欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (7): 966-976.doi: 10.3724/SP.J.1006.2018.00966

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

高分子量麦谷蛋白亚基HPCE高效分离及图谱鉴定

王卫东,高翔(),赵丹阳   

  1. 西北农林科技大学农学院, 陕西杨凌 712100
  • 收稿日期:2017-11-24 接受日期:2018-03-26 出版日期:2018-07-10 网络出版日期:2018-07-19
  • 通讯作者: 高翔
  • 基金资助:
    本研究由国家现代农业产业技术体系建设专项(CARS-3-2-47)和国家高技术研究发展计划(863计划)项目(2011AA100501)资助

Efficient Separation and Identification of High Molecular Weight Glutenin Subunits by HPCE

Wei-Dong WANG,Xiang GAO(),Dan-Yang ZHAO   

  1. College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2017-11-24 Accepted:2018-03-26 Published:2018-07-10 Published online:2018-07-19
  • Contact: Xiang GAO
  • Supported by:
    This study was supported by the China Agriculture Research System (CARS-3-2-47) and the National High Technology Research and Development Program of China (2011AA100501).

摘要:

高分子量麦谷蛋白亚基(HMW-GS)是决定小麦加工品质的重要因素。高效毛细管电泳技术(HPCE)以其用样少、速度快、精确度高等特点被越来越多地应用到分离鉴定中来。目前小麦HMW-GS的HPCE研究尚处于起步阶段, 对标准鉴定图谱的研究甚少,且已有分离体系在连续多次试验中的分离速度及分辨率仍有提升空间。本研究通过SDS-PAGE结合分子标记的方法鉴定了不同小麦品种的HMW-GS, 以“中国春”小麦为标样确立了HPCE高效分离体系, 体系条件为75 mmol L-1 IDA+0.05% HPMC+15% ACN, pH 2.5, 电泳参数为毛细管内径25 μm, PDA检测波长200 nm, 分离电压20 kV, 运行温度30°C。通过混合进样方式对不同类型亚基进行HPCE分析, 建立了18个亚基的标准图谱, 亚基迁移顺序为1Dy12→ 1Dy10→ 1By9→ 1By8→ 1By18→ 1By16→ 1By20→ 1Bx17→ 1Bx20→ 1Bx13→ 1Bx6→ 1Bx7→ 1Ax2*→ 1Ax1→ 1Dx5→ 1Dx4→ 1Dx3→ 1Dx2,标准出峰时间依次为9.39、9.69、10.30、11.70、11.89、12.09、12.22、12.36、12.62、12.83、13.08、13.18、13.50、13.73、14.04、14.24、14.46和14.73 min, RSD<0.2%。以1Bx17为分界线, 9.39 min到12.36 min为y型亚基区域, 12.36 min到14.76 min为x型亚基区域。结合亚基迁移顺序、标准出峰时间及图谱特点可对小麦相关HMW-GS进行HPCE快速鉴定。本研究获得的分离体系及鉴定图谱可用于小麦HMW-GS定性分析和种质资源筛选。

关键词: 小麦, HMW-GS, HPCE图谱, HPCE高效分离体系

Abstract:

High molecular weight glutenin subunit (HMW-GS) is important for processing quality of wheat. High performance capillary electrophoresis (HPCE) is increasingly used in the work of separation and identification due to its advantages of small sample, rapidness and high precision. However, this technique has been seldom used in wheat HMW-GS study and its separation system needs improvement in analytical speed and discernibility. On the basis of HMW-GS identification with SDS-PAGE and molecular markers, an high-efficiency separation system of HPCE was set up using Chinese Spring as the standard. The system components (pH 2.5) were 75 mmol L -1 IDA, 0.05% HPMC, and 15% ACN. The electrophoresis parameters were 25 μm of inner diameter of the capillary, 200 nm of detection wavelength, 20 kV of separation voltage, and 30°C of operating temperature. Using mixed injection method, the standard spectrums were obtained for 18 subunits. Their migration order was 1Dy12→ 1Dy10→ 1By9→ 1By8→ 1By18→ 1By16→ 1By20→ 1Bx17→ 1Bx20→ 1Bx13→ 1Bx6→ 1Bx7→ 1Ax2*→ 1Ax1→ 1Dx5→ 1Dx4→ 1Dx3→ 1Dx2, and standard peak time of these subunits was 9.39, 9.69, 10.30, 11.70, 11.89, 12.09, 12.22, 12.36, 12.62, 12.83, 13.08, 13.18, 13.50, 13.73, 14.04, 14.24, 14.46, and 14.73 min, respectively. The relative standard deviation was smaller than 0.2%. The y-type and x-type subunits appeared in the phases of 9.39-12.36 min and 12.36-14.76 min, respectively, between which there was 1Bx17 as the boundary. These results indicate that the HPCE separation system is applicable in rapid identification of HMW-GS in wheat germplasm resources when we simultaneously consider migration order, standard peak time, and HPCE spectrum.

