欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (7): 977-987.doi: 10.3724/SP.J.1006.2018.00977

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻抗稻瘟病基因Pi47的精细定位和候选基因分析

肖湘谊,史学涛,盛浩闻,刘金灵(),肖应辉()   

  1. 湖南农业大学农学院 / 水稻油菜抗病育种湖南省重点实验室 / 南方粮油作物协同创新中心, 湖南长沙 410128
  • 收稿日期:2017-11-21 接受日期:2018-03-26 出版日期:2018-07-10 网络出版日期:2018-04-27
  • 通讯作者: 刘金灵,肖应辉
  • 基金资助:
    本研究由国家重点研发计划项目(2016YFD0101100), 国家自然科学基金项目(31171834)和湖南省科技重大专项( 2015NK1001-1)资助

Fine Mapping and Candidate Gene Analysis of Rice Blast Resistance Gene Pi47

Xiang-Yi XIAO,Xue-Tao SHI,Hao-Wen SHENG,Jin-Ling LIU(),Ying-Hui XIAO()   

  1. Agronomy College of Hunan Agricultural University / Hunan Provincial Key Laboratory of Rice and Rapeseed Breeding for Disease Resistance / Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha 410128, Hunan, China
  • Received:2017-11-21 Accepted:2018-03-26 Published:2018-07-10 Published online:2018-04-27
  • Contact: Jin-Ling LIU,Ying-Hui XIAO
  • Supported by:
    This study was supported by the National Key Research and Development Program (2016YFD0101100), the National Natural Science Foundation of China (31171834), and the Science and Technology Major Project of Hunan Province (2015NK1001-2).

摘要:

不断挖掘和克隆抗稻瘟病新基因, 是解析水稻抗病分子遗传机制和培育抗稻瘟病新品种的重要基础。Pi47是笔者从广谱、持久抗稻瘟病湖南地方品种湘资3150中鉴定的稻瘟病抗性基因, 前期研究将其初步定位于第11染色体标记RM224和RM5926间。本研究利用3个Pi47单基因系与感病亲本CO39杂交F2群体1687个感病单株对Pi47精细定位, 利用6个STS标记对3个单基因系进行背景分析, 采用生物信息学方法进行了候选基因分析。结果表明, Pi47被精细定位于CAPS标记S32与K33间0.24 cM区域的171.2 kb物理区间内, 背景分析将Pi47进一步缩小至SC12和K33间67.8 kb的区间内; 该区间含有8个结构基因, 其中2个编码NBS-LRR抗病类似蛋白, 为Pi47的候选功能基因。稻瘟菌抗谱比较分析发现, Pi47单基因系与其定位区间内4个Pik位点的等位基因PikPikmPikhPikp的近等基因系抗谱不同。这些结果为进一步克隆Pi47和利用其进行分子标记辅助选择培育抗稻瘟病水稻新品种奠定了基础。

关键词: 水稻, 稻瘟病, 抗病基因, Pi47, 精细定位

Abstract:

Continuous mapping and cloning new blast resistance genes provided an important approach for revealing the molecular mechanism of resistance to rice disease and breeding new varieties resistant to rice blast. Previously, the blast resistance gene Pi47 was mapped between SSR markers RM224 and RM2956 on chromosome 11, from a broad-spectrum and durable resistance native cultivar Xiangzi 3150 in Hunan province. In this study, the fine mapping and candidate gene prediction were performed, showing that Pi47 was mapped in an interval of 0.24 cM between CAPS markers S32 and K33 with 171.2 kb on Nipponbare reference genome, and further narrowed in an interval of 67.8 kb between markers SC12 and K33, through background screening to Pi47 monogenic lines and susceptible parent CO39 with six STS markers. Eight genes were predicted in this region on the reference genome, among them two encoded NBS-LRR resistance-like proteins, which probably were Pi47 functional candidate genes. A blast resistance spectrum evaluation, using Pi47 monogenic lines and four near-isogenic lines with the Pik allelic gene Pik, Pikm, Pikh, and Pikp across Pi47 region, revealed that Pi47 shared different resistance spectra with these four alleles. These results shed light on further molecular cloning of Pi47, and the molecular marker will be useful for molecular maker assisted selection to breed new resistant cultivars.

