.13 19.83
单茎穗颈节大维管束韧皮部面积PN LVPA of a stem (×10-4 µm2) 3.32 3.40 3.00 3.07 3.10 3.31*
性状
Trait
大幅减产类型
Significant reduction yield
小幅减产类型
Slight reduction yield
不减产类型
No reduction yield
高氮区
HNP
低氮区
LNP
高氮区
HNP
低氮区LNP 高氮区HNP 低氮区LNP
单茎穗颈节大维管束木质部面积PN LVXA of a stem (×10-4 µm2) 5.16 5.05 4.97 5.35 4.96 4.97
单茎穗颈节大维管束面积PN LVA of a stem (×10-4 µm2) 14.68 15.12 13.86 15.04 13.78 14.71*
单茎倒二节大维管束个数SI LVBN of a stem 31.23 30.53** 31.31 31.37 31.06 30.80
单茎倒二节小维管束个数SI SVBN of a stem 27.87 26.92** 27.61 27.93 27.62 27.11
单茎倒二节大维管束韧皮部面积SI LVPA of a stem (×10-4 µm2) 6.16 6.29 6.16 5.54 6.16 6.02
单茎倒二节大维管束木质部面积SI LVXA of a stem (×10-4 µm2) 12.44 12.06 12.43 12.33 12.70 12.18
单茎倒二节大维管束面积SI LVA of a stem (×10-4 µm2) 30.97 32.23* 30.65 31.68 31.00 31.51
单株倒二节大维管束韧皮部面积SI LVPA of a plant (×10-4 µm2) 95.62 59.38** 68.03 58.39 63.82 68.21
单株倒二节大维管束木质部面积SI LVXA of a plant (×10-4 µm2) 193.01 114.49* 136.59 129.40 132.51 139.33
单株倒二节大维管束面积SI LVA of a plant (×10-4 µm2) 484.04 306.25** 339.32 332.91 322.00 360.92
单株穗颈节大维管束韧皮部面积PN LVPA of a plant (×10-4 µm2) 51.44 32.24** 33.23 32.39 32.30 37.80**
单株穗颈节大维管束木质部面积PN LVXA of a plant (×10-4 µm2) 80.08 48.10** 55.11 56.47 51.66 56.84*
单株穗颈节大维管束面积PN LVA of a plant (×10-4 µm2) 228.97 144.04** 153.65 158.10 143.10 167.98**

Table 8

Panicle traits variation of the RIL population of different yield change under high and low nitrogen patterns"

性状
Trait
大幅减产类型
Significant reduction yield
小幅减产类型
Slight reduction yield
不减产类型
No reduction yield
高氮区HNP 低氮区LNP 高氮区HNP 低氮区LNP 高氮区HNP 低氮区LNP
穗长PL (cm) 21.25 20.92 21.24 20.54 20.13 20.78
穗颈粗ND (mm) 1.25 1.33** 1.21 1.30 1.24 1.29*
一次枝梗数NPRB 11.93 11.29** 11.47 11.24 11.44 11.43
二次枝梗数NSRB 26.52 26.52 26.98 25.71 25.41 27.40**
一次枝梗结实率SSRPRB (%) 94.82 96.25** 93.93 95.39 93.42 95.79**
二次枝梗结实率SSRSRB (%) 79.25 86.95** 77.70 85.13* 73.58 86.68**
着粒密度GD (kernel 10 cm-1) 69.00 67.16 68.45 67.43 70.41 70.75
单穗重PEW (g) 3.50 3.48 3.52 3.29 3.30 3.60**

Table 9

Yield traits variation of the RIL population of different yield change under high and low nitrogen patterns"

性状
Trait
大幅减产类型
Yield substantial reduction
小幅减产类型
Yield slight reduction
不减产类型
Yield no reduction
高氮区
HNP
低氮区
LNP
高氮区
HNP
低氮区
LNP
高氮区
HNP
低氮区
LNP
穗数PN 15.72 9.58** 11.00 10.44 10.51 11.49**
每穗粒数GNPS 144.36 137.96** 144.78 136.27 138.76 143.20
结实率SSR (%) 86.53 91.12** 85.07 89.71* 82.83 90.76**
千粒重TGW (g) 24.33 25.32** 24.45 24.21 23.95 25.25**
产量Yield (kg hm-2) 637.27 405.51** 440.21 418.94** 384.61 506.01**
[1] 刘钦普. 中国化肥投入区域差异及环境风险分析. 中国农业科学, 2014,47:3596-3605.