Key words: wheat, high molecular weight glutenin subunit, HPCE spectrum, high efficiency separation system of HPCE

表1

HMW-GS分子标记"

亚基
Subunit
标记序列
Sequence (5′→3′)
片段大小
Size of
fragment (bp)
参考文献
Reference
1Ax1 F: TCACCGACAGTCCACCGA; R: ACCAAGCGAGCTGCAGAG 2532 Bustos et al. [16]
Null F: ACGTTCCCCTACAGGTACTA; R: TATCACTGGCTAGCCGACAA 920 Lafiandra et al. [17]
1Ax2* F: ATGACTAAGCGGTTGGTTCTT; R: ACCTTGCTCCCCTTGTCTTT 1319 Ma et al. [18]
1Bx6 F: CACTGAGATGGCTAAGCGCC; R: GCCTTGGACGGCACCACAGG 321 Schwarz et al. [19]
1Bx7/1Bx17 F: CGCAACAGCGAGGACAATT; R: TGGTCCGTCACTATCTTGAGA 766/669 Ma et al. [18]
1Bx13
F: ATGAGCTAAGCGCGCTGGTCCTCTTTG;
R: CTATCACTGCCTGGTCCGACAATGCG
900
Pang and Zhang [20]
1Bx20 F: CCTCAGCATGCAAACATGCAGC; R: CTGAAACCTTTGGCCAGTCATGTC 800 Butow et al. [21]
1By8 F: TTAGCGCTAAGTGCCGTCT; R: TTGTCCTATTTGCTGCCCTT 527 Lei et al. [22]
1By9 F: TTCTCTGCATCAGTCAGGA; R: AGAGAAGCTGTGTAATGCC 707 Lei et al. [22]
1By16 F: GCAGTACCCAGCTTCTCAA; R: CCTTGTCTTGTTTGTTGCC 3 fragments Lei et al. [22]
1By18 F: CAACAAAACGGGCGTTGT; R: CAACAAAACGGGCGTTGT 365 Liang et al. [23]
1Dx2/1Dx5 F: GGGACAATACGAGCAGCAAA; R: CTTGTTCCGGTTGTTGCCA 299/281 Liu et al. [24]
1Dy10/1Dy12 F: GTTGGCCGGTCGGCTGCCATG; R: TGGAGAAGTTGGATAGTACC 576/612 Ahmad [25]

图1

小麦Glu-1位点亚基组成和编码基因的鉴定A: SDS-PAGE分析; B~F: HMW-GS分子标记鉴定。M: Trans 2k plus; 1: 中国春; 2: 西农979; 3: 济南13; 4: 晋麦47; 5: 济麦4号; 6: 豫麦41; 7: 烟农19; 8: 州137; 9: 鲁麦23; 10: 矮抗58; 11: 豫麦50; 12: 郑麦366。"

表2

材料品种HMW-GS组成"