Key words: rice, rice blast, resistance gene, Pi47, fine mapping

表1

CO39/湘资3150 RIL中Pi47单基因系的鉴定"

株系
Line
接种菌株193-1-1的抗性表型
Phenotype inoculated with isolate 193-1-1
Pi47连锁标记
Markers linked to Pi47
Pi48连锁标记
Markers linked to Pi48
RM206 RM224 RM5926 RM3102 RM1337 RM7102
CX18 R + + + - - -
CX36 R + + + - - -
CX40 R + + + - - -
CX52 R + + + - - -
CX66 R + + + - - -
CX67 R + + + - - -
CX70 R + + + - - -
CX147 R + + + - - -
CX152 R + + + - - -
CX155 R + + + - - -
CX166 R + + + - - -
CX279 R + + + - - -

表2

各F2群体抗稻瘟病表型分离分析"

F2群体
F2 population
抗病单株
Resistant individuals
感病单株
Susceptible individuals
作图群体株数
Individual number of mapping population
卡方值
χ2 for 3:1 ratio
CX18/CO39 F2 1040 329 308 0.68
CX52/CO39 F2 1116 340 247 2.21
CX155/CO39 F2 1512 310 0 62.0
CX279/CO39 F2 3820 1221 1132 1.66
总数 Total / / 1687 /

表3

所用标记在3个F2群体中鉴定到的重组子数量"

群体
Population
感病单株数目
No. of susceptible individuals
重组子分布 Distribution of recombinants
RM224 S11, S4, S32 S10 K33 K107 K134 RM5926
CX279/CO39F2 1132 20 4 0 1 1 8 56
CX18/CO39F2 308 5 2 0 0 0 1 8
CX52/CO39F2 247 2 1 0 0 0 1 11
合计 Total 1687 27 7 0 1 1 10 75

图1

Pi47位点区域遗传图谱与物理图谱的构建A: Pi47位点区域遗传图谱。中间粗实线为第11染色体Pi47位点区域示意图, 上方为定位使用标记, 下方数字为相邻两个标记间的遗传距离; B: Pi47精细定位重组各标记重组子数。从上往下依次为对应标记在CX52/CO39 (n=247)、CX18/CO39 (n=308)、CX279/CO39 (n=1132) F2群体中鉴定的重组子数目; C: Pi47位点在日本晴参考基因组中的BAC克隆重叠群构建的物理图谱。每段黑实线代表1个BAC克隆, 每个BAC克隆名字标注在下面; 与虚线交叉点为所使用定位标记对应位置。D: Pi47最终精细定位在标记S32和S10间171.2 kb的区域。E: 分子标记鉴定单基因系Pi47位点遗传背景。"

表4

Pi47精细定位使用的标记信息"

