欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (11): 1621-1630.doi: 10.3724/SP.J.1006.2018.01621

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻矮化大粒突变体sdb1的鉴定与基因定位

陶怡然,熊毓贞,谢佳,田维江,张晓琼,张孝波,周倩,桑贤春,王晓雯()   

  1. 农学基础实验教学中心 / 西南大学农学与生物科技学院, 重庆400715
  • 收稿日期:2018-03-09 接受日期:2018-07-20 出版日期:2018-11-12 网络出版日期:2018-08-07
  • 通讯作者: 王晓雯
  • 基金资助:
    本研究由重庆市基础科学与前沿技术研究项目(cstc2015jcyjA80008);重庆市社会事业与民生保障科技创新专项(cstc2016shms- ztzx8007);重庆市社会事业与民生保障科技创新专项(cstc2017shms-xdny80057);国家级大学生创新创业训练计划项目(201710635043)

Identification and Gene Mapping of sdb1 Mutant with a Semi-dwarfism and Bigger Seed in Rice

Yi-Ran TAO,Yu-Zhen XIONG,Jia XIE,Wei-Jiang TIAN,Xiao-Qiong ZHANG,Xiao-Bo ZHANG,Qian ZHOU,Xian-Chun SANG,Xiao-Wen WANG()   

  1. Basic Experiment Teaching Center of Agronomy / College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
  • Received:2018-03-09 Accepted:2018-07-20 Published:2018-11-12 Published online:2018-08-07
  • Contact: Xiao-Wen WANG
  • Supported by:
    This study was supported by the Chongqing Research Program of Basic Research and Frontier Technology(cstc2015jcyjA80008);the Project of Chongqing Science & Technology Commission Grants(cstc2016shms- ztzx8007);the Project of Chongqing Science & Technology Commission Grants(cstc2017shms-xdny80057);the College Students’ Innovation and Entrepreneurship Training Scientific Research Project(201710635043)

摘要:

适度矮化有利于提高水稻的抗倒伏性, 进而影响产量和品质, 是水稻育种中重要的选择性状之一, 因此研究矮秆形成的分子机制具有重要的意义。为鉴定新的矮秆资源, 探讨株高形成的分子调控机制, 我们对籼型恢复系缙恢10号的EMS (甲基磺酸乙酯)诱变体库进行了鉴定, 从中筛选到1个植株半矮化且籽粒变大的突变体sdb1。本文对其进行了形态鉴定、细胞学观察、遗传分析和基因定位等研究。田间种植条件下, 全生育期sdb1的株高都明显矮于野生型, 成熟期仅76.66 cm, 与野生型的117.43 cm相比, 下降了34.72%, 差异达极显著水平, 进一步分析发现sdb1的穗和各节间长均显著变短。在茎秆石蜡切片中发现, 纵向细胞的长度与野生型相比无显著变化, 横向细胞面积极显著变小、数量则极显著增加, 纵向细胞变少是导致sdb1植株半矮化的主要原因。除植株变矮外, sdb1的另一典型特征是籽粒变大, 千粒重由野生型的24.83 g变为突变体的29.00 g, 差异达极显著水平; 颖壳中薄壁细胞数量增加了22.05%, 致使籽粒的长、宽、厚均极显著变大, 从而提高了sdb1的粒重。此外, sdb1叶肉细胞层数增多, 导致其光合色素含量极显著高于野生型, 叶片呈现深绿色。遗传分析发现, sdb1的突变表型受单隐性核基因调控, 利用中花11/sdb1杂交组合的F2隐性植株, 最终将调控基因定位在第4染色体SSR标记RM16632和Indel标记J50-7之间约406 kb的物理范围内。这为SDB1的克隆和功能研究奠定了基础, 也有助于水稻株高发育分子机制的进一步阐释。

关键词: 水稻(Oryza sativa L.), 矮化, 大粒, 基因定位, sdb1

Abstract:

Moderate dwarfing is conducive to improving the lodging resistance of rice and further affecting its yield and quality, which is one of the important alternatives in rice breeding. Therefore, it is of great significance to study the molecular mechanism of shortened stem formation. In order to identify new dwarf resources and to explore the molecular regulation mechanism of plant height formation, a semi-dwarf and bigger seed (sdb1) mutant was identified from the progeny of indica restorer line Jinhui 10 with seed treated by ethyl methane sulfonate (EMS). This paper performed systematic studies in phenotypic identification, cytological observation, genetic analysis and gene mapping. At maturity stage, the plant height of sdb1 was only 76.66 cm, significantly shorter than 117.43 cm of wild type, resulting in a 34.72% decrease. It was found from the paraffin sections of the stem that the mutant had no significant change in stem cell length compared with the wild-type cells, it reduced cell width caused significantly smaller cell size, and the number of lateral cells significantly increased. The decrease of longitudinal cells should be the major cause of sdb1 semi-dwarfism. In addition to reduced plant height of sdb1, another typical mutational trait was the larger grain size, the 1000-grain weight increased from wild-type’s 24.83 g to mutant’s 29.00 g, reaching an extremely significant difference. The number of parenchyma cells increased from 666.30 in WT to 813.21 in sdb1, with an increase of 22.05%. The increase of cell number resulted in a significant increase of grain length, width and thickness. The mutant also had increased number of sdb1 mesophyll cells, resulting in significantly higher photosynthetic pigment content than wild type, and dark green leaves. Genetic analysis showed that a recessive nuclear gene regulated the mutant phenotype. Based on the F2 recessive plants of Zhonghua 11/sdb1, the gene was finally mapped between markers RM16632 and J50-7 on chromosome 4, with a physical distance of 406 kb. This research lays a foundation for gene cloning and function research, and is conducive to further understanding the genetic model of rice plant height, which has the potential value for agricultural production research.

Key words: rice (Oryza sativa L.), dwarfism, bigger seeds, gene mapping, sdb1

表1

基因定位引物序列"

引物名称
Primer name
上游引物序列
Upstream primer sequence (5'-3')
下游引物序列
Downstream primer sequence (5'-3')
J50-3 TGCCTCCTTGTGTGTGGAGT TCCAAGCACTGACTTCATAGC
J50-2 CCACCAGTGATCCCTCATACA TCCGAGCGATTCTACTGGTC
J50-7 CCTCGTGTGGAATCTCGTTC GTAACAGTAGGTGCGAAGATGG
J50-53 GCGTTGTGTGCTCACTGG CCACTTGTCAGGTCTCCATC
J50-65 CCGGACGAGCCAATCAG CGGTGGCTTCTCCCAAGG

图1

突变体sdb1和野生型WT的表型鉴定 A: 苗期野生型WT和突变体sdb1, Bar=5 cm; B: 分蘖期野生型WT和突变体sdb1, Bar=10 cm; C: 灌浆期野生型WT和突变体sdb1, Bar=15 cm; D: 灌浆期野生型WT和突变体sdb1的茎秆, Bar=5 cm; E: 灌浆期野生型WT和突变体sdb1的穗, Bar=5 cm; F: 野生型WT和突变体sdb1穗长及各节间长的统计分析。**在0.01水平上差异显著。"

图2

野生型与突变体sdb1茎石蜡切片A, B: 野生型WT和突变体sdb1茎秆纵切, Bar=100 μm; C: 图A红色小框的放大图, Bar=25 μm; D: 图B红色小框的放大图, Bar=25 μm; E:野生型WT和突变体sdb1茎秆纵切同一面积的细胞数目; F: 野生型WT和突变体sdb1茎秆纵切的细胞大小比较; G, H: 野生型WT和突变体sdb1茎秆纵切的细胞长度和宽度统计; I, J: 野生型WT和突变体sdb1茎秆横切, Bar=100 μm; K: 图I中红色小框放大图, Bar=25 μm; L: 图J的红色小框放大图, Bar=25 μm; M: 图I的黑色小框放大图, Bar=50 μm; N: 图J的黑色小框放大图, Bar=50 μm; O: 野生型WT和突变体sdb1茎秆横切同一面积的细胞数目统计; P: 野生型WT和突变体sdb1茎秆横切的细胞大小比较。**在0.01水平上差异显著。"

图3

野生型WT与突变体sdb1籽粒的比较 A: 野生型WT与突变体sdb1的籽粒, Bar=0.5 cm; B, C: 野生型WT和突变体sdb1横切籽粒的石蜡切片, Bar=500 μm; D: 图B红色小框的放大, Bar=50 μm; E: 图C红色小框的放大, Bar=50 μm; F: 野生型WT和突变体sdb1千粒重统计; G, H: 野生型WT和突变体sdb1细胞长度 (G)、宽度(H)、厚度(H)数据统计; I: 野生型WT(B)和突变体sdb1(C)颖壳薄壁细胞数目统计。**在0.01水平上差异显著。"