品种 Variety Glu-1A Glu-1B Glu-1D
中国春 Chinese Spring null 7+8 2+12
西农979 Xinong 979 1 7+8 2+12
济南13 Jinan 13 1 7+9 2+12
晋麦47 Jinmai 47 null 7+9 3+12
济麦4号 Jimai 4 1 13+16 4+12
豫麦41 Yumai 41 1 20x+20y 5+10
烟农19 Yannong 19 1 17+18 4+12
莱州137 Laizhou 137 1 6+8 5+10
鲁麦23 Lumai 23 null 20 2+12
矮抗58 Aikang 58 1 7+8 4+12
豫麦50 Yumai 50 2* 7+9 2+12
郑麦366 Zhengmai 366 1 7+8 5+10

图2

缓冲液组分浓度、pH对HMW-GS电泳分离的影响A: 不同pH对分离效果的影响, 缓冲液组分为100 mmol L-1 IDA+0.05% HPMC+20% ACN。B: 缓冲液不同IDA浓度下连续两针电泳分离结果, 其他组分为0.05% HPMC+20% ACN, pH 2.5。C: 缓冲液不同HPMC浓度对分离效果的影响, 其他组分为75 mmol L-1 IDA+20% ACN, pH 2.5。D: 缓冲液不同ACN浓度对分离效果的影响, 其他组分为75 mmol L-1 IDA+0.05% HPMC, pH 2.5。A~D电泳参数均为毛细管内径50 μm, PDA检测波长214 nm, 分离电压15 kV, 运行温度25 °C。箭头所示为副峰。"

图3

电泳参数优化前(A)和优化后(B)的HPCE图谱缓冲液成分: 75 mmol L-1 IDA + 0.05% HPMC + 15% ACN, pH 2.5。优化前电泳参数: 毛细管内径50 μm, PDA检测波长214 nm, 分离电压15 kV, 运行温度25°C; 优化后电泳参数: 毛细管内径25 μm, PDA检测波长200 nm, 分离电压20 kV, 运行温度30°C。"

图4

中国春HMW-GS连续30次HPCE分离图中曲线分别对应第1、5、10、15、20、25和30次电泳分离。"

图5

HPCE (A)与RP-HPLC (B)的分离图谱以中国春HMW-GS为标准样品。参照Yan等[34]的方法命名RP-HPLC中的特征峰。"

表3

HMW-GS出峰时间相对标准偏差"

亚基
Subunit
HPCE RP-HPLC
出峰时间
Peak time (min)
相对标准偏差
Relative standard deviation (%)
出峰时间
Peak time (min)
相对标准偏差
Relative standard deviation (%)
1Dx2 14.73±0.02 0.12 22.31±0.11 0.40
1Bx7 13.18±0.01 0.07 28.42±0.22 0.63
1By8 11.70±0.01 0.14 21.86±0.21 0.78
1Dy12 9.39±0.02 0.18 15.91±0.18 0.92

图6

不同HMW-GS的HPCE图谱(混合进样)A: 中国春(null, 7+8, 2+12); B: 中国春+西农979 (1, 7+8, 2+12); C: 中国春+西农979+济南13 (1, 7+9, 2+12); D: 中国春+西农979+济南13; E: 中国春+西农979+济南13+豫麦50 (2*, 7+9, 2+12); F: 中国春+西农979+济南13+晋麦47 (null, 7+9, 3+12); G: 中国春; H: 中国春+郑麦366 (1, 7+8, 5+10); I: 中国春+郑麦366+豫麦41 (1, 20x+20y, 5+10); J: 中国春+郑麦366; K: 中国春+郑麦366+莱州137 (1, 6+8, 5+10); L: 中国春+郑麦366+莱州137+鲁麦23 (null, 20, 2+12)。M: 中国春+西农979; N: 中国春+西农979+矮抗58 (1, 7+8, 4+12); O: 中国春+西农979+矮抗58+济麦4号 (1, 13+16, 4+12); P: 中国春(null, 7+8, 2+12) +西农979+矮抗58+烟农19 (1, 17+18, 4+12)。"

表4

18个HMW-GS的出峰时间"