标记
Marker
引物顺序
Primer sequence (5°-3°)
物理位置
Physical position
扩增大小
Expect size

Enzyme
标记类型
Marker type
RM224 F: TCGATCGATCTTCACGAGG
R: TGCTATAAAAGGCATTCGGG
27673251
-27673372
122 / SSR
S11 F: TCTTTGAACAAGAGGACCAG
R: AATTACCGAATTACTTAGCG
27824419
-27825439
1021 Mva I or Hinf I CAPS
S4 F: CGAATGATGACGAGGACCCG
R: ATCAGGCACGGCAGCAGAAG
27827786
-27828843
1058 Hinf I or Rsa I CAPS
S32 F: GCCCAGTAACCGTAGGAGTC
R: TTTGATGAGCGGCAAAGTAG
27835604
-27836295
692 Msp I CAPS
S10 F: AGAGCAAGAAGGGCACGGTAT
R: AGAATGGTCCTCCTGACATCG
27992866
-27993970
1105 Rsa I CAPS
K33 F: TTTGGTGCTCCTCTTACGGG
R: TCGGAGTTCACAGAGCCAAG
28005690
-28006842
1153 Hinf I CAPS
K107 F: ACATCAATGGCTACAACT
R: TGCTAACGGTGCTGGTAT
28012753
-28012940
184/188 / STS
K134 F: GATGGCGAGATGGTTGTC
R: GCCTTTGAGATAGGGATTGC
28163563
-28163742
180/168 / STS
RM5926 F: TAGGTCCATCCAAATCTCGATCC
R: TGGCAGAGGAGATTAGAGTAATACGG
28957564
-28957858
295 / SSR
S6 F: TCAACCGAACGCAAGAATCAC
R: GGCCCTCCAGCTCATCTACCT
27841529
-27842431
903 / STS
SC1 F: CCCCACAATCCCACGAGAC
R: CGGGCCGACAATCCAATAC
27848711
-27849635
925 / STS
SC3 F: TTTCCCACCGATGACCCAG
R: GCTCGCCATCCTTCCCTTT
27879005
-27879906
902 / STS
SC6 F: TATTGGTAAGTGGTAACGGGTGA
R: GCAGATTCGAGGAGGAAGG
27891111
-27892550
1440 / STS
SC7 F: TGGCGTGGCGGTTTGGTAG
R: GCTGGTTGGGCATGGGTTG
27909896
-27910602
707 / STS
SC12 F: GGGCAACAAGCGAGCCATAA
R: GTGGTGAGGCAGCGGAACAG
27939030
-27940473
1444 / STS

表5

Pi47位点标记SC12和K33间参考基因组区域内候选基因预测"

基因名称
Gene name
推测功能
Putative functions
LOC_Os11g46150 Expressed protein
LOC_Os11g46180 Transposon protein
LOC_Os11g46190 Transposon protein
LOC_Os11g46200 Leucine rich repeat family protein, expressed
LOC_Os11g46210 NB-ARC domain containing protein, expressed
LOC_Os11g46220 Hypothetical protein
LOC_Os11g46230 Tetratricopeptide repeat domain containing protein
LOC_Os11g46240 Retrotransposon protein

表6

Pi47-1与Pik位点对应的已克隆基因在DNA和蛋白水平上的序列相似性"

基因 Gene Pik1-KA Pi7-1 Piks-1 Pik-2 Pikp-1 Pikm1-TS Pi1-5
Pi47-1 DNA 0.997 0.975 0.998 0.997 0.975 0.998 0.997
Pi47-1蛋白 Pi47-1 protein 0.987 0.947 0.993 0.989 0.946 0.994 0.995

表7

Pi47-2与Pik位点对应的已克隆基因在DNA和蛋白水平上的序列相似性"

基因 Gene Pik2-KA Pi7-2 Piks-2 Pik-1 Pikp-2 Pikm2-TS Pi1-6
Pi47-2 DNA 0.999 0.998 0.999 0.999 0.998 0.999 1.000
Pi47-2蛋白 Pi47-2 protein 0.999 0.996 0.999 0.999 0.996 0.999 1.000

图2

Pi47与Pik位点已克隆基因的系统进化分析"

表8

Pi47及其附近位置抗稻瘟病基因的抗谱分析"