Liu Q P. Distribution of fertilizer application and its environmental risk in different provinces of China. Sci Agric Sin, 2014,47:3596-3605 (in Chinese with English abstract).
[2] 朱相成. 增密减氮对东北水稻产量和氮肥效率及温室气体排放的影响. 中国农业科学院研究生院博士学位论文, 北京, 2015.
Zhu X C. Effects of Dense Planting with Less Basal Nitrogen on Rice Yield, Nitrogen Use Efficiency and Greenhouse Gas Emissions in Northeast China. PhD Dissertation of Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China, 2015 (in Chinese with English abstract).
[3] 侯红乾, 冀建华, 刘光荣, 刘益仁, 刘秀梅, 程正新, 杨俊诚, 文石林. 南方红壤区稻-稻连作体系下氮肥减施模式研究. 中国水稻科学, 2012,26:555-562.
Hou H Q, Ji J H, Liu R G, Liu Y R, Liu X M, Cheng Z X, Yang J C, Wen S L. On the mode of nitrogen-reduction in double-rice cropping region in red soil area of South China. Chin J Rice Sci, 2012,26:555-562 (in Chinese with English abstract).
[4] 尹彩侠, 李前, 孔丽丽, 秦裕波, 王蒙, 于雷, 刘春光, 王立春, 侯云鹏. 控释氮肥减施对春玉米产量、氮素吸收及转运的影响. 中国农业科学, 2018,51:3941-3950.
Yin C X, Li Q, Kong L L, Qin Y B, Wang M, Yu L, Liu C G, Wang L C, Hou Y B. Effect of reduced controlled-release nitrogen fertilizer application on yield, nitrogen absorption and transportation of spring maize. Sci Agric Sin, 2018,51:3941-3950 (in Chinese with English abstract).
[5] 张俊, 李刚华, 宋云攀, 张巫军, 杨从党, 王绍华, 丁艳锋. 超级稻Y两优2号在两生态区的抗倒性分析. 作物学报, 2013,39:682-692.
Zhang J, Li G H, Song Y P, Zhang W J, Yang C D, Wang S H, Ding Y F. Lodging resistance of super-hybrid rice Y Liangyou 2 in two ecological regions. Acta Agron Sin, 2013,39:682-692 (in Chinese with English abstract).
[6] 李国辉, 张国, 崔克辉. 水稻穗颈维管束特征及其与茎鞘同化物转运和产量的关系. 植物生理学报, 2019,55:329-341.
Li G H, Zhang G, Cui K H. Characteristics of vascular bundles of peduncle and its relationship with translocation of stem assimilates and yield in rice. Plant Physiol J, 2019,55:329-341 (in Chinese with English abstract).
[7] 彭少兵, 黄见良, 钟旭华, 杨建昌, 王光火, 邹应斌, 张福锁, 朱庆森, Roland B, Christian W. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002,35:1095-1103.
Peng S B, Huang J L, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhang F S, Zhu Q S, Roland B, Christian W. Research strategy in improving fertilizer-nitrogen use efficiency of irrigated rice in China. Sci Agric Sin, 2002,35:1095-1103 (in Chinese with English abstract).
[8] 张刚, 王德建, 俞元春, 王灿, 庄锦贵. 秸秆全量还田与氮肥用量对水稻产量、氮肥利用率及氮素损失的影响. 植物营养与肥料学报, 2016,22:877-885.
