Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2018, Vol. 44 ›› Issue (7): 977-987.doi: 10.3724/SP.J.1006.2018.00977

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Fine Mapping and Candidate Gene Analysis of Rice Blast Resistance Gene Pi47

Xiang-Yi XIAO,Xue-Tao SHI,Hao-Wen SHENG,Jin-Ling LIU(),Ying-Hui XIAO()   

  1. Agronomy College of Hunan Agricultural University / Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance / Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, Hunan, China
  • Received:2017-11-21 Accepted:2018-03-26 Online:2018-07-10 Published:2018-04-27
  • Contact: Jin-Ling LIU,Ying-Hui XIAO E-mail:liujinling@hunau.edu.cn;xiaoyh@hunau.edu.cn
  • Supported by:
    This study was supported by the National Key Research and Development Program (2016YFD0101100), the National Natural Science Foundation of China (31171834), and the Science and Technology Major Project of Hunan Province (2015NK1001-2).

Abstract:

Continuous mapping and cloning new blast resistance genes provided an important approach for revealing the molecular mechanism of resistance to rice disease and breeding new varieties resistant to rice blast. Previously, the blast resistance gene Pi47 was mapped between SSR markers RM224 and RM2956 on chromosome 11, from a broad-spectrum and durable resistance native cultivar Xiangzi 3150 in Hunan province. In this study, the fine mapping and candidate gene prediction were performed, showing that Pi47 was mapped in an interval of 0.24 cM between CAPS markers S32 and K33 with 171.2 kb on Nipponbare reference genome, and further narrowed in an interval of 67.8 kb between markers SC12 and K33, through background screening to Pi47 monogenic lines and susceptible parent CO39 with six STS markers. Eight genes were predicted in this region on the reference genome, among them two encoded NBS-LRR resistance-like proteins, which probably were Pi47 functional candidate genes. A blast resistance spectrum evaluation, using Pi47 monogenic lines and four near-isogenic lines with the Pik allelic gene Pik, Pikm, Pikh, and Pikp across Pi47 region, revealed that Pi47 shared different resistance spectra with these four alleles. These results shed light on further molecular cloning of Pi47, and the molecular marker will be useful for molecular maker assisted selection to breed new resistant cultivars.

Key words: rice, rice blast, resistance gene, Pi47, fine mapping

Table 1

Screening of Pi47 monogenic lines in CO39/Xiangzi 3150 RILs"

株系
Line
接种菌株193-1-1的抗性表型
Phenotype inoculated with isolate 193-1-1
Pi47连锁标记
Markers linked to Pi47
Pi48连锁标记
Markers linked to Pi48
RM206 RM224 RM5926 RM3102 RM1337 RM7102
CX18 R + + + - - -
CX36 R + + + - - -
CX40 R + + + - - -
CX52 R + + + - - -
CX66 R + + + - - -
CX67 R + + + - - -
CX70 R + + + - - -
CX147 R + + + - - -
CX152 R + + + - - -
CX155 R + + + - - -
CX166 R + + + - - -
CX279 R + + + - - -

Table 2

Segregation analysis of resistance to rice blast for each F2 population"

F2群体
F2 population
抗病单株
Resistant individuals
感病单株
Susceptible individuals
作图群体株数
Individual number of mapping population
卡方值
χ2 for 3:1 ratio
CX18/CO39 F2 1040 329 308 0.68
CX52/CO39 F2 1116 340 247 2.21
CX155/CO39 F2 1512 310 0 62.0
CX279/CO39 F2 3820 1221 1132 1.66
总数 Total / / 1687 /

Table 3

Number of recombinants identified with molecular marker in the three F2 populations"

群体
Population
感病单株数目
No. of susceptible individuals
重组子分布 Distribution of recombinants
RM224 S11, S4, S32 S10 K33 K107 K134 RM5926
CX279/CO39F2 1132 20 4 0 1 1 8 56
CX18/CO39F2 308 5 2 0 0 0 1 8
CX52/CO39F2 247 2 1 0 0 0 1 11
合计 Total 1687 27 7 0 1 1 10 75