图4

冷冻切片和开花期光合色素含量分析 A: 成熟期野生型和突变体sdb1倒一叶中部, Bar=2 cm; B, C: 野生型和突变体sdb1叶片中部冷冻切片横切, Bar=50 μm ; D: 野生型与突变体sdb1倒一叶光合色素含量; E: 野生型与突变体sdb1倒二叶光合色素含量; F: 野生型与突变体sdb1倒三叶光合色素含量。Chl a: 叶绿素a; Chl b: 叶绿素b; Car: 类胡萝卜素。**在0.01水平上差异显著; *在0.05水平上差异显著。"

图5

SDB1在水稻第4 染色体上的分子定位"

表2

定位区间 RGAP 注释的表达蛋白和功能基因"

基因名称
Locus name
基因注释
Gene annotation
LOC_Os04g23170 Expressed protein
LOC_Os04g23180 Cation efflux family protein, putative, expressed
LOC_Os04g23200 Expressed protein
LOC_Os04g23210 Expressed protein
LOC_Os04g23220 Expressed protein
LOC_Os04g23230 Expressed protein
LOC_Os04g23319 Expressed protein
LOC_Os04g23330 Expressed protein
LOC_Os04g23420 Expressed protein
LOC_Os04g23440 Helix-loop-helix DNA-binding domain containing protein, expressed
LOC_Os04g23460 Expressed protein
LOC_Os04g23550 Basic helix-loop-helix family protein
LOC_Os04g23580 Xylosyltransferase, putative, expressed
LOC_Os04g23600 D-mannose binding lectin family protein, expressed
LOC_Os04g23610 Expressed protein
LOC_Os04g23620 D-mannose binding lectin family protein, expressed
LOC_Os04g23630 Expressed protein
[1] Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M . Green revolution: a mutant gibberellin- synthesis gene in rice. Nature, 2002,416:701-702
doi: 10.1038/416701a
[2] Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y . Positional cloning of rice semidwarfing gene, sd-1: rice ‘‘green revolution gene’’ encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002,9:11-17
[3] Spielmeyer W, Ellis M H, Chandler P M . Semidwarf (sd-1 ) ‘‘green revolution’’ rice, contains a defective gibberellin 20-oxidase gene.Proc Natl Acad Sci USA, 2002,99:9043-9048
[4] Luo D, Xu H, Liu Z, Guo J, Li H, Chen L, Fang C, Zhang Q, Bai M, Yao N, Wu H, Wu H, Ji C, Zheng H, Chen Y, Ye S, Li X, Zhao X, Li R, Liu Y G . A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet, 2013,45:573-577
doi: 10.1038/ng.2570 pmid: 23502780
[5] Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X, Qian Q, Li J . Regulation ofOsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet, 2010,42:541-544
doi: 10.1038/ng.591 pmid: 20495565
[6] Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M . OsSPL14 promotes panicle branching and higher grain productivity in rice. Nat Genet, 2010,42:545-549
doi: 10.1038/ng.592 pmid: 20495564
[7] 王翠红, 马建, 王帅, 田鹏, 岂长燕, 赵志超, 王久林, 王洁, 程治军, 张欣, 郭秀平, 雷财林 . 一个新的水稻D1基因等位突变体的遗传鉴定与基因功能分析. 作物学报, 2016,42:1261-1272
doi: 10.3724/SP.J.1006.2016.01261
Wang C H, Ma J, Wang S, Tian P, Yi C Y, Zhao Z C, Wang J L, Wang J, Cheng Z J, Zhang X, Guo X P, Lie C L . Genetic identification and gene function analysis of a new allelic mutant of D1 gene in rice. Acta Agron Sin, 2016,42:1261-1272 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2016.01261
[8] Zhang Z, Zhang Y, Tan H, Wang Y, Li G, Liang W, Yuan Z, Hu J, Ren H, Zhang D . Rice morphology determinant encodes the type II formin FH5 and regulates rice morphogenesis. Plant Cell, 2011,23:681-700
doi: 10.1105/tpc.110.081349
[9] Yang W B, Ren S L, Zhang X M, Gao M J, Ye S H, Qi Y B, Zheng Y Y, Wang J, Zeng L J, Li Q, Huang S J, He Z H . Bent uppermost internode1 encodes the class II formin FH5 crucial for actin organization and rice development. Plant Cell, 2011,23:661-680
