Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2023, Vol. 49 ›› Issue (3): 597-607.doi: 10.3724/SP.J.1006.2023.22014

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Identification of sheathed panicle mutant sui1-5 and screening of OsPSS1 interaction protein in rice (Oryza sativa L.)

YANG Ye1(), SUN Qi2, XING Xin-Xin2, ZHANG Hai-Tao1,*(), ZHAO Zhi-Chao2,*(), CHENG Zhi-Jun2   

  1. 1College of Agronomy, Anhui Agricultural University, Hefei 230036, Anhui, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2022-03-05 Accepted:2022-07-21 Online:2023-03-12 Published:2022-08-19
  • Contact: ZHANG Hai-Tao,ZHAO Zhi-Chao E-mail:874498704@qq.com;43647174@qq.com;zhaozhichao@caas.cn
  • Supported by:
    National Natural Science Foundation of China(31871603)

Abstract:

The sheathed panicle phenomenon is a disadvantageous trait in agricultural production, which is mainly due to the abnormal elongation of the uppermost internode, resulting in the panicle closed by flag leaf sheath. Although some mutants of sheathed panicle have been identified and reported in rice, the underling molecular mechanism of uppermost internode shortening is still poorly understood. OsPSS1/SUI1 is a phosphatidylserine synthase gene and the mutation of OsPSS1 leads to a severe shortening of the uppermost internode of mutant sui1-4. We discovered and identified a new allelic mutant sui1-5 of SUI1 and the degree of the uppermost internode shortening in sui1-5 was significantly reduced. Sequence analysis revealed a single nucleotide substitution of G to T at the seventh exon of SUI1 in sui1-5, resulting in an amino acid change from glycine to valine. To study the function of OsPSS1, we detected a protein GH9A3 interacting with SUI1 through a yeast screening library, which was verified by yeast two-hybrid, luciferase complementarity (LCI), and bimolecular fluorescence complementarity (BiFC). GH9A3 was a member of GH9 gene family, encoding an endo-β-1,4-glucanase which was speculated to be a key enzyme in cell wall cellulose synthesis. At seedling stage, the relative expression level of SUI1 was not synchronized with that of interaction protein-coding gene GH9A3, and the relative expression level of GH9A3 was up-regulated in sui1-5. But at heading and jointing stage, the relative expression level of SUI1 and GH9A3 decreased synchronously, and the relative expression level of other cellulose synthase CESAs family genes decreased obviously in sui1-5. These results lay a foundation for further study of the function of OsPSS1.

Key words: sheathed panicle, SUI1, GH9A3, fine mapping, cellulose synthesis

Table 1

Indel and SNP primers for fine mapping"

多态性分子标记
Polymorphic marker
正向引物
Forward sequence (5'-3')
反应引物
Reverse sequence (5'-3')
Inc1-1 AGGGGAAGAAAAACCTGACC CCGCGTGCAGATAAAGTACA
Y1-1 CAAGCAGTGATCATACAGCCTTCC GCCATGGCTGAGAACAGAGAGC
Y1-2 CTCCTGTTACAACTGCATGGA TCGATCCATTAGCTAGCCGG
Y1-3 CATGAGTACAACATCGCCTACA CGATGATTCAGTACATGCATGC
Y1-4 GCTGCATCGGTATACAAGACG TCAGTTTGTCAGGGAGGGAG
Y1-5 CTCCGTTCTCCACCGTGT AACAGCCAACTAGGTTCACA
Y1-6 GCGGCCACCATGATCTTGTACC GTACTTGTTGTAGCGCCCGTTCC
Y1-7 CTAGCAGCTGTCTGCGACACACG CCGAGGTGTTATGCCAATCTCTATGG

Table 2

Primers used for qRT-PCR"