Fig. 1

Genetic and physical map construction of Pi47 locusA: the genetic map of Pi47 locus. The middle crude black line is the Pi47 locus on chromosome 11, the letter above the line is the molecular makers used in gene mapping, and the number below is the genetic distance between two adjacent markers. B: the number of recombinant of corresponding markers used in Pi47 fine mapping. The numbers from top to bottom are recombinants detected in CX52/CO39 (n=247), CX18/CO39 (n=308), CX279/CO39 (n=1132) F2 mapping population, respectively. C: the physical map of Pi47 locus in japonica rice Nipponbare reference genome. Each crude line represents one BAC clone with its clone number under the line; the crossing points are the position of markers used in fine mapping. D: final physical region of Pi47 fine mapping within 171.2 kb between S32 and S10 marks. E: genetic background analysis of Pi47 single gene lines with molecular marker."

Table 4

Molecular markers used for Pi47 fine mapping"

标记
Marker
引物顺序
Primer sequence (5°-3°)
物理位置
Physical position
扩增大小
Expect size

Enzyme
标记类型
Marker type
RM224 F: TCGATCGATCTTCACGAGG
R: TGCTATAAAAGGCATTCGGG
27673251
-27673372
122 / SSR
S11 F: TCTTTGAACAAGAGGACCAG
R: AATTACCGAATTACTTAGCG
27824419
-27825439
1021 Mva I or Hinf I CAPS
S4 F: CGAATGATGACGAGGACCCG
R: ATCAGGCACGGCAGCAGAAG
27827786
-27828843
1058 Hinf I or Rsa I CAPS
S32 F: GCCCAGTAACCGTAGGAGTC
R: TTTGATGAGCGGCAAAGTAG
27835604
-27836295
692 Msp I CAPS
S10 F: AGAGCAAGAAGGGCACGGTAT
R: AGAATGGTCCTCCTGACATCG
27992866
-27993970
1105 Rsa I CAPS
K33 F: TTTGGTGCTCCTCTTACGGG
R: TCGGAGTTCACAGAGCCAAG
28005690
-28006842
1153 Hinf I CAPS
K107 F: ACATCAATGGCTACAACT
R: TGCTAACGGTGCTGGTAT
28012753
-28012940
184/188 / STS
K134 F: GATGGCGAGATGGTTGTC
R: GCCTTTGAGATAGGGATTGC
28163563
-28163742
180/168 / STS
RM5926 F: TAGGTCCATCCAAATCTCGATCC
R: TGGCAGAGGAGATTAGAGTAATACGG
28957564
-28957858
295 / SSR
S6 F: TCAACCGAACGCAAGAATCAC
R: GGCCCTCCAGCTCATCTACCT
27841529
-27842431
903 / STS
SC1 F: CCCCACAATCCCACGAGAC
R: CGGGCCGACAATCCAATAC
27848711
-27849635
925 / STS
SC3 F: TTTCCCACCGATGACCCAG
R: GCTCGCCATCCTTCCCTTT
27879005
-27879906
902 / STS
SC6 F: TATTGGTAAGTGGTAACGGGTGA
R: GCAGATTCGAGGAGGAAGG
27891111
-27892550
1440 / STS
SC7 F: TGGCGTGGCGGTTTGGTAG
R: GCTGGTTGGGCATGGGTTG
27909896
-27910602
707 / STS
SC12 F: GGGCAACAAGCGAGCCATAA
R: GTGGTGAGGCAGCGGAACAG
27939030
-27940473
1444 / STS

Table 5

Candidate gene prediction between SC12 and K33 in Pi47 locus"

基因名称
Gene name
推测功能
Putative functions
LOC_Os11g46150 Expressed protein
LOC_Os11g46180 Transposon protein
LOC_Os11g46190 Transposon protein
LOC_Os11g46200 Leucine rich repeat family protein, expressed
LOC_Os11g46210 NB-ARC domain containing protein, expressed
LOC_Os11g46220 Hypothetical protein
LOC_Os11g46230 Tetratricopeptide repeat domain containing protein
LOC_Os11g46240 Retrotransposon protein