稻瘟菌小种
Isolate
来源
Origin
水稻品种 Rice cultivar
CO39 CX18
(Pi47)
IRBLk-Ka
(Pik)
IRBLkm-Ts
(Pikm)
IRBLkh-K3
(Pikh)
IRBLkp-K60
(Pikp)
318-2 中国湖南 Hunan, China S R R R R R
CHL473 中国湖南 Hunan, China S R R R R R
X2007A-3 中国湖南 Hunan, China S R R R R S
CHL440 中国湖南 Hunan, China S R R R R S
CHL438 中国湖南 Hunan, China S R R R R R
X2007A-7 中国湖南 Hunan, China S R R R R R
195-2-2 中国湖南 Hunan, China S S R R R S
87-4 中国湖南 Hunan, China S R R R R R
193-1-1 中国湖南 Hunan, China S R R R R R
110-2 中国湖南 Hunan, China S R R R R R
236-1 中国湖南 Hunan, China S R R R R R
RB4 中国广东 Guangdong, China S R R R R S
RB6 中国广东 Guangdong, China S R R R R S
RB18 中国福建 Fujian, China S R S R R S
RB19 中国福建 Fujian, China S R R R R R
RB12 中国 China MR MR MR MR MR MR
KOH 日本 Japan S S S S S S
[1] Dean R A, Talbot N J, Ebbole D J, Farman M L, Mitchell T K, Orbach M J, Thon M, Kulkarni R, Xu J R, Pan H Q, Read N D, Lee Y H, Carbone I, Brown D, Oh Y Y, Donofrio N, Jeong J S, Soanes D M, Djonovic S, Kolomiets E, Rehmeyer C, Li W X, Harding M, Kim S, Lebrun M H, Bohnert H, Coughlan S, Butler J, Calvo S, Ma L J, Nicol R, Purcell S, Nusbaum C, Galagan J E, Birren B W . The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 2005,434:980-986
[2] Hulbert S H, Webb C A, Smith S M, Sun Q . Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol, 2001,39:285-312
doi: 10.1146/annurev.phyto.39.1.285
[3] Luo C X, Yin L F, Koyanagi S, Farman M L, Kusaba M, Yaegashi H . Genetic mapping and chromosomal assignment of Magnaporthe oryzae avirulence genes AvrPik, AvrPiz, and AvrPiz-t controlling cultivar specificity on rice. Phytopathology, 2005,95:640-647
[4] Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Saito Y H, Matsumoto T, Yano M, Takatsuji H . Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J, 2010,64:498-510
doi: 10.1111/j.1365-313X.2010.04348.x pmid: 20807214
[5] Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel J B, Fournier E, Tharreau D, Terauchi R, Kroj T . The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell, 2013,25:1463-1481
[6] Wang Z, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H . The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J Cell Mol Biol, 1999,19:55-64
[7] Chen J, Shi Y F, Liu W Z, Chai R Y, Fu Y P, Zhuang J Y, Wu J L . A Pid3 allele from rice cultivar Gumei2 confers resistance to Magnaporthe oryzae. J Genet Genomics, 2011,38:209-216
[8] Ashikawa I, Hayashi N, Abe F, Wu J Z, Matsumoto T . Characterization of the rice blast resistance gene Pik cloned from Kanto 51. Mol Breed, 2012,30:485-494
doi: 10.1007/s11032-011-9638-y
[9] Rai A K, Kumar S P, Gupta S K, Gautam N, Singh N K, Sharma T R . Functional complementation of rice blast resistance gene Pi-K(H)(Pi54) conferring resistance to diverse strains of Magnaporthe oryzae. Plant Biochem Biotechnol, 2011,20:55-65
[10] Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J Z, Matsumoto T, Ono K, Yano M . Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm specific rice blast resistance. Genetics, 2008,180:2267-2276
doi: 10.1534/genetics.108.095034 pmid: 18940787
[11] Yuan B, Zhai C, Wang W, Zeng X S, Xu X K, Hu H Q, Lin F, Wang L, Pan Q H . The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theor Appl Genet, 2011,122:1017-1028