基因名称
Gene name
正向引物
Forward sequence (5'-3')
反应引物
Reverse sequence (5'-3')
OsCesA1 TCTTCTCGCCACGAACAACA CTTGGAGGGGTCCACAATCC
OsCesA3 TGCCAGCCATCTGTTTGCTA GCCAACACCACTCCATCTCA
OsCesA4 AAGGGATCAGCGCCAATCAA GGAGCCATTTCAGACGACCA
OsCesA7 TGGAAGTCGGTGTACTGCAC GCGGCTCATGAAGATCTCGA
OsCesA8 ATGACCAACGGGACAAGCAT TAGAGAGAGGCTGGCGAGTT
OsCesA9 GCGCCGATCAACCTATCTGA CTTGTAGCCGTAGAGGAGCG
OsGH9A3 TGAGTGCCACTCTTGCTCAG CCGAACTTGTACAGGGCCTT
SUI1 GCAGACCCGTGATGATGCTA TATATGCGGCAGTCGGTTCC
Ubiquitin ACCACTTCGACCGCCACTACT ACGCCTAAGCCTGCTGGTT

Fig. 1

Phenotypic comparison between wild type and mutant sui1-5 A: phenotypes of Kitaake (left) and sui1-4 (right) plants at heading stage; B: phenotypes of Kitaake (left) and sui1-5 (right) plants at heading stage; C: phenotype comparison of the sheathed panicle and the internode length of WT (left) and sui1-5 (right) at heading stag; D: contribution rate of internode length to plant height of wild type and mutant; E, F: longitudinal sections of the second internode of wild type (E) and sui1-5 (F); G, H: comparisons of the length and width of stem parenchyma cells from longitudinal sections of the second internode in wild type and sui1-5; I, J: transverse sections of the second internode of wild type (I) and sui1-5 (J); K: the comparison of cell numbers of the radius in the transverse sections of the second internode in wild type and sui1-5. Bar: (A) 10 cm, (B) 10 cm, (C) 10 cm, (E, F) 100 μm, (I, J) 100 μm. * represents significantly different at P < 0.05."

Table 3

Agronomic traits comparison between wild type and mutant"

农艺性状
Agronomic trait
野生型
Kitaake
突变体
sui1-5
株高Plant height (cm) 78.90±4.80 68.80±5.40**
分蘖数Tiller number 23.40±2.37 31.50±3.30**
剑叶宽Flag leaf length (cm) 1.21±0.09 1.08±0.08**
一次枝梗Primary branch number 6.80±0.92 8.30±1.50*
二次枝梗Secondary branch number 7.50±1.96 1.70±1.25**
穗长 panicle length (cm) 14.09±0.96 9.27±1.01**
倒一节间长First internode length (cm) 26.64±3.47 0.21±0.12**
倒二节间长Second internode length (cm) 17.51±0.98 14.18±0.88**
倒三节间长Third internode length (cm) 9.35±1.19 8.63±1.58
倒四节间长Fourth internode length (cm) 2.53±0.37 1.79±0.51**
每穗粒数Grain number per panicle 67.10±8.78 29.80±4.64**
结实率Seed setting rate (%) 96.00±0.03 62.00±0.06**
千粒重1000-grain weight (g) 26.13±0.04 26.89±0.06**
粒长Seed length (mm) 6.79±0.15 6.87±0.19
粒宽Seed weight (mm) 3.33±0.04 3.39±0.13
粒厚Seed thickness (mm) 2.20±0.05 2.34±0.32

Fig. 2

Map based cloning of gene SUI1 A: the primary mapping of SUI1 between markers Y1-1 and Y1-7 on the 1st chromosome; B: SUI1 was fine mapped to the interval between the markers Y1-3 and Y1-4, a 38.05 kb region. Above the line is the molecular marker used for gene mapping, and below the line is the recombinants identified by the corresponding markers. C: 3 ORFs within the fine-mapped region; D: the SUI1 gene contains 12 exons and 11 introns. The white block represents the coding region and the black block represents the non-coding region. The line represents the sequence comparison of Kitaake and sui1-5 in the seventh exon, and the arrow points to the mutant base."