Table 6

Sequence similarity of cloned genes at the DNA and protein levels between Pi47-1 and Pik sites"

基因 Gene Pik1-KA Pi7-1 Piks-1 Pik-2 Pikp-1 Pikm1-TS Pi1-5
Pi47-1 DNA 0.997 0.975 0.998 0.997 0.975 0.998 0.997
Pi47-1蛋白 Pi47-1 protein 0.987 0.947 0.993 0.989 0.946 0.994 0.995

Table 7

Sequence similarity of cloned genes at the DNA and protein levels between Pi47-2 and Pik sites"

基因 Gene Pik2-KA Pi7-2 Piks-2 Pik-1 Pikp-2 Pikm2-TS Pi1-6
Pi47-2 DNA 0.999 0.998 0.999 0.999 0.998 0.999 1.000
Pi47-2蛋白 Pi47-2 protein 0.999 0.996 0.999 0.999 0.996 0.999 1.000

Fig. 2

Phylogenetic analysis of Pi47 and cloned genes at Pik locus"

Table 8

Resistance spectrum analysis of Pi47 and the nearby genes"

稻瘟菌小种
Isolate
来源
Origin
水稻品种 Rice cultivar
CO39 CX18
(Pi47)
IRBLk-Ka
(Pik)
IRBLkm-Ts
(Pikm)
IRBLkh-K3
(Pikh)
IRBLkp-K60
(Pikp)
318-2 中国湖南 Hunan, China S R R R R R
CHL473 中国湖南 Hunan, China S R R R R R
X2007A-3 中国湖南 Hunan, China S R R R R S
CHL440 中国湖南 Hunan, China S R R R R S
CHL438 中国湖南 Hunan, China S R R R R R
X2007A-7 中国湖南 Hunan, China S R R R R R
195-2-2 中国湖南 Hunan, China S S R R R S
87-4 中国湖南 Hunan, China S R R R R R
193-1-1 中国湖南 Hunan, China S R R R R R
110-2 中国湖南 Hunan, China S R R R R R
236-1 中国湖南 Hunan, China S R R R R R
RB4 中国广东 Guangdong, China S R R R R S
RB6 中国广东 Guangdong, China S R R R R S
RB18 中国福建 Fujian, China S R S R R S
RB19 中国福建 Fujian, China S R R R R R
RB12 中国 China MR MR MR MR MR MR
KOH 日本 Japan S S S S S S
[1] Dean R A, Talbot N J, Ebbole D J, Farman M L, Mitchell T K, Orbach M J, Thon M, Kulkarni R, Xu J R, Pan H Q, Read N D, Lee Y H, Carbone I, Brown D, Oh Y Y, Donofrio N, Jeong J S, Soanes D M, Djonovic S, Kolomiets E, Rehmeyer C, Li W X, Harding M, Kim S, Lebrun M H, Bohnert H, Coughlan S, Butler J, Calvo S, Ma L J, Nicol R, Purcell S, Nusbaum C, Galagan J E, Birren B W . The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 2005,434:980-986
[2] Hulbert S H, Webb C A, Smith S M, Sun Q . Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol, 2001,39:285-312
doi: 10.1146/annurev.phyto.39.1.285
[3] Luo C X, Yin L F, Koyanagi S, Farman M L, Kusaba M, Yaegashi H . Genetic mapping and chromosomal assignment of Magnaporthe oryzae avirulence genes AvrPik, AvrPiz, and AvrPiz-t controlling cultivar specificity on rice. Phytopathology, 2005,95:640-647
[4] Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Saito Y H, Matsumoto T, Yano M, Takatsuji H . Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J, 2010,64:498-510
doi: 10.1111/j.1365-313X.2010.04348.x pmid: 20807214
[5] Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel J B, Fournier E, Tharreau D, Terauchi R, Kroj T . The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell, 2013,25:1463-1481
[6] Wang Z, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H . The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J Cell Mol Biol, 1999,19:55-64
[7] Chen J, Shi Y F, Liu W Z, Chai R Y, Fu Y P, Zhuang J Y, Wu J L . A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. J Genet Genomics, 2011,38:209-216
[8] Ashikawa I, Hayashi N, Abe F, Wu J Z, Matsumoto T . Characterization of the rice blast resistance gene Pik cloned from Kanto 51. Mol Breed, 2012,30:485-494
doi: 10.1007/s11032-011-9638-y