[12] Koide Y, Kawasaki A, Telebanco-Yanoria M J, Hairmansis A, Nguyet N T M, Bigirimana J, Fujita D, Kobayashi N, Fukuta Y . Development of pyramided lines with two resistance genes Pish and Pib for blast disease(Magnaporthe oryzae, B. Couch) in rice (Oryza sativa L.). Plant Breed, 2010,129:670-675
[13] Hayashi K, Yasuda N, Fujita Y, Koizumi S, Yoshida H . Identification of the blast resistance gene Pit in rice cultivars using functional markers. Theor Appl Genet, 2010,121:1357-1367
doi: 10.1007/s00122-010-1393-7 pmid: 20589366
[14] Bryan G T, Wu K S, Farrall L, Jia Y L, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B . A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell, 2000,12:2033-2046
doi: 10.2307/3871103 pmid: 11090207
[15] Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang G L . The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea. Mol Plant-Microbe Interact, 2006,19:1216-1228
doi: 10.1094/MPMI-19-1216 pmid: 17073304
[16] Hua L, Wu J, Chen C, Chen C X, Wu W H, He X Y, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q H . The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor Appl Genet, 2012,125:1047-1055
doi: 10.1007/s00122-012-1894-7 pmid: 22643901
[17] Lee S K, Song M Y, Seo Y S, Kim H K, Ko S, Cao P J, Suh J P, Yi G, Roh J H, Lee S, An G, Hahn T R, Wang G L, Ronald P, Jeon J S . Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding- leucine-rich repeat genes. Genetics, 2009,181:1627-1638
[18] Qu S D, Liu G F, Zhou B, Bellizzi M, Zeng L R, Dai L Y, Wang G L . The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006,172:1901-1914
doi: 10.1534/genetics.105.044891 pmid: 16387888
[19] Liu X, Lin F, Wang L, Pan Q . The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus. Genetics, 2007,176:2541-2549
doi: 10.1534/genetics.107.075465 pmid: 17507669
[20] Lin F, Chen S, Que Z, Wang L, Liu X Q, Pan Q H . The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1. Genetics, 2007,177:1871-1880
doi: 10.1534/genetics.107.080648 pmid: 17947408
[21] Liu Y, Liu B, Zhu X, Yang J, Bordeos A, Wang G, Leach J E, Leung H . Fine-mapping and molecular marker development for Pi56(t), a NBS-LRR gene conferring broad-spectrum resistance to Magnaporthe oryzae in rice. Theor Appl Genet, 2013,126:985-998
doi: 10.1007/s00122-012-2031-3 pmid: 23400829
[22] Xu X, Hayashi N, Wang C T, Fukuoka S, Kawasaki S, Takatsuji H, Jiang C J . Rice blast resistance gene Pikahei-1(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein. Mol Breed, 2014,34:691-700
doi: 10.1007/s11032-014-0067-6
[23] Chauhan R S, Farman M L, Zhang H B, Leong S A . Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea. Mol Genet Genomics, 2002,267:603-612
[24] Jing S, Wang W J, Han J L, Chen S, Wang C Y, Zeng L X, Feng A Q, Yang J Y, Zhou B, Zhu X Y . Functional divergence of duplicated genes results in a novel blast resistance gene Pi50 at the Pi2/9 locus. Theor Appl Genet, 2015,128:2213-2225
doi: 10.1007/s00122-015-2579-9 pmid: 26183036
[25] Zheng W, Wang Y, Wang L, Ma Z, Zhao J, Wang P, Zhang L, Liu Z, Lu X . Genetic mapping and molecular marker development for Pi65(t), a novel broad-spectrum resistance gene to rice blast using next-generation sequencing. Theor Appl Genet, 2016,129:1035-1044