Fig. 3

Interaction validation of SUI1 and GH9A3 proteins A: the interaction between SUI1 and GH9A3 in a yeast two-hybrid system. AD: activation domain; BD: DNA binding domain; SD: nutrient deficient medium. B: LCI assay indicates that SUI1 interacts with GH9A3 in N. benthamian leaves. C: the interaction validation between SUI1 and GH9A3 by BiFC assay in N. benthamiana, mCherry: SCAMP1. At least three independent N. benthamiana leaves was repeated."

Fig. 4

Phylogenetic tree of OsGH9A3 protein in rice The OsGH9A3 protein sequence was used as a Qurry sequence, the candidate species including Triticum aestivum, Zea mays, and Arabidopsis thaliana, and the homologous protein obtained by blast were constructed the evolutionary tree with Neighbor-Joining method in MEGA 7.0. The boot program value is shown as a percentage on the node. The branch length is used to infer the evolutionary distance of phylogenetic trees. OsGH9A3 had the closest homology with gpm617 protein in Zea mays, and the homology between rice and Arabidopsis GH9A family proteins was also relatively high."

Fig. 5

Subcellular localization of GH9A3 in tobacco epidermis The above figure shows the control of 35S-GFP empty carrier. The following figure shows the 35S-GFP vector connecting GH9A3 fragment. mCherry: AtSYP122, GH9A3 is located on the plasma membrane of tobacco epidermal cells with dot structure."

Fig. 6

Relative expression levels of SUI1 and GH9A3 was significantly reduced in mutants at heading stage A: seedling phenotype of wild type and mutant sui1-5, left: wild type, right: sui1-5; B: the expression changes of SUI1 and GH9A3 in sui1-5 at seeding stage (left) and heading stage (right). The relative expression levels of two genes in the mutant were decreased significantly at heading stage. **: P < 0.01."

Fig. 7

Relative expression level of GH9A3 and CESAs family genes The relative expression level of CESAs was significantly down- regulated in sui1-5 culms at heading stage. OsCesA1, OsCESA3, and OsCESA8 are involved in primary cell wall cellulose biosynthesis. OsCESA4, OsCESA7, and OsCESA9 are responsible for cellulose biosynthesis in the secondary cell walls. **: P < 0.01."

