欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (11): 1612-1620.doi: 10.3724/SP.J.1006.2018.01612

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻稻瘟病抗性基因Bsr-d1功能标记的开发和利用

王军1,2,赵婕宇3,许扬1,2,范方军1,2,朱金燕1,2,李文奇1,2,王芳权1,2,费云燕1,仲维功1,杨杰1,2,*()   

  1. 1 江苏省农业科学院粮食作物研究所 / 国家水稻改良中心南京分中心 / 江苏省优质水稻工程技术研究中心, 江苏南京 210014
    2 扬州大学 / 江苏省粮食作物现代产业技术协同创新中心, 江苏扬州 225009
    3 扬州大学生物科学与技术学院, 江苏扬州 225009
  • 收稿日期:2018-03-28 接受日期:2018-07-20 出版日期:2018-11-12 网络出版日期:2018-07-25
  • 通讯作者: 杨杰
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0100400-3);江苏省农业科学院探索性项目(ZX(17)2014);江苏省重点研发计划项目(BE2017368)

Development and Application of Functional Markers for Rice Blast Resistance Gene Bsr-d1 in Rice

Jun WANG1,2,Jie-Yu ZHAO3,Yang XU1,2,Fang-Jun FAN1,2,Jin-Yan ZHU1,2,Wen-Qi LI1,2,Fang-Quan WANG1,2,Yun-Yan FEI1,Wei-Gong ZHONG1,Jie YANG1,2,*()   

  1. 1 Institute of Food Crops, Jiangsu Academy of Agricultural Sciences / Nanjing Branch of Chinese National Center for Rice Improvement / Jiangsu High Quality Rice R&D Center, Nanjing 210014, Jiangsu, China;
    2 Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, Jiangsu, China
    3 College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2018-03-28 Accepted:2018-07-20 Published:2018-11-12 Published online:2018-07-25
  • Contact: Jie YANG
  • Supported by:
    This study was supported by the National Key Research and Development Program(2017YFD0100400-3);the Exploratory Project of the Jiangsu Academy of Agricultural Sciences(ZX(17)2014);Jiangsu Province Key Research and Development Program Project(BE2017368)

摘要:

稻瘟病是危害水稻最严重的病害之一, 选育抗病品种是防治该病害最有效的方法。Bsr-d1是对稻瘟病菌具有广谱抗性的一个重要基因。为提高Bsr-d1基因在育种中的选择效率, 根据Bsr-d1与其感病等位基因bsr-d1在功能区域存在的单核苷酸差异, 设计和筛选出Bsr-d1基因不同类型的基因功能标记CAPs5-1和3Bsr-d1/3bsr-d1, 结合测序分析验证, 可准确鉴定出Bsr-d1的不同基因型。利用3Bsr-d1/3bsr-d1对34份籼稻品种、江苏历年来主要推广的110份粳稻品种、其他省份的13份粳稻品种、148份太湖流域地方粳稻资源和19份太湖流域地方籼稻资源进行了Bsr-d1基因型检测, 筛选到携带Bsr-d1基因的籼型资源11份, 271份粳型资源中均不携带Bsr-d1基因, 这也说明Bsr-d1主要分布在籼型水稻资源中, 在粳型资源中几乎不存在。本研究为Bsr-d1基因的育种利用和分子标记辅助选择奠定了基础。

关键词: 水稻, 稻瘟病, Bsr-d1, 功能标记, CAPs, 等位基因特异PCR

Abstract:

Rice blast is one of the most serious rice diseases, breeding resistant cultivars is the most effective way to prevent this disease. Bsr-d1 is one vital non race-specific resistance gene for rice blast disease. To improve the selection efficiency of rice blast resistance gene Bsr-d1 in breeding, we selected different types of gene marker, CAPs5-1 and 3Bsr-d1/3bsr-d1, based on the single nucleotide polymorphism in the functional region of alleles Bsr-d1/bsr-d1. Furtherly confirmed by sequencing, we found both CAPs5-1 and 3Bsr-d1/3bsr-d1 could obviously distinguish different genetypes of Bsr-d1 locus. 3Bsr-d1/3bsr-d1 was employed to genotype 34 indica rice varieties, 110 japonica varieties certificated in Jiangsu Province, 13 japonica varieties certificated in different provinces, 148 local japonica cultivars and 19 local indica cultivars from Taihu Basin. There were only 11 indica varieties carrying Bsr-d1 gene, while Bsr-d1 gene was not detected in 271 japonica rice samples, indicating that Bsr-d1 mainly exists in indica germplasm, and is rarely found in japonica rice. This study facilitates the use of Bsr-d1 gene in rice blast resistance breeding and marker assisted selection.