Zhang G, Wang D J, Yu Y C, Wang C, Zhuang J G. Effects of straw incorporation plus nitrogen fertilizer on rice yield, nitrogen use efficiency and nitrogen loss. J Plant Nutr Fert, 2016,22:877-885 (in Chinese with English abstract).
[9] 从夕汉, 施伏芝, 阮新民, 罗玉祥, 马廷臣, 罗志祥. 氮肥水平对不同基因型水稻氮素利用率、产量和品质的影响. 应用生态学报, 2017,28:1219-1226.
Cong X H, Shi F Z, Ruan X M, Luo Y X, Ma T C, Luo Z X. Effects of nitrogen fertilizer application rate on nitrogen use efficiency and grain yield and quality of different rice varieties. Chin J Appl Ecol, 2017,28:1219-1226 (in Chinese with English abstract).
[10] Peng S B, Tang Q Y, Zou Y B. Current status and challenges of rice production in China. Plant Prod Sci, 2009,12:3-8.
[11] 陈书强. 施氮量和比例对不同类型水稻品种穗部性状和产量的影响. 黑龙江农业科学, 2019, (6):40-46.
Chen S Q. Effect of amount and proportion of nitrogen application on panicle traits and yield of different types of rice. Heilongjiang Agric Sci, 2019, (6):40-46 (in Chinese with English abstract).
[12] Jan D, Annakaisa E, Ykä H. Hormone interactions during vascular development. Plant Mol Biol, 2009,69:347-360.
[13] 凌启鸿, 蔡建中, 苏祖芳. 水稻茎秆维管束数与穗部性状关系及其应用的研究. 江苏农学院学报(农业与生命科学版), 1982,3(3):7-16.
Ling Q H, Cai J Z, Su Z F. The relationship between the number of macro-vascular bundles in culm and the panicle characters in rice plant and its application. J Yangzhou Univ (Agric Life Sci Edn), 1982,3(3):7-16 (in Chinese with English abstract).
[14] 黄璜. 水稻穗颈节间组织与颖花数的关系. 作物学报, 1998,24:193-200.
Huang H. Relation between the tissue of the highest internode and the number of spikelets. Acta Agron Sin, 1998,24:193-200 (in Chinese with English abstract).
[15] 徐正进, 陈温福, 曹洪任, 张龙步, 杨守仁. 水稻穗颈维管束数与穗部性状关系的研究. 作物学报, 1998,24:47-54.
Xu Z J, Chen W F, Cao H R, Zhang L B, Yang S R. Relation between the characters of panicle and vascular bundle in neck-panicle of rice. Acta Agron Sin, 1998,24:47-54 (in Chinese with English abstract).
[16] 徐海, 朱春杰, 郭艳华, 刘宏光, 王嘉宇, 杨莉, 杨乾华, 郑家奎, 徐正进, 陈温福. 生态环境对籼粳稻杂交后代穗部性状的影响及其与亚种特性的关系. 中国农业科学, 2009,42:1540-1549.
Xu H, Zhu C J, Guo Y H, Liu H G, Wang J Y, Yang L, Yang Q H, Zheng J K, Xu Z J, Chen W F. Effect of ecological environments on panicle traits and its relationship with subspecies characteristics in filial generations of cross between indica and japonica. Sci Agric Sin, 2009,42:1540-1549 (in Chinese with English abstract).
[17] 陈书强, 徐正进, 陈温福, 徐海, 刘宏光, 朱春杰, 王韵, 王嘉宇. 籼粳稻杂交后代维管束性状与穗部性状的关系. 华北农学报, 2007,22(5):8-14.
Chen S Q, Xu Z J, Chen W F, Xu H, Liu H G, Zhu C J, Wang Y, Wang J Y. The relation between the characters of vascular bundle and panicle in the filial generation from indica and japonica rice. Acta Agric Boreali-Sin, 2007,22(5):8-14 (in Chinese with English abstract).