[1] 何祖华, 申宗坦. 水稻穗伸出度的遗传和不育系改良. 中国水稻科学, 1991, 5: 1-6.
He Z H, Shen Z T. Inheritance of panicle exertion and improvement of male sterile line in rice. Chin J Rice Sci, 1991, 5: 1-6. (in Chinese with English abstract)
[2] 申宗坦, 杨长登, 何祖华. 消除籼型野败不育系包颈现象的研究. 中国水稻科学, 1987, 1: 95-99.
Shen Z T, Yang C D, He Z H. Studies on eliminating panicle enclosure in wa-type ms line of rice (Oryza sativa subsp. indica). Chin J Rice Sci, 1987, 1: 95-99 (in Chinese with English abstract).
[3] 王亚坤. 微调EUI1对水稻不育系解除包颈的机理及应用研究. 中国农业科学院硕士学位论文, 北京, 2021.
Wang Y K. Mechanism and Application of Fine-tuning EUI1 to Improve the Performance of Heading of Rice Male Sterile Lines. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2021. (in Chinese with English abstract)
[4] 谭震波, 沈利爽, 况浩池, 陆朝福, 陈英, 周开达, 朱立煌. 水稻上部节间长度等数量性状基因的定位及其遗传效应分析. 遗传学报, 1996, 23: 439-446.
Tan Z B, Shen L S, Kuang H C, Lu C F, Chen Y, Zhou K D, Zhu Y H. Identification of QTLs for lengths of the top internodes and other traits in rice and analysis of their genetic effects. Acta Genet Sin, 1996, 23: 439-446. (in Chinese with English abstract)
[5] Rutger J N. A fourth genetic element to facilitate hybrid cereal production—a recessive tall in rice. Crop Sci, 1981, 21: 373-376.
doi: 10.2135/cropsci1981.0011183X002100030005x
[6] 杨蜀岚, 杨仁崔, 曲雪萍, 章清杞, 黄荣华, 王斌. 水稻长穗颈高秆隐性基因eui2的遗传及其微卫星分析. 植物学报, 2001, 43: 67-71.
Yang S L, Yang R C, Qu X P, Zhang Q Q, Huang R H, Wang B. Genetic and microsatellite analyses of a new elongated and microsatellite analyses of a new elongated uppermost internode gene eui2 of rice. Acta Bot Sin, 2001, 43: 67-71. (in Chinese with English abstract)
[7] Heu M H, Shrestha G. Genetic Analysis of Sheathed Panicle in a Nepalese Rice Cultivar Gamadi. Rice Genetics Proceedings of the International Rice Genetics Symposium,27-31 May, 1985, Manila, Philippines. pp 317-322.
[8] Kinoshita T. Report of committee on gene symbolization, nomenclature, and linkage groups. Rice Genet Newsl, 1995, 12: 13-74.
[9] Maekawa M. Allelism test for the genes responsible for sheathed panicle. Rice Genet Newsl, 1986, 3: 62-63.
[10] Shrestha G L, Heu M H. Gene location for “Gamadiness” in rice (Oryza sativa L.). Korean J Crop Sci, 1984, 29: 128-135.
[11] Maekawa M, Inukai T. Genes linked with d-2 in rice. Jpn J Breed, 1992, 42: 212-213.
[12] 朱克明. 水稻包穗基因SHP6的遗传与定位. 扬州大学硕士学位论文, 江苏扬州, 2006.
Zhu K M. Genetic Analysis and Mapping of SHP6 Gene in Rice. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2006. (in Chinese with English abstract)
[13] Zhu L, Hu J, Zhu K M, Fang Y X, Gao Z, He Y Z, Zhang G H, Guo L B, Zeng D L, Dong G J, Yan M X, Liu J, Qian Q. Identification and characterization of SHORTENED UPPERMOST INTERNODE 1, a gene negatively regulating uppermost internode elongation in rice. Plant Mol Biol, 2011, 77: 475-487.
doi: 10.1007/s11103-011-9825-6 pmid: 21928114
[14] 孙琦, 赵志超, 张瑾晖, 张锋, 程治军, 邹德堂. 水稻包穗突变体sui2的遗传分析和基因精细定位. 作物学报, 2020, 46: 1734-1742.