Key words: rice (Oryza sativa L.), rice blast, Bsr-d1, functional marker, CAPs, allele specific PCR

表1

基于变异位点设计的功能标记和测序引物"

引物名称
Primer name
引物序列
Primer sequence (5'-3')
片段长度
Expected size (bp)
CAPs1F AGTCTAGCATCCACCGTTCCAC 313
CAPs1R GTAGGCAGGCAGTGGGATGA
CAPs2F TTTTATAGGACAGAGGGAATATGTA 368
CAPs2R GCAGTGGGATGAACCTGTAC
Bsr-d1-F AGTCTAGCATCCACCGTTCCAC
1Bsr-d1-R CTTTTCGCTTATACTTATATTTATCAGC 241
1bsr-d1-R CTTTTCGCTTATACTTATATTTATCAGT 241
2Bsr-d1-R CTTTTCGCTTATACTTATATTTATCgGC 241
2bsr-d1-R CTTTTCGCTTATACTTATATTTATCgGT 241
3Bsr-d1-R CTTTTCGCTTATACTTATATTTATCAaC 241
3Bsr-d1-R CTTTTCGCTTATACTTATATTTATCAaT 241
C1F AGTCTAGCATCCACCGTTCCAC 755
C1R ATGATTTGATGGGATTGATTGC
C2F TTTTATAGGACAGAGGGAATATGTA 983
C2R GCGAGGTACTCCTCCTTGTTGAT

图1

2对引物梯度PCR扩增产物在1.5%的琼脂糖胶电泳结果M: DL2000; 1~12退火温度分别为: 45.1°C, 45.3°C, 45.9°C, 46.8°C, 47.9°C, 49.1°C, 50.4°C, 51.7°C, 52.8°C, 53.8°C, 54.5°C, 54.8°C。"

图2

CAPs5-1 PCR扩增产物和酶切结果M左侧为PCR扩增产物; M右侧为酶切后的产物; M: DL2000; 1~6: 地谷, Nipponbare, 南粳9108, 广陆矮4号,武育粳3号, 南粳45。"

图3

部分水稻品种Bsr-d1基因位点功能区的序列比对结果"

图4

CAPs5-1对部分水稻品种的分子检测结果M: DL2000; 1~24: 地谷, Nipponbare, 南京1号, 绵恢501, 浙恢7954, 盐恢559, 镇恢084, BG90-2, 圭630, 明恢63, 青四矮16B, 辐恢718, 扬稻6号, 冈46B, 陆财号, 明恢78, IRBB21, 蜀恢527, 多恢1号, 桂朝2号, 绵恢725, 乐恢188, 广恢128, 珍汕97B。"

图5

Bsr-d1基因等位基因特异标记的梯度PCR扩增结果 M: DL2000; A: 1Bsr-d1引物梯度PCR扩增产物; B: 1bsr-d1引物梯度PCR扩增产物; C: 2Bsr-d1引物梯度PCR扩增产物; D: 2bsr-d1引物梯度PCR扩增产物; E: 3Bsr-d1引物梯度PCR扩增产物; F: 3bsr-d1引物梯度PCR扩增产物; 1~12为地谷的不同引物对在退火温度分别为45.1°C、45.3°C、45.9°C、46.8°C、47.9°C、49.1°C、50.4°C、51.7°C、52.8°C、53.8°C、54.5°C、54.8°C时的扩增产物; 13~24为Nipponbare的不同引物对在退火温度分别为45.1°C、45.3°C、45.9°C、46.8°C、47.9°C、49.1°C、50.4°C、51.7°C、52.8°C、53.8°C、54.5°C、54.8°C时的扩增产物。"

图6

Bsr-d1基因等位基因特异标记3Bsr-d1和3bsr-d1扩增结果M: DL2000; 1~6: 地谷, Nipponbare, 南粳9108, 广陆矮4号, 武育粳3号, 南粳45。"

图7

3Bsr-d1和3bsr-d对部分水稻品种的分子检测结果 M: DL2000; 1~24: 地谷, Nipponbare, 南京1号, 绵恢501, 浙恢7954, 盐恢559, 镇恢084, BG90-2, 圭630, 明恢63, 青四矮16B, 辐恢718, 扬稻6号, 冈46B, 陆财号, 明恢78, IRBB21, 蜀恢527, 多恢1号, 桂朝2号, 绵恢725, 乐恢188, 广恢128, 珍汕97B。"