Glu-1位点
Glu-1 locus
亚基类型
Type of subunit
亚基
Subunit
出峰时间
Peak time (min)
Glu-1A x-type 1Ax1 13.73
1Ax2* 13.50
Glu-1B x-type 1Bx6 13.08
1Bx7 13.18
1Bx13 12.83
1Bx20 12.62
1Bx17 12.36
y-type 1By8 11.70
1By9 10.30
1By20 12.22
1By16 12.09
1By18 11.89
Glu-1D x-type 1Dx2 14.73
1Dx3 14.46
1Dx4 14.24
1Dx5 14.04
y-type 1Dy10 9.69
1Dy12 9.39
[1] Payne P I . Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu Rev Plant Physiol, 1987,38:141-153
doi: 10.1146/annurev.pp.38.060187.001041
[2] Shewry P R, Halford N G, Tatham A S . High molecular weight subunits of wheat glutenin. J Cereal Sci, 1992,15:105-120
doi: 10.1016/S0733-5210(09)80062-3
[3] Payne P I, Lawrence G J . Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res Commun, 1983,11:29-35
[4] Visioli G, Comastri A, Imperiale D, Paredi G, Faccini A, Marmiroli N . Gel-based and gel-free analytical methods for the detection of HMW-GS and LMW-GS in wheat flour. Food Analyt Methods, 2016,9:469-476
doi: 10.1007/s12161-015-0218-3
[5] Janni M, Cadonici S, Pignone D, Marmiroli N . Survey and new insights in the application of PCR-based molecular markers for identification of HMW-GS at the Glu-B1 locus in durum and bread wheat. Plant Breed, 2017,136:467-473
doi: 10.1111/pbr.12506
[6] Schalk K, Lexhaller B, Koehler P, Katharina A S . Isolation and characterization of gluten protein types from wheat, rye, barley and oats for use as reference materials. PLoS One, 2017,12:e0172819
doi: 10.1371/journal.pone.0172819 pmid: 5325591
[7] Jang Y R, Beom H R, Altenbach S B, Lee M K, Lim S H, Lee J Y . Improved method for reliable HMW-GS identification by RP-HPLC and SDS-PAGE in common wheat cultivars. Molecules, 2017,22:1055
doi: 10.3390/molecules22071055 pmid: 28672820
[8] Bietz J A, Schmalzried E . Capillary electrophoresis of wheat gliadin: initial studies and application to varietal identification. Lwt-food Sci Technol, 1995,28:174-184
doi: 10.1016/S0023-6438(95)91346-7
[9] Werner W E, Wiktorowicz J E, Kasarda D D . Wheat varietal identification by capillary electrophoresis of gliadins and high molecular weight glutenin subunits. Cereal Chem, 1994,71:397-402
doi: 10.1021/bp00029a017
[10] Werner W E . Ferguson plot analysis of high molecular weight glutenin subunits by capillary electrophoresis. Cereal Chem, 1995,72:248-251
doi: 10.1021/bp00033a016
[11] Sutton K H, Bietz J A . Variation among high molecular weight subunits of glutenin detected by capillary electrophoresis. J Cereal Sci, 1997,25:9-16
doi: 10.1006/jcrs.1996.9999
[12] Bean S R, Lookhart G L . Faster capillary electrophoresis separation of wheat proteins through modifications to buffer composition and sample handling. Electrophoresis, 1998,19:3190-3198
doi: 10.1002/elps.1150191823 pmid: 9932814
[13] Jang Y R, Beom H R, Altenbach S B, Lee M K, Lim S H, Lee J Y . Improved method for reliable HMW-GS identification by RP-HPLC and SDS-PAGE in common wheat cultivars. Molecules, 2017,22:1055
doi: 10.3390/molecules22071055 pmid: 28672820
[14] Lee J Y, Kim Y T, Kim H J, Lee J H, Kang C S, Lim S H, Ha S H, Ahn S N, Kim Y M . Characterization of the HMW-GS 1DX2.2 gene and its protein in a common Korean wheat variety. SABRAO J Breed & Genet, 2013,45:159-168
doi: 10.1116/1.585038