[9] Rai A K, Kumar S P, Gupta S K, Gautam N, Singh N K, Sharma T R . Functional complementation of rice blast resistance gene Pi-K(H)(Pi54) conferring resistance to diverse strains of Magnaporthe oryzae. Plant Biochem Biotechnol, 2011,20:55-65
[10] Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J Z, Matsumoto T, Ono K, Yano M . Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm specific rice blast resistance. Genetics, 2008,180:2267-2276
doi: 10.1534/genetics.108.095034 pmid: 18940787
[11] Yuan B, Zhai C, Wang W, Zeng X S, Xu X K, Hu H Q, Lin F, Wang L, Pan Q H . The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet, 2011,122:1017-1028
[12] Koide Y, Kawasaki A, Telebanco-Yanoria M J, Hairmansis A, Nguyet N T M, Bigirimana J, Fujita D, Kobayashi N, Fukuta Y . Development of pyramided lines with two resistance genes Pish and Pib for blast disease(Magnaporthe oryzae, B. Couch) in rice (Oryza sativa L.). Plant Breed, 2010,129:670-675
[13] Hayashi K, Yasuda N, Fujita Y, Koizumi S, Yoshida H . Identification of the blast resistance gene Pit in rice cultivars using functional markers. Theor Appl Genet, 2010,121:1357-1367
doi: 10.1007/s00122-010-1393-7 pmid: 20589366
[14] Bryan G T, Wu K S, Farrall L, Jia Y L, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B . A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 2000,12:2033-2046
doi: 10.2307/3871103 pmid: 11090207
[15] Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang G L . The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant-Microbe Interact, 2006,19:1216-1228
doi: 10.1094/MPMI-19-1216 pmid: 17073304
[16] Hua L, Wu J, Chen C, Chen C X, Wu W H, He X Y, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q H . The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet, 2012,125:1047-1055
doi: 10.1007/s00122-012-1894-7 pmid: 22643901
[17] Lee S K, Song M Y, Seo Y S, Kim H K, Ko S, Cao P J, Suh J P, Yi G, Roh J H, Lee S, An G, Hahn T R, Wang G L, Ronald P, Jeon J S . Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding- leucine-rich repeat genes. Genetics, 2009,181:1627-1638
[18] Qu S D, Liu G F, Zhou B, Bellizzi M, Zeng L R, Dai L Y, Wang G L . The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006,172:1901-1914
doi: 10.1534/genetics.105.044891 pmid: 16387888
[19] Liu X, Lin F, Wang L, Pan Q . The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics, 2007,176:2541-2549
doi: 10.1534/genetics.107.075465 pmid: 17507669
[20] Lin F, Chen S, Que Z, Wang L, Liu X Q, Pan Q H . The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics, 2007,177:1871-1880
doi: 10.1534/genetics.107.080648 pmid: 17947408
[21] Liu Y, Liu B, Zhu X, Yang J, Bordeos A, Wang G, Leach J E, Leung H . Fine-mapping and molecular marker development for Pi56(t), a NBS-LRR gene conferring broad-spectrum resistance to Magnaporthe oryzae in rice. Theor Appl Genet, 2013,126:985-998
doi: 10.1007/s00122-012-2031-3 pmid: 23400829
[22] Xu X, Hayashi N, Wang C T, Fukuoka S, Kawasaki S, Takatsuji H, Jiang C J . Rice blast resistance gene Pikahei-1(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein. Mol Breed, 2014,34:691-700
doi: 10.1007/s11032-014-0067-6
[23] Chauhan R S, Farman M L, Zhang H B, Leong S A . Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Mol Genet Genomics, 2002,267:603-612