doi: 10.1007/s00122-016-2681-7 pmid: 26883042
[26] Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G, Li Q, Zhang J, Wu S, Milazzo J, Mao B, Wang E, Xie H, Tharreau D, He Z H . Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science, 2017,355:962-965
doi: 10.1126/science.aai8898 pmid: 28154240
[27] Chen X W, Shang J J, Chen D X, Lei C L, Zou Y, Zhai W X, Liu G Z, Xu J H, Ling Z Z, Cao G, Ma B T, Wang Y P, Zhao X F, Li S G, Zhu L H . A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, 2006,46:794-804
doi: 10.1111/j.1365-313X.2006.02739.x pmid: 16709195
[28] Fukuoka S, Saka N, Koga H, Ono k, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno H, Yano M . Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009,325:998-1001
doi: 10.1126/science.1175550 pmid: 19696351
[29] Lv Q M, Xu X, Shang J, Shang J J, Jiang G H, Pang Z Q, Zhou Z Z, Wang J, Liu Y, Li T, Li X B, Xu J C, Cheng Z K, Zhao X F, Li S G, Zhu L H . Functional analysis of Pid3-A4, an ortholog of rice blast resistance gene Pid3 revealed by allele mining in common wild rice. Phytopathology, 2013,103:594-599
doi: 10.1094/PHYTO-10-12-0260-R pmid: 23384860
[30] Devanna N B, Vijayan J, Sharma T R . The blast resistance gene Pi54 of cloned from Oryza officinalis interacts with Avr-Pi54 through its novel non-LRR domains. PLoS One, 2014,9:e104840
[31] Das A, Soubam D, Singh P K, Thakur S, Singh N K, Sharma T R . A novel blast resistance gene, Pi54rh cloned from wild species of rice. Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae. Func Integr Genomics, 2012,2:215-228
[32] 鄂志国, 王磊 . 水稻抗病性基因的克隆和功能研究进展. 遗传, 2009,31:999-1005
doi: 10.3724/SP.J.1005.2009.00999
E Z G, Wang L . Advance on the cloning and functional analysis of disease resistance genes in rice. Hereditas (Beijing), 2009,31:999-1005 (in Chinese with English abstract)
doi: 10.3724/SP.J.1005.2009.00999
[33] Zhang X H, Yang S H, Wang J, Jia Y X, Huang J, Tan S J, Zhong Y, Wang L, Gu L J, Chen J Q, Pan Q H, Bergelson J, Tian D C . A genome-wide survey reveals abundant rice blast R-genes in resistant cultivars. Plant J Cell Mol Biol, 2015,84:20-28
[34] Huang H M, Huang L, Feng G P, Wang S H, Wang Y, Liu J L, Jiang N, Yan W T, Xu L C, Sun P Y, Li Z Q, Liu X L, Xiao Y H, Liu E M, Dai L Y, Wang G L . Molecular mapping of the new blast resistance genes Pi47 and Pi48 in the durably resistant local rice cultivar Xiangzi 3150. Phytopathology, 2011,101:620-626
doi: 10.1094/PHYTO-08-10-0209 pmid: 21171885
[35] International Rice Research Institute . Standard Evaluation System for Rice (SES). Los Baños, Philippines: IRRI, 1996. pp 17-18
[36] Dixit A . The map-based sequence of the rice genome. Nature, 2005,436:793-800
doi: 10.1038/nature03895 pmid: 16100779
[37] Li L Y, Wang L, Jing J X, Li Z Q, Lin F, Huang L F, Pan Q H . The Pikm gene, conferring stable resistance to isolates of Magnaporthe oryzae, was finely mapped in a crossover-cold region on rice chromosome 11. Mol Breed, 2007,20:179-188
doi: 10.1007/s11032-007-9118-6
[38] Xiao W M, Yang Q Y, Wang H, Guo T, Liu Y Z, Zhu X Y, Chen Z Q . Identification and fine mapping of a resistance gene to Magnaporthe oryzae in a space-induced rice mutant. Mol Breed, 2011,28:303-312
doi: 10.1007/s11032-010-9481-6