Sun Q, Zhao Z C, Zhang J H, Zhang F, Cheng Z J, Zou D T. Genetic analysis and fine mapping of a sheathed panicle mutant sui2 in rice (Oryza sativa L.). Acta Agron Sin, 2020, 46: 1734-1742. (in Chinese with English abstract)
[15] Zhang Y, Feng F, He C. Down regulation of OsPK1 contributes to oxidative stress and the variations in ABA/GA balance in rice. Plant Mol Biol Rep, 2012, 30: 1006-1013.
doi: 10.1007/s11105-011-0386-2
[16] 刘庄, 罗丽娟. 水稻矮秆鞘包穗突变体茎的形态解剖学研究. 中国农学通报, 2006, 22(12): 409-412.
Liu Z, Luo L J. Anatomical studies on the stem of rice of dwarf and sheathed panicle. Chin Agric Sci Bull, 2006, 22(12): 409-412. (in Chinese with English abstract)
[17] Guan H Z, Duan Y L, Liu H Q, Chen Z W, Zhuo M, Zhuang L J, Qi W M, Pan R S, Mao D M, Zhou Y C. Genetic analysis and fine mapping of an enclosed panicle mutant esp2 in rice (Oryza sativa L.). Chin Sci Bull, 2011, 56: 1476-1480.
doi: 10.1007/s11434-011-4552-9
[18] Ma J, Cheng Z J, Chen J, Shen J B, Zhang B C, Ren Y L, Ding Y, Zhou Y H, Zhang H, Zhou K N, Wang J L, Lei C L, Zhang X, Guo X P, Gao H, Bao Y Q, Wan J M. Phosphatidylserine synthase controls cell elongation especially in the uppermost internode in rice by regulation of exocytosis. PLoS One, 2016, 11: e0153119.
[19] 吴昆. 水稻矮秆包穗突变体dsp1的遗传分析与基因定位. 扬州大学硕士学位论文, 江苏扬州, 2009.
Wu K. Genetic Analysis and Gene Mapping of Dwarf Heading Mutant dsp1 in Rice. MS Thesis of Yangzhou University, Yangzhou, Jiangsu, China, 2009. (in Chinese with English abstract)
[20] 王伟平, 朱飞舟, 唐俐, 陈立云, 武小金. 一种水稻全包穗突变体的发现及初步分析. 中国农学通报, 2008, 24(6): 212-216.
Wang W P, Zhu F Z, Tang L, Chen L Y, Wu X J. Discovery and preliminary analysis of a rice mutant with fully sheathed panicle. Chin Agric Sci Bull, 2008, 24(6): 212-216. (in Chinese with English abstract)
[21] Zhu Y Y, Nomura T, Xu Y H, Zhang Y Y, Peng Y, Mao B Z, Hanada A, Zhou H C, Wang R X, Li P J, Zhu X D, Mander L, Kamiya Y, Yamaguchi S, He Z H. ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell, 2006, 18: 442-456.
doi: 10.1105/tpc.105.038455
[22] 马进. 水稻磷脂酰丝氨酸合酶OsPSS/SUI1的图位克隆和功能分析. 中国农业科学院博士学位论文, 北京, 2015.
Ma J. Positional Cloning and Functional Study of Phosphatidylserine Synthase OsPSS/SUI1 in Rice. PhD Dissertation of Chinese Academy of Agricultural Sciences,Beijing, China, 2015. (in Chinese with English abstract)
[23] Haigler C H, Brown R M. Transport of rosettes from the golgi apparatus to the plasma membrane in isolated mesophyll cells of Zinnia elegans during differentiation to tracheary elements in suspension culture. Protoplasma, 1986, 134: 111-120.
doi: 10.1007/BF01275709
[24] Hayashi T, Yoshida K, Woopark Y, Konishi T, Baba K. Cellulose metabolism in plants. Inter Rev Cytol, 2005, 247: 1-34.
doi: 10.1016/S0074-7696(05)47001-1
[25] Libertini E, Li Y, McQueen-Mason S J. Phylogenetic analysis of the plant endo-β-1,4-glucanase gene family. J Mol Evol, 2004, 58: 506-515.
doi: 10.1007/s00239-003-2571-x pmid: 15170254