[15] Siegel C S, Stevenson F O, Zimmer E A . Evaluation and comparison of FTA card and CTAB DNA extraction methods for non-agricultural taxa. Appl Plant Sci, 2017,5:1600109
doi: 10.3732/apps.1600109
[16] Bustos A D, Rubio P, Jouve N . Molecular characterisation of the inactive allele of the gene Glu-A1 and the development of a set of AS-PCR markers for HMW glutenins of wheat . Theor Appl Genet, 2000,100:1085-1094
doi: 10.1007/s001220051390
[17] Lafiandra D, Tucci G F, Pavoni A, Turchetta T, Margiotta B . PCR analysis of x- and y-type genes present at the complex Glu-A1 locus in durum and bread wheat. Theor Appl Genet, 1997,94:235-240
doi: 10.1007/s001220050405
[18] Ma W, Zhang W, Gale K R . Multiplex-PCR typing of high molecular weight glutenin alleles in wheat. Euphytica, 2003,134:51-60
doi: 10.1023/A:1026191918704
[19] Schwarz G, Felsenstein F G, Wenzel G . Development and validation of a PCR-based marker assay for negative selection of the HMW glutenin allele Glu-B1-1d (Bx-6) in wheat. Theor Appl Genet, 2004,109:1064-1069
doi: 10.1007/s00122-004-1718-5 pmid: 15175854
[20] Pang B S, Zhang X Y . Isolation and molecular characterization of high molecular weight glutenin subunit genes 1Bx13 and 1By16 from hexaploid wheat. J Integr Plant Biol, 2008,50:329-337
doi: 10.1111/j.1744-7909.2007.00573.x pmid: 18713365
[21] Gianibelli M C . Dissemination of the highly expressed Bx7 glutenin subunit (Glu-B1al allele) in wheat as revealed by novel PCR markers and RP-HPLC. Theor Appl Genet, 2004,109:1525-1535
doi: 10.1007/s00122-004-1776-8 pmid: 15340686
[22] Lei Z S, Gale K R, He Z H, Gianibelli C, Larroque O, Xia X C, Butow B J, Ma W . Y-type gene specific markers for enhanced discrimination of high-molecular weight glutenin alleles at the Glu-B1 locus in hexaploid wheat. J Cereal Sci, 2006,43:94-101
doi: 10.1016/j.jcs.2005.08.003
[23] Liang X, Zhen S, Han C, Wang C, Li X H, Ma W J, Yan Y M . Molecular characterization and marker development for hexaploid wheat-specific HMW glutenin subunit 1By18 gene. Mol Breed, 2015,35:221
doi: 10.1007/s11032-015-0406-2
[24] Liu S, Chao S, Anderson J A . New DNA markers for high molecular weight glutenin subunits in wheat. Theor Appl Genet, 2008,118:177-183
doi: 10.1007/s00122-008-0886-0 pmid: 18797838
[25] Ahmad M . Molecular marker-assisted selection of HMW glutenin alleles related to wheat bread quality by PCR-generated DNA markers. Theor Appl Genet, 2000,101:892-896
doi: 10.1007/s001220051558
[26] Robertson G H, Hurkman W, Anderson O D, Tanaka C K, Cao T K, Orts W J . Differences in alcohol-soluble protein from genetically altered wheat using capillary zone electrophoresis, one- and two-dimensional electrophoresis, and a novel gluten matrix association factor analysis. Cereal Chem, 2013,90:13-23
doi: 10.1094/CCHEM-10-11-0123
[27] Bean S R, Lookhart G L . Ultrafast capillary electrophoretic analysis of cereal storage proteins and its applications to protein characterization and cultivar differentiation. J Agric Food Chem, 2000,48:344-353
doi: 10.1021/jf990962t pmid: 10691639
[28] Yan Y, Yu J, Jiang Y, Hu Y, Cai M, Hsam S L, Zeller F J . Capillary electrophoresis separation of high molecular weight glutenin subunits in bread wheat (Triticum aestivum L.) and related species with phosphate-based buffers. Electrophoresis, 2003,24:1429-1436
doi: 10.1002/elps.200390184 pmid: 12731030