[1] 雷财林, 凌忠专, 王久林, 万建民 . 水稻抗病育种研究进展. 生物学通报, 2004,39(11):4-7
doi: 10.3969/j.issn.0006-3193.2004.11.002
Lei C L, Ling Z Z, Wang J L, Wan J M . Research advances in rice breeding for disease resistance. Bull Biol, 2004,39(11):4-7 (in Chinese with English abstract)
doi: 10.3969/j.issn.0006-3193.2004.11.002
[2] Ou S H . Rice Diseases. Commonwealth Mycological Institute, Kew, UK, 1985. pp 109-201
[3] Baker B, Zambryski P, Staskawicz B , Dinesh-Kumar S P . Signaling in plant-microbe interactions. Science, 1997,276:726-733
doi: 10.1126/science.276.5313.726 pmid: 9115193
[4] Shen M G, Lin J Y. The economic impact of rice blast disease in China. In: Rice Blast Disease. UK: Int Rice ResInst, 1994. pp 321-331
[5] Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T . ThePib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. Plant J, 1999,19:55-64
[6] Bryan G T, Wu K S, Farrall L, Jia Y, Hershey H P , McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta.Plant Cell, 2000,12:2033-2046
[7] Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L . A B-lectin receptor kinase gene conferring rice blast resistance. Plant J, 2006,46:794-804
doi: 10.1111/j.1365-313X.2006.02739.x pmid: 16709195
[8] Qu S H, Liu G F, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang G L . The broad-spectrum blast resistance genePi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics, 2006,172:1901-1914
[9] Fukuoka S C, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M . Loss of function of a proline-containing protein confers durable disease resistance in rice. Science, 2009,325:998-1001
doi: 10.1126/science.1175550 pmid: 19696351
[10] Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H . Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J, 2010,64:498-510
[11] Li W, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Wang K, Wang J, Zhou X, Zhu X, Chen Z, Wang J, Zhao W, Ma B, Qin P, Chen W, Wang Y, Liu J, Wang W, Wu X, Li P, Wang J, Zhu L, Li S, Chen X . A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell, 2017,170:114-126
doi: 10.1016/j.cell.2017.06.008 pmid: 28666113
[12] Sugiura N, Tsuji T, Fujii K, Izawa T, Saka N, Touyama T, Hayano-Saito Y, Izawa T . Molecular marker-assisted selection in a recurrent backcross breeding for the incorporation of resistance to rice stripe virus and panicle blast in rice (Oryza sativa L.). Breed Res, 2004,6:143-148
[13] 陈学伟, 李仕贵, 马玉清, 黎汉云, 周开达, 朱立煌 . 水稻抗稻瘟病基因Pi-d(t) 1Pi-bPi-ta 2的聚合及分子标记选择 . 生物工程学报, 2004,20:708-713
Chen X W, Li S G, Ma Y Q, Li H Yun, Zhou K D, Zhu L H . Marker-assisted selection and pyramiding for three blast resistance genes, Pi-d(t) 1, Pi-b, Pi-ta 2, in rice. Chin J Biotech , 2004,20:708-713 (in Chinese with English abstract)
[14] 陈红旗, 陈宗祥, 倪深, 左示敏, 潘学彪, 朱旭东 . 利用分子标记技术聚合3个稻瘟病基因改良金23B的稻瘟病抗性. 中国水稻科学, 2008,22:23-27
doi: 10.3321/j.issn:1001-7216.2008.01.004
Chen H Q, Chen Z X, Ni S, Zuo S M, Pan X B, Zhu X D . Pyramiding three gene with resistance blast by marker-assisted selection to improve rice blast resistance of Jin 23B. Chin J Rice Sci, 2011,37:975-981 (in Chinese with English abstract)
doi: 10.3321/j.issn:1001-7216.2008.01.004
[15] 王军, 杨杰, 陈志德, 范方军, 朱金燕, 杨金欢, 仲维功 . 利用分子标记辅助选择聚合水稻抗病基因Pi-taPi-bStv-b i . 作物学报, 2011,37:975-981
doi: 10.3724/SP.J.1006.2011.00975
Wang J, Yang J, Chen Z D, Fan F J, Zhu J Y, Yang J H, Zhong W G . Pyramiding resistance gene Pi-ta, Pi-b and Stv-b i by marker- assisted selection in rice ( Oryza sativa L.). Acta Agron Sin, 2011,37:975-981 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2011.00975
[16] Jiang H, Feng Y, Bao L, Li X, Gao G, Zhang Q, Xiao J, Xu C, He Y . Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding. Mol Breed, 2012,30:1679-1688