[26] Xie G S, Yang B, Xu Z D, Li F C, Guo K, Zhang M L, Wang L Q, Zou W H, Wang Y T, Peng L C. Global identification of multiple OsGH9 family members and their involvement in cellulose crystallinity modification in rice. PLoS One, 2013, 8: e50171.
doi: 10.1371/journal.pone.0050171
[27] Henrissat B A. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J, 1991, 280: 309-316.
doi: 10.1042/bj2800309
[28] Yukihiro N, Ma Z Y, Liu X T, Qian X N, Zhang X R, Antje V S, Koiwaa H. Multiple quality control mechanisms in the ER and TGN determine subcellular dynamics and salt-stress tolerance function of KORRIGAN1. Plant Cell, 2020, 32: 470-485.
doi: 10.1105/tpc.19.00714
[29] Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Höfte H. A plasma membrane-bound putative endo-1,4-beta-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis. EMBO J, 1998, 17: 5563-5576.
doi: 10.1093/emboj/17.19.5563 pmid: 9755157
[30] Zhou H L, He S J, Cao Y R, Chen T, Du B X, Chu C X, Zhang J S, Chen S Y. OsGLU1, a putative membrane-bound endo-1, 4-beta-D-glucanase from rice, affects plant internode elongation. Plant Mol Biol, 2006, 60: 137-151.
doi: 10.1007/s11103-005-2972-x
[31] Zhang J W, Lei X, Wu Y R, Chen X A, Liu Y, Zhu S H, Ding W N, Wu P, Yi K K. OsGLU3, a putative membrane-bound endo-1, 4-β-glucanase, is required for root cell elongation and division in rice (Oryza sativa L.). Mol Plant, 2012, 5: 176-186.
doi: 10.1093/mp/ssr084
[32] Persson S, Wei H R, Milne J, Page G P, Somerville C R. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets. Proc Natl Acad Sci USA, 2005, 102: 8633-8638.
doi: 10.1073/pnas.0503392102 pmid: 15932943
[33] Vain T, Crowell E F, Timpano H, Biot E, Desprez T, Mansoori N, Trindade L M, Pagant S, Robert S, Hofte H, Gonneau M, Vernhettes S. The cellulase KORRIGAN is part of the cellulose synthase complex. Plant Physiol, 2014, 165: 1521-1532.
pmid: 24948829
[34] Jennifer L. Endosidin20: a key to unlock the secrets of cellulose biosynthesis. Plant Cell, 2020, 32: 2061-2062.
doi: 10.1105/tpc.20.00382
[35] Wang L Q, Guo K, Li Y, Tu Y Y, Hu H Z, Wang B R, Cui X C. Expression profiling and integrative analysis of the CESA/CSL superfamily in rice. BMC Plant Biol, 2010, 10: 282.
doi: 10.1186/1471-2229-10-282 pmid: 21167079
[36] Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H. Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol, 2003, 133: 73-83.
doi: 10.1104/pp.103.022442 pmid: 12970476
[37] Burton R A, Gidley M J, Fincher G B. Heterogeneity in the chemistry, structure and function of plant cell walls. Nat Chem Biol, 2010, 6: 724-732.
doi: 10.1038/nchembio.439 pmid: 20852610
[38] Rips S, Bentley N, Jeong I S, Welch J L, Antje V S, Hisashi K. Multiple N-glycans cooperate in the subcellular targeting and functioning of Arabidopsis KORRIGAN1. Plant Cell, 2014, 26: 3792-3808.
doi: 10.1105/tpc.114.129718
[39] Gu Y, Kaplinsky N, Bringmann M, Cobb A, Carroll A, Sampathkumar A, Baskin T, Persson S, Somerville C. Identification of a novel CESA-associated protein required for cellulose biosynthesis. Proc Natl Acad Sci USA, 2010, 107: 12866-12871.