[24] Jing S, Wang W J, Han J L, Chen S, Wang C Y, Zeng L X, Feng A Q, Yang J Y, Zhou B, Zhu X Y . Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus. Theor Appl Genet, 2015,128:2213-2225
doi: 10.1007/s00122-015-2579-9 pmid: 26183036
[25] Zheng W, Wang Y, Wang L, Ma Z, Zhao J, Wang P, Zhang L, Liu Z, Lu X . Genetic mapping and molecular marker development for Pi65(t), a novel broad-spectrum resistance gene to rice blast using next-generation sequencing. Theor Appl Genet, 2016,129:1035-1044
doi: 10.1007/s00122-016-2681-7 pmid: 26883042
[26] Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G, Li Q, Zhang J, Wu S, Milazzo J, Mao B, Wang E, Xie H, Tharreau D, He Z H . Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 2017,355:962-965
doi: 10.1126/science.aai8898 pmid: 28154240
[27] Chen X W, Shang J J, Chen D X, Lei C L, Zou Y, Zhai W X, Liu G Z, Xu J H, Ling Z Z, Cao G, Ma B T, Wang Y P, Zhao X F, Li S G, Zhu L H . A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, 2006,46:794-804
doi: 10.1111/j.1365-313X.2006.02739.x pmid: 16709195
[28] Fukuoka S, Saka N, Koga H, Ono k, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno H, Yano M . Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009,325:998-1001
doi: 10.1126/science.1175550 pmid: 19696351
[29] Lv Q M, Xu X, Shang J, Shang J J, Jiang G H, Pang Z Q, Zhou Z Z, Wang J, Liu Y, Li T, Li X B, Xu J C, Cheng Z K, Zhao X F, Li S G, Zhu L H . Functional analysis of Pid3-A4, an ortholog of rice blast resistance gene Pid3 revealed by allele mining in common wild rice. Phytopathology, 2013,103:594-599
doi: 10.1094/PHYTO-10-12-0260-R pmid: 23384860
[30] Devanna N B, Vijayan J, Sharma T R . The blast resistance gene Pi54 of cloned from Oryza officinalis interacts with Avr-Pi54 through its novel non-LRR domains. PLoS One, 2014,9:e104840
[31] Das A, Soubam D, Singh P K, Thakur S, Singh N K, Sharma T R . A novel blast resistance gene, Pi54rh cloned from wild species of rice. Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Func Integr Genomics, 2012,2:215-228
[32] 鄂志国, 王磊 . 水稻抗病性基因的克隆和功能研究进展. 遗传, 2009,31:999-1005
doi: 10.3724/SP.J.1005.2009.00999
E Z G, Wang L . Advance on the cloning and functional analysis of disease resistance genes in rice. Hereditas (Beijing), 2009,31:999-1005 (in Chinese with English abstract)
doi: 10.3724/SP.J.1005.2009.00999
[33] Zhang X H, Yang S H, Wang J, Jia Y X, Huang J, Tan S J, Zhong Y, Wang L, Gu L J, Chen J Q, Pan Q H, Bergelson J, Tian D C . A genome-wide survey reveals abundant rice blast R-genes in resistant cultivars. Plant J Cell Mol Biol, 2015,84:20-28
[34] Huang H M, Huang L, Feng G P, Wang S H, Wang Y, Liu J L, Jiang N, Yan W T, Xu L C, Sun P Y, Li Z Q, Liu X L, Xiao Y H, Liu E M, Dai L Y, Wang G L . Molecular mapping of the new blast resistance genes Pi47 and Pi48 in the durably resistant local rice cultivar Xiangzi 3150. Phytopathology, 2011,101:620-626
doi: 10.1094/PHYTO-08-10-0209 pmid: 21171885
[35] International Rice Research Institute . Standard Evaluation System for Rice (SES). Los Baños, Philippines: IRRI, 1996. pp 17-18
[36] Dixit A . The map-based sequence of the rice genome. Nature, 2005,436:793-800