doi: 10.1105/tpc.110.081802
[10] Li G, Liang W Q, Zhang X Q, Ren H Y, Hu J P, Bennett M J, Zhang D B . Rice actin-binding protein RMD is a key link in the auxin-actin regulatory loop that controls cell growth. Proc Natl Acad Sci USA, 2014,111:10377-10382
doi: 10.1073/pnas.1401680111
[11] 牛静, 陈赛华, 赵婕妤, 曾召琼, 蔡茂红, 周亮, 刘喜, 江玲, 万建民 . 水稻株型突变体rad-1rad-2的鉴定与功能基因克隆. 作物学报, 2015,41:1621-1631
Niu J, Chen S H, Zhao J Y, Zeng Z Q, Cai M H, Zhou L, Liu X, Jiang L, Wan J M . Identification and map-based cloning of rad-1 and rad-2, two rice architecture determinant mutants. Acta Agron Sin, 2015,41:1621-1631 (in Chinese with English abstract)
[12] Hu J, Zhu L, Zeng D, Gao Z, Guo L, Fang Y, Zhang G, Dong G, Yan M, Liu J, Qian Q . Identification and characterization of NARROW AND ROLLED LEAF 1, a novel gene regulating leaf morphology and plant architecture in rice. Plant Mol Biol, 2010,73:283-292
[13] Luan W J, Liu Y Q, Zhang F X, Song Y L, Wang Z Y, Peng Y K, Sun Z X . OsCD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth. Plant Biotechnol J, 2011,9:513-524
[14] Sunohara H, Kawai T, Shimizu-Sato S, Sato Y, Sato K, Kitano H . A dominant mutation ofTWISTED DWARF 1 encoding an α-tubulin protein causes severe dwarfism and right helical growth in rice. Genes Genet Syst, 2009,84:209-218
[15] Segami S, Kono I, Ando T, Yano M, Kitano H, Miura K, Iwasaki Y . Small and round seed 5 gene encodes alpha-tubulin regulating seed cell elongation in rice. Rice, 2012,5:4
[16] 李自壮, 徐乾坤, 余海平, 周亭亭, 薛大伟, 曾大力, 郭龙彪, 钱前, 任德勇 . 水稻淡黄叶矮化突变体yld的遗传分析及基因定位. 作物学报, 2017,43:522-529
doi: 10.3724/SP.J.1006.2017.00522
Li Z Z, Xu Q K, Yu H P, Zhou T T, Xue D W, Zeng D L, Guo L B, Qian Q, Ren D Y . Genetic analysis and gene mapping of yellow leaf and dwarf ( yld) mutant in rice. Acta Agron Sin, 2017,43:522-529 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2017.00522
[17] 张玲, 郭爽, 汪玲, 张天泉, 庄慧, 龙珏臣, 何光华, 李云峰 . 水稻矮化并花发育异常突变体dwarf and deformed flower 2 (ddf2)的基因定位与候选基因分析. 中国农业科学, 2015,48:1873-1881
Zhang L, Guo S, Wang L, Zhang T Q, Zhuang H, Long Y C, He G H, Li Y F . Gene mapping and candidate gene analysis of a dwarf and deformed flower 2 (ddf2) mutant in rice( Oryza sativa). Sci Agric Sin, 2015,48:1873-1881 (in Chinese with English abstract)
[18] 王文乐, 冯丹, 吴金霞, 张治国, 路铁刚 . 水稻矮化基因WLD1的图位克隆. 植物学报, 2017,52:54-60
doi: 10.11983/CBB16010
Wang W L, Feng D, Wu J X, Zhang Z G, Lu T G . Gene mapping of a dwarf gene WLD1 in rice. Chin Bull Bot, 2017,52:54-60 (in Chinese with English abstract)
doi: 10.11983/CBB16010
[19] 王晓雯, 蒋钰东, 廖红香, 杨波, 邹帅宇, 朱小燕, 何光华, 桑贤春 . 水稻白穗突变体wp4的鉴定与基因精细定位. 作物学报, 2015,41:838-844
Wang X W, Jiang Y D, Liao H X, Yang B, Zou S Y, Zhu X Y, He G H, Sang X C . Identification and fine gene mapping of rice white ear mutant wp4. Acta Agron Sin, 2015,41:838-844 (in Chinese with English abstract)
[20] Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y . A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005,17:776-790
[21] Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuok M . A rice brassinosteroid-deficient mutant, ebisu dwarf (d2 ), is caused by a Loss of function of a new member of cytochrome P450. Plant Cell, 2003,15:2900-2910