doi: 10.1073/pnas.1007092107
[40] Zhu X Y, Li S D, Pan S Q, Xin X R, Gu Y. CSI1, PATROL1, and exocyst complex cooperate in delivery of cellulose synthase complexes to the plasma membrane. Proc Natl Acad Sci USA, 2018, 115: e3578.
[1] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[2] TIAN Biao, DING Shi-Lin, LIU Chao-Lei, RUAN Ban-Pu, JIANG Hong-Zhen, GUO Rui, DONG Guo-Jun, HU Guang-Lian, GUO Long-Biao, QIAN Qian, GAO Zhen-Yu. Genetic analysis of seedling root traits and fine mapping of the QTL qLRL4 for the longest root length in rice [J]. Acta Agronomica Sinica, 2021, 47(10): 1863-1873.
[3] ZHOU Lian, LIU Chao-Xian, CHEN Qiu-Lan, WANG Wen-Qin, YAO Shun, ZHAO Zi-Kun, ZHU Si-Ying, HONG Xiang-De, XIONG Yu-Han, CAI Yi-Lin. Fine mapping and candidate gene analysis of maize defective kernel mutant dek54 [J]. Acta Agronomica Sinica, 2021, 47(10): 1903-1912.
[4] ZHANG Xue-Cui,ZHONG Chao,DUAN Can-Xing,SUN Su-Li,ZHU Zhen-Dong. Fine mapping of Phytophthora resistance gene RpsZheng in soybean cultivar Zheng 97196 [J]. Acta Agronomica Sinica, 2020, 46(7): 997-1005.
[5] REN Meng-Meng, ZHANG Hong-Wei, WANG Jian-Hua, WANG Guo-Ying, ZHENG Jun. Fine mapping of a major QTL qMES20-10 associated with deep-seeding tolerance in maize and analysis of differentially expressed genes [J]. Acta Agronomica Sinica, 2020, 46(7): 1016-1024.
[6] Li-Ping QIN,Er-Fei DONG,Yang BAI,Lian ZHOU,Lan-Yang REN,Ren-Feng ZHANG,Chao-Xian LIU,Yi-Lin CAI. Genetic analysis and molecular characterization of tasselseed mutant ts12 in maize [J]. Acta Agronomica Sinica, 2020, 46(5): 690-699.
[7] Xin-Ran SONG, Shu-Ting HU, Kai ZHANG, Ze-Jin CUI, Jian-Sheng LI, Xiao-Hong YANG, Guang-Hong BAI. Phenotypic analysis and fine mapping of dek101 in maize [J]. Acta Agronomica Sinica, 2020, 46(12): 1831-1838.
[8] SUN Qi, ZHAO Zhi-Chao, ZHANG Jin-Hui, ZHANG Feng, CHENG Zhi-Jun, ZOU De-Tang. Genetic analysis and fine mapping of a sheathed panicle mutant sui2 in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2020, 46(11): 1734-1742.
[9] Di JIN,Dong-Zhi WANG,Huan-Xue WANG,Run-Zhi LI,Shu-Lin CHEN,Wen-Long YANG,Ai-Min ZHANG,Dong-Cheng LIU,Ke-Hui ZHAN. Fine mapping and candidate gene analysis of awn inhibiting gene B2 in common wheat [J]. Acta Agronomica Sinica, 2019, 45(6): 807-817.
[10] Zhong-Xiang LIU,Mei YANG,Peng-Cheng YIN,Yu-Qian ZHOU,Hai-Jun HE,Fa-Zhan QIU. Fine Mapping and Genetic Effect Analysis of a Major QTL qPH3.2 Associated with Plant Height in Maize (Zea mays L.) [J]. Acta Agronomica Sinica, 2018, 44(9): 1357-1366.
[11] Xiang-Yi XIAO,Xue-Tao SHI,Hao-Wen SHENG,Jin-Ling LIU,Ying-Hui XIAO. Fine Mapping and Candidate Gene Analysis of Rice Blast Resistance Gene Pi47 [J]. Acta Agronomica Sinica, 2018, 44(7): 977-987.
[12] Bao-Yu LIU, Jun-Hua LIU, Dan DU, Meng YAN, Li-Yuan ZHENG, Xue WU, Xian-Chun SANG, Chang-Wei ZHANG. Identification and Gene Mapping of a Lesion Mimic Mutant spl34 in Rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2018, 44(03): 332-342.