doi: 10.1038/nature03895 pmid: 16100779
[37] Li L Y, Wang L, Jing J X, Li Z Q, Lin F, Huang L F, Pan Q H . The Pikm gene, conferring stable resistance to isolates of Magnaporthe oryzae, was finely mapped in a crossover-cold region on rice chromosome 11. Mol Breed, 2007,20:179-188
doi: 10.1007/s11032-007-9118-6
[38] Xiao W M, Yang Q Y, Wang H, Guo T, Liu Y Z, Zhu X Y, Chen Z Q . Identification and fine mapping of a resistance gene to Magnaporthe oryzae in a space-induced rice mutant. Mol Breed, 2011,28:303-312
doi: 10.1007/s11032-010-9481-6
[39] Zhai C, Lin F, Dong Z, He X, Yuan B, Zeng X, Wang L, Pan Q . The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol, 2010,189:321-334
doi: 10.1111/j.1469-8137.2010.03462.x pmid: 21118257
[40] Wang L, Xu X K, Lin F, Pan Q H . Characterization of rice blast resistance genes in the Pik cluster and fine mapping of the Pik-p locus. Phytopathology, 2009,99:900-905
doi: 10.1094/PHYTO-99-8-0900 pmid: 19594308
[41] Sharma T R, Madhav M S, Singh B K, Shanker P, Jana T K, Dalal V, Pandit A, Singh A, Gaikwad K, Upreti H C, Singh N K . High-resolution mapping, cloning and molecular characterization of the Pi-kh gene of rice, which confers resistance to Magnaporthe grisea. Mol Genet Genomics, 2005,274:569-578
[42] Telebanco-Yanoria M, Koide Y, Fukuta Y, Imbe T, Tsunematsu H, Kato H, Ebron L, Nguyen T, Kobayashi N . A set of near-isogenic lines of indica-type rice variety CO39 as differential varieties for blast resistance. Mol Breed, 2011,27:357-373
[43] 黄玲 . 水稻品种湘资3150广谱持久抗稻瘟病基因的定位. 湖南农业大学硕士学位论文, 湖南长沙, 2010
Huang L . Mapping of Broad-spectrum and Durable Blast Resistance Genes in Rice Cultivar Xiangzi 3150. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2010 (in Chinese with English abstract)
[44] 王悦, 邓晓娟, 江南, 黄红梅, 王丹, 何峰, 孙平勇, 王国梁 . 天津野生稻稻瘟病抗性的遗传分析与抗瘟基因Pi2-1的初步定位. 湖南农业大学学报(自然科学版), 2013,39(1):40-45
doi: 10.3724/SP.J.1238.2013.00040
Wang Y, Deng X J, Jiang N, Huang H M, Wang D, He F, Sun P Y, Wang G L . Genetic analysis of the blast resistance in the wild rice species Tianjinyeshengdao and preliminary mapping of the resistance gene Pi2-1. J Hunan Agric Univ(Nat Sci), 2013,39(1):40-45 (in Chinese with English abstract)
doi: 10.3724/SP.J.1238.2013.00040
[45] 郑卓之 . 水稻品种魔王谷持久抗稻瘟病基因Pi49的精细定位. 湖南农业大学硕士学位论文, 湖南长沙, 2013
Zheng Z Z . Fine Mapping of the Durable Blast Resistant Gene Pi49 in Rice Cultivar Mowanggu. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2013 (in Chinese with English abstract)
[46] 王建龙, 吴立群, 刘建丰, 戴良英, 刘雄伦, 肖应辉, 谢红军, 刘群恩, 李婷, 贾先勇, 王国梁, 袁隆平 . 水稻两用核不育系龙S抗稻瘟病主效基因的定位. 作物学报, 2012,38:408-415
doi: 10.3724/SP.J.1006.2012.00408
Wang J L, Wu L Q, Liu J F, Dai L Y, Liu X L, Xiao Y H, Xie H J, Liu Q E, Li T, Jia X Y, Wang G L, Yuan L P . Mapping of the resistant gene to rice blast in the dual purpose genic male sterile rice, LongS. Acta Agron Sin, 2012,38:408-415 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.00408
[47] 江南 . 水稻品种Jefferson和谷梅2号广谱抗稻瘟病基因的发掘与定位. 湖南农业大学硕士学位论文, 湖南长沙, 2010
Jiang N . Identification and Mapping of Broad-spectrum Blast Resistance Genes in Rice Cultivars Jefferson and Gumei 2. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2010 (in Chinese with English abstract)