[22] Liu J M, Park S J, Huang J, Lee E J, Xuan Y H, Je B I, Kumar V, Priatama R A, Raj K V, Kim S H, Min M K, Cho J H, Kim T H, Chandran A K, Jung K H, Takatsuto S, Fujioka S, Han C D . Loose plant architecture1 (LPA1) determines lamina joint bending by suppressing auxin signalling that interacts with C-22- hydroxylated and 6-deoxo brassinosteroids in rice. J Exp Bot, 2016,67:1883-1895
doi: 10.1093/jxb/erw002
[23] Duan Y, Li S, Chen Z , Zheng L, Diao Z, Zhou Y, Lan T, Guan H, Pan R, Xue Y, Wu W. Dwarf and Deformed Flower 1, encoding an F-box protein, is critical for vegetative and floral development in rice( Oryza sativa L.). Plant J, 2012,72:829-842
[24] Li J, Jiang J, Qian Q, Xu Y, Zhang C, Xiao J, Du C, Luo W, Zou G, Chen M, Huang Y, Feng Y, Cheng Z, Yuan M, Chong K . Mutation of rice BC12/GDD1, Which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter, leads to dwarfism with impaired cell elongation. Plant Cell, 2011,23:628-640
[25] 张孝波, 谢佳, 张晓琼, 田维江, 何沛龙, 刘思岑, 何光华, 钟秉强, 桑贤春 . 水稻矮化剑叶卷曲突变体dcfl1的鉴定与基因精细定位. 中国农业科学, 2017,50:1551-1558
doi: 10.3864/j.issn.0578-1752.2017.09.001
Zhang X B, Xie J, Zhang X Q, Tian W J, He P L, Liu S C, He G H, Zhong B Q, Sang X C . Identification and gene fine mapping of curling mutant dcfl1 in dwarf flag leaf. Sci Agric Sin, 2017,50:1551-1558 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2017.09.001
[26] Sun L, Li X, Fu Y, Zhu Z, Tan L, Liu F, Sun X, Sun X, Sun C . GS6, a member of the GRAS gene family, negatively regulates grain size in rice. J Integr Plant Biol, 2013,55:938-949
doi: 10.1111/jipb.12062 pmid: 23650998
[27] Tong H, Jin Y, Liu W, Li F, Fang J, Yin Y, Qian Q, Zhu L, Chu C . DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J, 2009,58:803-816
[28] Tong H, Liu L, Jin Y, Du L, Yin Y, Qian Q, Zhu L, Chu C . Dwarf and low-tillering acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell, 2012,24:2562-2577
doi: 10.1105/tpc.112.097394
[29] Liu J, Chen J, Zheng X, Wu F, Lin Q, Heng Y, Tian P, Cheng Z, Yu X, Zhou K, Zhang X, Guo X, Wang J, Wang H, Wan J . GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nat Plants, 2017,3:17043
doi: 10.1038/nplants.2017.43 pmid: 28394310
[30] Hirano K, Yoshida H, Aya K, Kawamura M, Hayashi M, Hobo T, Sato-Izawa K, Kitano H, Ueguchi-Tanaka M, Matsuoka M . SMALL ORGAN SIZE 1 and SMALL ORGAN SIZE 2/ DWARF AND LOW-TILLERING form a complex to integrate auxin and brassinosteroid signaling in rice. Mol Plant, 2017,10:590-604
[31] Qiao S, Sun S, Wang L, Wu Z, Li C, Li X, Wang T, Leng L, Tian W, Lu T, Wang X . The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture. Plant Cell, 2017,29:292-309
[32] Zhang G H, Li S Y, Wang L, Ye W J, Zeng D L, Rao Y C, Peng Y L, Hu J, Yang Y L, Xu J, Ren D Y, Gao Z Y, Zhu L, Dong G J, Hu X M, Yan M X, Guo L B, Li C Y, Qian Q . LSCHL4 from japonica cultivar, which is allelic to NAL1, increases yield of indica super rice 93-11. Mol Plant, 2014,7:1350-1364
[33] Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L . The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J, 2006,48:687-698
[34] 赵祥强, 梁国华, 周劲松, 严长杰, 曹小迎, 顾铭洪 . 矮泰引-3中半矮秆基因的分子定位. 遗传学报, 2005,32:189-196