doi: 10.1007/s11032-012-9751-6
[17] Andersen J R, Lübberstedt T . Functional markers in plants. Trends Plant Sci, 2003,8:554-560
doi: 10.1016/j.tplants.2003.09.010
[18] 毛艇, 李旭, 李振宇, 徐正进 . 水稻Wx复等位基因基于PCR 的功能标记开发与利用. 作物学报, 2017,43:1715-1723
Mao T, Li X, Li Z Y, Xu Z J . Development of PCR functional markers for multiple alleles of Wx and their application in rice. Acta Agron Sin, 2017,43:1715-1723 (in Chinese with English abstract)
[19] 王军, 杨杰, 徐祥, 朱金燕, 范方军, 李文奇, 王芳权, 仲维功 . 水稻千粒重基因TGW6的功能标记的开发与利用. 中国水稻科学, 2014,28:473-478
Wang J, Yang J, Xu X, Zhu J Y, Fan F J, Li W Q, Wang F Q, Zhong W G . Development and application of a functional marker for grain weight gene TGW6 in rice. Chin J Rice Sci, 2014,28:473-478 (in Chinese with English abstract)
[20] 杨杰, 王军, 曹卿, 陈志德, 仲维功 . 水稻广亲和基因S5-n的功能标记开发及其应用. 作物学报, 2009,35:2000-2007
doi: 10.3724/SP.J.1006.2009.02000
Yang J, Wang J, Cao Q, Chen Z D, Zhong W G . Development and application of a functional marker for wide compatibility gene S5-n of rice. Acta Agron Sin, 2009,35:2000-2007 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2009.02000
[21] 杨杰, 曹卿, 王军, 范方军, 张玉琼, 仲维功 . 水稻多酚氧化酶基因功能标记的开发与应用. 中国水稻科学, 2011,25:37-42
doi: 10.3969/j.issn.1001-7216.2011.01.006
Yang J, Cao Q, Wang J, Fan F J, Zhang Y Q, Zhong W G . Development and application of functional marker for polyphenol oxidase (PPO) alleles in rice. Chin J Rice Sci, 2011,25:37-42 (in Chinese with English abstract)
doi: 10.3969/j.issn.1001-7216.2011.01.006
[22] Hayashi K, Yoshida H, Ashikawa I . Development of PCR-based allele-specific and InDel marker sets for nine rice blast resistance genes. Theor Appl Genet, 2006,113:251-260
doi: 10.1007/s00122-006-0290-6
[23] Jia Y L, Wang Z H, Singh P . Development of dominant rice blastPi-ta resistance gene markers. Crop Sci, 2002,42:2145-2149
doi: 10.2135/cropsci2002.2145
[24] 王忠华, 贾育林, 吴殿星, 夏英武 . 水稻抗稻瘟病基因Pi-ta的分子标记辅助选择. 作物学报, 2004,30:1259-1265
doi: 10.3321/j.issn:0496-3490.2004.12.015
Wang Z H, Jia Y L, Wu D X, Xia Y W . Molecular markers assisted selection of the rice blast resistance genePi-ta. Acta Agron Sin, 30:1259-1265 (in Chinese with English abstract)
doi: 10.3321/j.issn:0496-3490.2004.12.015
[25] Fjellstrom R , Conaway-Bormans C A, McClung A M, Marchetti M A, Robert S A, Park W D. Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes. Crop Sci, 2004,44:1790-1798
[26] 刘洋, 徐培洲, 张红宇, 徐建第, 吴发强, 吴先军 . 水稻抗稻瘟病Pib基因的分子标记辅助选择与应用. 中国农业科学, 2008,41:9-14
Liu Y, Xu P Z, Zhang H Y, Xu J D, Wu F Q, Wu X J . Marker-assisted selection and application of blast resistant gene Pib in Rice. Sci Agric Sin, 2008,41:9-14 (in Chinese with English abstract)
[27] Wang H M, Chen J, Shi Y F, Pan G, Shen H C, Wu J L . Development and validation of CAPS markers for marker-assisted selection of rice blast resistance gene Pi25. Acta Agron Sin, 2012,38:1960-1968.
[28] 王军, 杨杰, 朱金燕, 范方军, 李文奇, 王芳权, 黄转运, 仲维功 . 稻瘟病抗病基因Pi-k h功能标记的开发及江苏粳稻品种中Pi-k h的变异 . 中国水稻科学, 2014,28:141-147
doi: 10.3969/j.issn.10017216.2014.02.005
Wang J, Yang J, Zhu J Y, Fan F J, Li W Q, Wang F Q, Huang Z Y, Zhong W G . Development of a functional marker for rice blast resistance gene Pi-k h and natural variation at Pi-k h locus japonica rice Jiangsu province, China. Chin J Rice Sci , 2014,28:141-147 (in Chinese with English abstract)
doi: 10.3969/j.issn.10017216.2014.02.005
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[8] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[9] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[10] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[11] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[12] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!