[39] Zhai C, Lin F, Dong Z, He X, Yuan B, Zeng X, Wang L, Pan Q . The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication. New Phytol, 2010,189:321-334
doi: 10.1111/j.1469-8137.2010.03462.x pmid: 21118257
[40] Wang L, Xu X K, Lin F, Pan Q H . Characterization of rice blast resistance genes in the Pik cluster and fine mapping of the Pik-p locus. Phytopathology, 2009,99:900-905
doi: 10.1094/PHYTO-99-8-0900 pmid: 19594308
[41] Sharma T R, Madhav M S, Singh B K, Shanker P, Jana T K, Dalal V, Pandit A, Singh A, Gaikwad K, Upreti H C, Singh N K . High-resolution mapping, cloning and molecular characterization of the Pi-kh gene of rice, which confers resistance to Magnaporthe grisea. Mol Genet Genomics, 2005,274:569-578
[42] Telebanco-Yanoria M, Koide Y, Fukuta Y, Imbe T, Tsunematsu H, Kato H, Ebron L, Nguyen T, Kobayashi N . A set of near-isogenic lines of indica-type rice variety CO39 as differential varieties for blast resistance. Mol Breed, 2011,27:357-373
[43] 黄玲 . 水稻品种湘资3150广谱持久抗稻瘟病基因的定位. 湖南农业大学硕士学位论文, 湖南长沙, 2010
Huang L . Mapping of Broad-spectrum and Durable Blast Resistance Genes in Rice Cultivar Xiangzi 3150. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2010 (in Chinese with English abstract)
[44] 王悦, 邓晓娟, 江南, 黄红梅, 王丹, 何峰, 孙平勇, 王国梁 . 天津野生稻稻瘟病抗性的遗传分析与抗瘟基因Pi2-1的初步定位. 湖南农业大学学报(自然科学版), 2013,39(1):40-45
doi: 10.3724/SP.J.1238.2013.00040
Wang Y, Deng X J, Jiang N, Huang H M, Wang D, He F, Sun P Y, Wang G L . Genetic analysis of the blast resistance in the wild rice species Tianjinyeshengdao and preliminary mapping of the resistance gene Pi2-1. J Hunan Agric Univ(Nat Sci), 2013,39(1):40-45 (in Chinese with English abstract)
doi: 10.3724/SP.J.1238.2013.00040
[45] 郑卓之 . 水稻品种魔王谷持久抗稻瘟病基因Pi49的精细定位. 湖南农业大学硕士学位论文, 湖南长沙, 2013
Zheng Z Z . Fine Mapping of the Durable Blast Resistant Gene Pi49 in Rice Cultivar Mowanggu. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2013 (in Chinese with English abstract)
[46] 王建龙, 吴立群, 刘建丰, 戴良英, 刘雄伦, 肖应辉, 谢红军, 刘群恩, 李婷, 贾先勇, 王国梁, 袁隆平 . 水稻两用核不育系龙S抗稻瘟病主效基因的定位. 作物学报, 2012,38:408-415
doi: 10.3724/SP.J.1006.2012.00408
Wang J L, Wu L Q, Liu J F, Dai L Y, Liu X L, Xiao Y H, Xie H J, Liu Q E, Li T, Jia X Y, Wang G L, Yuan L P . Mapping of the resistant gene to rice blast in the dual purpose genic male sterile rice, LongS. Acta Agron Sin, 2012,38:408-415 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2012.00408
[47] 江南 . 水稻品种Jefferson和谷梅2号广谱抗稻瘟病基因的发掘与定位. 湖南农业大学硕士学位论文, 湖南长沙, 2010
Jiang N . Identification and Mapping of Broad-spectrum Blast Resistance Genes in Rice Cultivars Jefferson and Gumei 2. MS Thesis of Hunan Agricultural University, Changsha, Hunan, China, 2010 (in Chinese with English abstract)
[48] Liu J L, Wang X J, Mitchell T, Hu Y J, Liu X L, Dai L Y, Wang G L . Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction. Mol Plant Pathol, 2010,11:419-427
[49] Zhou B, Dolan M, Sakai H, Wang G L . The genomic dynamics and evolutionary mechanism of the Pi2/9 locus in rice. Mol Plant-Microbe Interact, 2007,20:63-71
doi: 10.1094/MPMI-20-0063 pmid: 17249423
[50] Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R . Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J, 2012,72:894-907
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!