[18] 荆彦辉, 徐正进. 水稻维管束性状的研究进展. 沈阳农业大学学报, 2003,34:467-471.
Jing Y H, Xu Z J. Research progress of rice vascular bundle characters. J Shenyang Agric Univ, 2003,34:467-471 (in Chinese with English abstract).
[19] 李木英, 潘晓华, 石庆华. 两系杂交稻穗部解剖特征及其与结实关系的研究. 江西农业大学学报, 2000,22:147-151.
Li M Y, Pan X H, Shi Q H. The anatomic characters of panicle and its relations to filled grain in two-line hybrid rice. Acta Agric Univ Jiangxiensis, 2000,22:147-151 (in Chinese with English abstract).
[20] Ashraf M, Akbar M, Salim M. Genetic improvement in physiological traits of rice yield. In: Slafer G A ed. Genetic Improvement of Field Crops. New York: Marcel Dekker Incorporates, 1994. pp 413-455.
[21] Pan J F, Cui K H, We D, Huang J L, Xiang J, Nie L X. Relationships of non-structural carbohydrates accumulation and translocation with yield formation in rice recombinant inbred lines under tow nitrogen levels. Physiol Plant, 2011,141:321-331
[22] Sinelair T R, Horie T. Leaf nitrogen, photosynthesis and crop radiation use efficiency a review. Crop Sci, 1989,29:90-98.
[23] 潘圣刚, 黄胜奇, 翟晶, 蔡明历, 曹凑贵, 展茗, 唐湘如. 氮肥用量与运筹对水稻氮素吸收转运及产量的影响. 土壤, 2012,44:23-29.
Pan S G, Huang S Q, Zhai J, Cai M L, Cao C G, Zhan M, Tang X R. Effects of nitrogen rate and its basal to dressing ratio on uptake, translocation of nitrogen and yield in rice. Soils, 2012,44:23-29 (in Chinese with English abstract).
[24] 周亮, 荣湘民, 谢桂先, 王心星, 谢勇. 不同氮肥施用对双季稻产量及氮肥利用率的影响. 土壤, 2014,46:971-975.
Zhou L, Rong X M, Xie G X, Wang X X, Xie Y. Effects of different nitrogen fertilizers on rice yield and nitrogen use efficiency. Soils, 2014,46:971-975 (in Chinese with English abstract).
[25] 杨守仁, 张龙步, 陈温福, 徐正进, 王进民. 水稻超高产育种的理论和方法. 中国水稻科学, 1996,10:115-120.
Yang S R, Zhang L B, Chen W F, Xu Z J, Wang J M. Theories and methods of rice breeding for maximum yield. Chin J Rice Sci, 1996,10:115-120 (in Chinese with English abstract).
[26] 荆彦辉, 付永彩, 孙传清, 张培江, 徐正进, 陈温福, 王象坤. 水稻穗颈维管束及产量相关性状的QTL分析. 中国农业大学学报, 2004,9(5):16-21.
Jing Y H, Fu Y C, Sun C Q, Zhang P J, Xu Z J, Chen W F, Wang X K. Mapping QTLs for vascular bundle in peduncle and yield components of rice ( Oryza sativa L.). J China Agric Univ, 2004,9(5):16-21 (in Chinese with English abstract).
[27] 马均, 马文波, 周开达, 汪旭东, 田彦华, 明东风, 许凤英. 水稻不同穗型品种穗颈节间组织与籽粒充实特性的研究. 作物学报, 2002,28:215-220.
Ma J, Ma W B, Zhou K D, Wang X D, Tian Y H, Ming D F, Xu F Y. The characteristics of the tissues of the first internode and their relations to the grain-filling for the different panicle types of rice. Acta Agron Sin, 2002,28:215-220 (in Chinese with English abstract).