[13] BAI Na,LI Yong-Xiang*,JIAO Fu-Chao,CHEN Lin,LI Chun-Hui,ZHANG Deng-Feng,SONG Yan-Chun,WANG Tian-Yu,LI Yu,SHI Yun-Su*. Fine Mapping andGenetic Effect Analysis of qKRN5.04, a Major QTL Associated with Kernel Row Number [J]. Acta Agron Sin, 2017, 43(01): 63-71.
[14] GUO Guo-Qiang,SUN Xue-Wu,SUN Ping-Yong,YIN Jian-Ying,HE Qiang,YUAN Ding-Yang,DENG Hua-Feng,YUAN Long-Ping. Morphological Characterization and Fine Mapping of Zebra Leaf Mutant zebra1349 in Rice (Oryza sativa L.) [J]. Acta Agron Sin, 2016, 42(07): 957-965.
[15] LI Guang-Xian,YAO Fang-Yin,HOU Heng-Jun,SUN Zhao-Wen,JIANG Ming-Song,ZHU Wen-Yin,ZHOU Xue-Biao. Genetic Analysis and Fine Mapping of Yellow-Green Leaf Mutant ygl209 in Rice [J]. Acta Agron Sin, 2015, 41(10): 1603-1611.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Li Shaoqing, Li Yangsheng, Wu Fushun, Liao Jianglin, Li Damo. Optimum Fertilization and Its Corresponding Mechanism under Complete Submergence at Booting Stage in Rice[J]. Acta Agronomica Sinica, 2002, 28(01): 115 -120 .
[2] Wang Lanzhen;Mi Guohua;Chen Fanjun;Zhang Fusuo. Response to Phosphorus Deficiency of Two Winter Wheat Cultivars with Different Yield Components[J]. Acta Agron Sin, 2003, 29(06): 867 -870 .
[3] YANG Jian-Chang;ZHANG Jian-Hua;WANG Zhi-Qin;ZH0U Qing-Sen. Changes in Contents of Polyamines in the Flag Leaf and Their Relationship with Drought-resistance of Rice Cultivars under Water Deficiency Stress[J]. Acta Agron Sin, 2004, 30(11): 1069 -1075 .
[4] Yan Mei;Yang Guangsheng;Fu Tingdong;Yan Hongyan. Studies on the Ecotypical Male Sterile-fertile Line of Brassica napus L.Ⅲ. Sensitivity to Temperature of 8-8112AB and Its Inheritance[J]. Acta Agron Sin, 2003, 29(03): 330 -335 .
[5] Wang Yongsheng;Wang Jing;Duan Jingya;Wang Jinfa;Liu Liangshi. Isolation and Genetic Research of a Dwarf Tiilering Mutant Rice[J]. Acta Agron Sin, 2002, 28(02): 235 -239 .
[6] WANG Li-Yan;ZHAO Ke-Fu. Some Physiological Response of Zea mays under Salt-stress[J]. Acta Agron Sin, 2005, 31(02): 264 -268 .
[7] TIAN Meng-Liang;HUNAG Yu-Bi;TAN Gong-Xie;LIU Yong-Jian;RONG Ting-Zhao. Sequence Polymorphism of waxy Genes in Landraces of Waxy Maize from Southwest China[J]. Acta Agron Sin, 2008, 34(05): 729 -736 .
[8] HU Xi-Yuan;LI Jian-Ping;SONG Xi-Fang. Efficiency of Spatial Statistical Analysis in Superior Genotype Selection of Plant Breeding[J]. Acta Agron Sin, 2008, 34(03): 412 -417 .
[9] WANG Yan;QIU Li-Ming;XIE Wen-Juan;HUANG Wei;YE Feng;ZHANG Fu-Chun;MA Ji. Cold Tolerance of Transgenic Tobacco Carrying Gene Encoding Insect Antifreeze Protein[J]. Acta Agron Sin, 2008, 34(03): 397 -402 .
[10] ZHENG Xi;WU Jian-Guo;LOU Xiang-Yang;XU Hai-Ming;SHI Chun-Hai. Mapping and Analysis of QTLs on Maternal and Endosperm Genomes for Histidine and Arginine in Rice (Oryza sativa L.) across Environments[J]. Acta Agron Sin, 2008, 34(03): 369 -375 .