[29] 余建中 . 小麦醇溶蛋白和高分子量谷蛋白亚基高效毛细管电泳研究. 首都师范大学硕士学位论文, 北京, 2002
Yu J Z . Studies on High Performance Capillary Electrophoresis of Gliadins and High Molecular Weight Glutenin Subunits (HMW-GS) in Wheat (Triticum aestivum L.). MS Thesis of Capital Normal University, Beijing, China, 2002 (in Chinese with English abstract)
[30] Dong K, Hao C, Wang A, Cai M, Yan Y . Characterization of HMW glutenin subunits in bread and tetraploid wheats by reversed-phase high-performance liquid chromatography. Cereal Res Commun, 2009,37:65-73
doi: 10.1556/CRC.37.2009.1.8
[31] Zhu J, Khan K . Separation and quantification of HMW glutenin subunits by capillary electrophoresis. Cereal Chem, 2001,78:737-742
doi: 10.1094/CCHEM.2001.78.6.737
[32] Yan Y M, Jiang Y, Sun M M, Yu J Z, Xiao Y H, Zheng J Q, Hu Y K, Cai M H, Li Y X, Hsam S L K, Zeller F J, . Rapid identification of HMW glutenin subunits from different hexaploid wheat species by acidic capillary electrophoresis. Cereal Chem, 2004,81:561-566
doi: 10.1094/CCHEM.2004.81.5.561
[33] Salmanowicz B P, Langner M, Franaszek S . Charge-based characterisation of high-molecular-weight glutenin subunits from common wheat by capillary isoelectric focusing. Talanta, 2014,129:9-14
doi: 10.1016/j.talanta.2014.04.055 pmid: 25127558
[34] Yan X, Liu W, Yu Z T, Han C X, Zeller F J, Hsam S L K, Yan Y M, . Rapid separation and identification of wheat HMW glutenin subunits by UPLC and comparative analysis with HPLC. Aust J Crop Sci, 2014,8:140-147
[35] Seyrek E, Hattori T, Dubin P L. Frontal analysis continuous capillary electrophoresis for protein-polyelectrolyte binding studies. In: Strege M A, Lagu A L. Capillary Electrophoresis of Proteins and Peptides, Human Press, 2004,276:217-228
doi: 10.1021/pr040035o
[36] 邓志英, 田纪春, 刘现鹏 . 不同高分子量谷蛋白亚基组合的小麦籽粒蛋白组分及其谷蛋白大聚合体的积累规律. 作物学报, 2004,30:481-486
doi: 10.3321/j.issn:0496-3490.2004.05.014
Deng Z Y, Tian J C, Liu X P . Accumulation regularity of protein components in wheat cultivars with different HMW-GS. Acta Agron Sin, 2004,30:481-486 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2004.05.014
[37] 王妍妍, 郑彩霞 . 高效毛细管电泳在分离植物蛋白质中的应用. 吉林林业科技, 2010,39(4):5-9
doi: 10.3969/j.issn.1005-7129.2010.04.002
Wang Y Y, Zheng C X . The application of capillary electrophoresis in the analysis of plant protein. J Jilin For Sci Technol, 2010,39(4):5-9 (in Chinese with English abstract)
doi: 10.3969/j.issn.1005-7129.2010.04.002
[38] Machiste E O, Buckton G . Dynamic surface tension studies of hydroxypropylmethyl cellulose film-coating solutions. Int J Pharm, 1996,145:197-201
doi: 10.1016/S0378-5173(96)04769-2
[39] Stefan A R, Dockery C R, Nieuwland A A, Roberson S N, Baguley B M, Hendrix J E, Morgan S L . Forensic analysis of anthraquinone, azo, and metal complex acid dyes from nylon fibers by micro-extraction and capillary electrophoresis. Analyt Bioanalyt Chem, 2009,394:2077-2085
doi: 10.1007/s00216-009-2875-9 pmid: 19543716
[40] Gao L, Ma W J, Chen J, Wang K, Li J, Wang S L, Bekes F, Apples R, Yan Y M . Characterization and comparative analysis of wheat high molecular weight glutenin subunits by SDS-PAGE, RP-HPLC, HPCE, and MALDI-TOF-MS. J Agric Food Chem, 2010,58:2777-2786
doi: 10.1016/S0304-3975(97)00126-6 pmid: 20146422
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!