[28] 李金泉, 徐正进, 荆彦辉, 姜健, 陈温福. 水稻穗颈及第2节间维管束数的遗传分析. 华南农业大学学报, 2002,23(3):5-8.
Li J Q, Xu Z J, Jing Y H, Jiang J, Chen W F. Genetic analysis of vascular bundle numbers in panicle base and the second internode in Oryza sativa L. J South China Agric Univ, 2002,23(3):5-8 (in Chinese with English abstract).
[1] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[2] WANG Wang-Nian, GE Jun-Zhu, YANG Hai-Chang, YIN Fa-Ting, HUANG Tai-Li, KUAI Jie, WANG Jing, WANG Bo, ZHOU Guang-Sheng, FU Ting-Dong. Adaptation of feed crops to saline-alkali soil stress and effect of improving saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(6): 1451-1462.
[3] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[4] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[5] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[6] LI Yi-Jun, LYU Hou-Quan. Effect of agricultural meteorological disasters on the production corn in the Northeast China [J]. Acta Agronomica Sinica, 2022, 48(6): 1537-1545.
[7] SHI Yan-Yan, MA Zhi-Hua, WU Chun-Hua, ZHOU Yong-Jin, LI Rong. Effects of ridge tillage with film mulching in furrow on photosynthetic characteristics of potato and yield formation in dryland farming [J]. Acta Agronomica Sinica, 2022, 48(5): 1288-1297.
[8] YAN Xiao-Yu, GUO Wen-Jun, QIN Du-Lin, WANG Shuang-Lei, NIE Jun-Jun, ZHAO Na, QI Jie, SONG Xian-Liang, MAO Li-Li, SUN Xue-Zhen. Effects of cotton stubble return and subsoiling on dry matter accumulation, nutrient uptake, and yield of cotton in coastal saline-alkali soil [J]. Acta Agronomica Sinica, 2022, 48(5): 1235-1247.
[9] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[10] LI Rui-Dong, YIN Yang-Yang, SONG Wen-Wen, WU Ting-Ting, SUN Shi, HAN Tian-Fu, XU Cai-Long, WU Cun-Xiang, HU Shui-Xiu. Effects of close planting densities on assimilate accumulation and yield of soybean with different plant branching types [J]. Acta Agronomica Sinica, 2022, 48(4): 942-951.
[11] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
[12] DU Hao, CHENG Yu-Han, LI Tai, HOU Zhi-Hong, LI Yong-Li, NAN Hai-Yang, DONG Li-Dong, LIU Bao-Hui, CHENG Qun. Improving seed number per pod of soybean by molecular breeding based on Ln locus [J]. Acta Agronomica Sinica, 2022, 48(3): 565-571.
[13] CHEN Yun, LI Si-Yu, ZHU An, LIU Kun, ZHANG Ya-Jun, ZHANG Hao, GU Jun-Fei, ZHANG Wei-Yang, LIU Li-Jun, YANG Jian-Chang. Effects of seeding rates and panicle nitrogen fertilizer rates on grain yield and quality in good taste rice cultivars under direct sowing [J]. Acta Agronomica Sinica, 2022, 48(3): 656-666.
[14] YUAN Jia-Qi, LIU Yan-Yang, XU Ke, LI Guo-Hui, CHEN Tian-Ye, ZHOU Hu-Yi, GUO Bao-Wei, HUO Zhong-Yang, DAI Qi-Gen, ZHANG Hong-Cheng. Nitrogen and density treatment to improve resource utilization and yield in late sowing japonica rice [J]. Acta Agronomica Sinica, 2022, 48(3): 667-681.
[15] DING Hong, XU Yang, ZHANG Guan-Chu, QIN Fei-Fei, DAI Liang-Xiang, ZHANG Zhi-Meng. Effects of drought at different growth stages and nitrogen application on nitrogen absorption and utilization in peanut [J]. Acta Agronomica Sinica, 2022, 48(3): 695-703.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!