[48] Liu J L, Wang X J, Mitchell T, Hu Y J, Liu X L, Dai L Y, Wang G L . Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction. Mol Plant Pathol, 2010,11:419-427
[49] Zhou B, Dolan M, Sakai H, Wang G L . The genomic dynamics and evolutionary mechanism of the Pi2/9 locus in rice. Mol Plant-Microbe Interact, 2007,20:63-71
doi: 10.1094/MPMI-20-0063 pmid: 17249423
[50] Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R . Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J, 2012,72:894-907
[1] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[2] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[3] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[4] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[5] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[6] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[7] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[8] YANG De-Wei, WANG Xun, ZHENG Xing-Xing, XIANG Xin-Quan, CUI Hai-Tao, LI Sheng-Ping, TANG Ding-Zhong. Functional studies of rice blast resistance related gene OsSAMS1 [J]. Acta Agronomica Sinica, 2022, 48(5): 1119-1128.
[9] ZHU Zheng, WANG Tian-Xing-Zi, CHEN Yue, LIU Yu-Qing, YAN Gao-Wei, XU Shan, MA Jin-Jiao, DOU Shi-Juan, LI Li-Yun, LIU Guo-Zhen. Rice transcription factor WRKY68 plays a positive role in Xa21-mediated resistance to Xanthomonas oryzae pv. oryzae [J]. Acta Agronomica Sinica, 2022, 48(5): 1129-1140.
[10] WANG Xiao-Lei, LI Wei-Xing, OU-YANG Lin-Juan, XU Jie, CHEN Xiao-Rong, BIAN Jian-Min, HU Li-Fang, PENG Xiao-Song, HE Xiao-Peng, FU Jun-Ru, ZHOU Da-Hu, HE Hao-Hua, SUN Xiao-Tang, ZHU Chang-Lan. QTL mapping for plant architecture in rice based on chromosome segment substitution lines [J]. Acta Agronomica Sinica, 2022, 48(5): 1141-1151.
[11] WANG Ze, ZHOU Qin-Yang, LIU Cong, MU Yue, GUO Wei, DING Yan-Feng, NINOMIYA Seishi. Estimation and evaluation of paddy rice canopy characteristics based on images from UAV and ground camera [J]. Acta Agronomica Sinica, 2022, 48(5): 1248-1261.
[12] KE Jian, CHEN Ting-Ting, WU Zhou, ZHU Tie-Zhong, SUN Jie, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Suitable varieties and high-yielding population characteristics of late season rice in the northern margin area of double-cropping rice along the Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(4): 1005-1016.
[13] CHEN Yue, SUN Ming-Zhe, JIA Bo-Wei, LENG Yue, SUN Xiao-Li. Research progress regarding the function and mechanism of rice AP2/ERF transcription factor in stress response [J]. Acta Agronomica Sinica, 2022, 48(4): 781-790.
[14] WANG Hao-Rang, ZHANG Yong, YU Chun-Miao, DONG Quan-Zhong, LI Wei-Wei, HU Kai-Feng, ZHANG Ming-Ming, XUE Hong, YANG Meng-Ping, SONG Ji-Ling, WANG Lei, YANG Xing-Yong, QIU Li-Juan. Fine mapping of yellow-green leaf gene (ygl2) in soybean (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(4): 791-800.
[15] WANG Lyu, CUI Yue-Zhen, WU Yu-Hong, HAO Xing-Shun, ZHANG Chun-Hui, WANG Jun-Yi, LIU Yi-Xin, LI Xiao-Gang, QIN Yu-Hang. Effects of rice stalks mulching combined with green manure (Astragalus smicus L.) incorporated into soil and reducing nitrogen fertilizer rate on rice yield and soil fertility [J]. Acta Agronomica Sinica, 2022, 48(4): 952-961.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!