Zhao X Q, Liang G H, Zhou J S, Yan C J, Cao X Y, Gu M H . Molecular mapping of semi-dwarf gene in Datiai-3. J Genet Genomics, 2005,32:189-196 (in Chinese with English abstract)
[35] 高振宇, 刘晓辉, 郭龙彪, 刘坚, 董国军, 胡江, 韩斌, 钱前 . 一新的水稻多蘖矮秆突变体tddl(t)的分离及基因的精细定位. 科学通报, 2009,54:1238-1243
Gao Z Y, Liu X H, Guo L B, Liu J, Dong G J, Hu J, Han B, Qian Q . Isolation and fine gene mapping of a new rice dwarf mutant tddl(t). Chin Sci Bull, 2009,54:1238-1243 (in Chinese with English abstract)
[36] Heang D, Sassa H . An atypical bHLH protein encoded by POSITIVE REGULATOR OF GRAIN LENGTH 2 is involved in controlling grain length and weight of rice through interaction with a typical bHLH protein APG. Breed Sci, 2012,62:133-141
[37] Miyamoto K, Shimizu T, Mochizuki S, Nishizawa Y, Minami E, Nojiri H, Yamane H, Okada K . Stress-induced expression of the transcription factor RERJ1 is tightly regulated in response to jasmonic acid accumulation in rice. Protoplasma, 2013,250:241-249
[38] Funabiki A, Takano S, Matsuda S, Tokuji Y, Takamure I, Kato K . The rice REDUCED CULM NUMBER11 gene controls vegetative growth under low-temperature conditions in paddy fields independent of RCN1/OsABCG5 .Plant Sci, 2013,211:70-76
[39] Takano S, Matsuda S, Funabiki A, Furukawa J, Yamauchi T, Tokuji Y, Nakazono M, Shinohara Y, Takamure I, Kato K . The riceRCN11 gene encodes β1,2-xylosyltransferase and is required for plant responses to abiotic stresses and phytohormones. Plant Sci, 2015,236:75-88
[40] Ueno D, Sasaki A, Yamaji N, Miyaji T, Fujii Y, Takemoto Y, Moriyama S, Che J, Moriyama Y, Iwasaki K, Ma J F . A polarly localized transporter for efficient manganese uptake in rice. Nat Plants, 2015,1:15170
doi: 10.1038/nplants.2015.170 pmid: 27251715
[41] Zhang M, Liu B . Identification of a rice metal tolerance protein OsMTP11 as a manganese transporter. PLoS One, 2017,12:e0174987
doi: 10.1371/journal.pone.0174987
[42] Passricha N, Saifi S, Ansari M W, Tuteja N . Prediction and validation of cis -regulatory elements in 5′ upstream regulatory regions of lectin receptor-like kinase gene family in rice. Protoplasma, 2017,254:669-684
[1] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[2] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[3] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[4] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[5] 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60.
[6] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[7] 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367.
[8] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[9] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
[10] 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227.
[11] 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058.
[12] 王瑞,陈阳松,孙明昊,张秀艳,杜依聪,郑军. 玉米穗发芽突变体vp-like8的遗传分析及突变基因鉴定[J]. 作物学报, 2019, 45(5): 656-661.
[13] 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675.
[14] 张莉莎,米胜南,王玲,委刚,郑尧杰,周恺,尚丽娜,朱美丹,王楠. 水稻短根白化突变体sra1生理生化分析及基因定位[J]. 作物学报, 2019, 45(4): 556-567.
[15] 王晓娟,潘振远,刘敏,刘忠祥,周玉乾,何海军,邱法展. 一个新的玉米silky1基因等位突变体的遗传分析与分子鉴定[J]. 作物学报, 2019, 45(11): 1649-1655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!