欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (3): 395-407.doi: 10.3724/SP.J.1006.2020.94074

• 耕作栽培·生理生化 • 上一篇    下一篇

增密减氮对棉花干物质和氮素积累分配及产量的影响

王士红1,2,杨中旭2,史加亮3,李海涛2,宋宪亮1,*(),孙学振1,*()   

  1. 1.山东农业大学农学院 / 作物生物学国家重点实验室, 山东泰安 271018
    2. 聊城市农业科学研究院, 山东聊城 252000
    3. 德州市农业科学研究院, 山东德州 253000
  • 收稿日期:2019-05-15 接受日期:2019-09-26 出版日期:2020-03-12 发布日期:2019-10-09
  • 通讯作者: 宋宪亮,孙学振 E-mail:xlsong@sdau.edu.cn;sunxz@sdau.edu.cn
  • 作者简介:E-mail: wshguyu@126.com
  • 基金资助:
    本研究由国家自然科学基金项目(31601253);国家现代农业产业技术体系(棉花)建设专项(CARS-18-37);山东省现代农业产业技术体系(棉花)建设专项(SDAIT-03);山东省自然科学基金项目资助(ZR2016CQ20)

Effects of increasing planting density and decreasing nitrogen rate on dry matter, nitrogen accumulation and distribution, and yield of cotton

Shi-Hong WANG1,2,Zhong-Xu YANG2,Jia-Liang SHI3,Hai-Tao LI2,Xian-Liang SONG1,*(),Xue-Zhen SUN1,*()   

  1. 1. Agronomy College, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, Shandong, China;
    2. Liaocheng Academy of Agricultural Science, Liaocheng 252000, Shandong, China
    3. Dezhou Academy of Agricultural Science, Dezhou 253000, Shandong, China
  • Received:2019-05-15 Accepted:2019-09-26 Online:2020-03-12 Published:2019-10-09
  • Contact: Xian-Liang SONG,Xue-Zhen SUN E-mail:xlsong@sdau.edu.cn;sunxz@sdau.edu.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31601253);the China Agriculture Research System (Cotton)(CARS-18-37);the Modern Agricultural Industry Technology System of Cotton Construction in Shandong Province(SDAIT-03);the Natural Science Foundation of Shandong Province(ZR2016CQ20)

摘要:

为了探讨种植密度和施氮量对棉花干物质与氮素积累分配及产量的影响。本研究以聊棉6号为试验材料, 设置5.25、6.75和8.25万株 hm -2(D5.25、D6.75、D8.25) 3个种植密度, 0、105、210、315和420 kg hm -2(N0、N105、N210、N315、N420) 5个施氮量, 研究增密减氮对棉花干物质积累与分配、氮素积累与分配、产量及其构成因素的影响。结果表明, 与D5.25相比, D6.75、D8.25条件下棉花干物质积累量显著升高, 2016年提高了17.6%、28.7%, 2017年提高了12.6%、20.9%。与N0相比, 施氮肥后干物质积累量随施氮量的增加显著升高, 2016年各施氮处理分别提高了4.5%、11.1%、13.7%、16.3%, 2017年提高了3.6%、13.5%、15.3%、19.8%。棉花氮素吸收与干物质积累动态曲线均符合 Logistic 模型, 2年间棉株氮素最大累积量(Ym)均在D8.25N420处理下获得, 与平均值相比, 棉株氮素最大累积量分别提高了17.3%和23.8%、快速累积持续时间(T)延长了5.2%和9.9%、最大累积速率(Vm)提升11.5%和13.8%, 氮素快速积累期起始时期(t1)比干物质积累分别提早了4.1 d和6.4 d。2016年D5.25N315、D6.75N210、D6.75N105和2017年D5.25N315、D6.75N210处理的棉花产量显著高于其他处理。种植密度和施氮量的互作效应对棉花产量的影响显著, 增密减氮可以获得高产, 推荐本地区棉花种植密度从常规的5.25万株 hm -2增加到6.75万株 hm -2, 施氮量从常规的300 kg hm -2第一年减少为105 kg hm -2, 第二年减少为210 kg hm -2

关键词: 棉花, 种植密度, 施氮量, 干物质, 产量

Abstract:

A field experiment was conducted using Liaomian 6 with the treatments of three plant densities (5.25×10 4, 6.75×10 4, and 8.25×10 4 plants hm -2), and five nitrogen rates (0, 105, 210, 315, and 420 kg hm -2) in 2016 and 2017. Compared with D5.25, D6.75, and D8.25 dry matter accumulation of cotton significantly increased by 17.6% and 28.7% in 2016, 12.6% and 20.9% in 2017, respectively. Compared with N0, N105, N210, N315, and N420 increased dry matter accumulation by 4.5%, 11.1%, 13.7%, 16.3% in 2016 and 3.6%, 13.5%, 15.3%, 19.8% in 2017, respectively. The dynamic curve of cotton dry matter and nitrogen absorption accumulation conformed to the Logistic model, and the maximal nitrogen accumulation (Ym) was obtained under D8.25 N420 treatment in 2016 and 2017. Compared to the average, the maximal biomass, duration of rapid accumulation (T), the maximal speed of accumulation (Vm) increased by 17.3% and 23.8%, 5.20% and 9.9%, 11.45% and 13.8%, respectively in two years. The starting date of rapid accumulation period (t1) was 4.1 d and 6.4 d earlier for nitrogen than for dry matter, indicating that the nutrient absorption of cotton was the premise of dry matter accumulation. The lint yield of D5.25N315, D6.75N210 and D6.75N105 in 2016 as well as D5.25N315 and D6.75N210 in 2017 was significantly higher than that of other treatments. The interaction effect of planting density and nitrogen application amount significantly affected cotton yield. Increasing planting density and reducing nitrogen application amount can obtain high yield. It is recommended for this region that the cotton planting density should be increased from 5.25×10 4 to 6.75×10 4 plants hm -2, and the amount of nitrogen application decreased from 300 kg hm -2 to 105 kg hm -2in the first year, and then to 210 kg hm -2 in the next year.

Key words: cotton, plant density, nitrogen rate, dry matter, yield

图1

2016年和2017年棉花生长季降雨量、平均气温和日照时数"

表1

不同种植密度和施氮量棉花干物质累积动态特征值"

处理
Treatment
2016 2017
Ym
(kg hm-2)
t1
(d)
t2
(d)
tm
(d)
Vm
(kg hm-2 d-1)
T
(d)
Ym
(kg hm-2)
t1
(d)
t2
(d)
tm
(d)
Vm
(kg hm-2 d-1)
T
(d)
种植密度Plant density (×104 plants hm-2)
D5.25 11363.4 72.1 110.1 91.1 197.3 38.0 11390.2 67.5 108.1 87.8 184.3 40.6
D6.75 14377.1 73.8 116.7 95.3 221.5 42.8 12545.3 66.2 106.7 86.5 203.7 40.6
D8.25 15902.2 72.0 118.7 95.4 225.6 46.7 13935.1 66.1 111.9 89.0 200.5 45.8
施氮量N rate (kg hm-2)
N0 12925.3 73.7 117.0 95.4 195.1 43.3 10891.9 64.6 106.3 85.5 172.0 41.7
N105 13469.8 72.8 116.2 94.5 205.7 43.3 11955.7 65.9 108.2 87.1 186.0 42.3
N210 14235.7 72.8 115.0 94.0 221.2 42.2 12996.6 66.8 109.3 88.0 201.2 42.5
N315 14595.4 72.2 114.7 93.4 225.2 42.5 13117.0 66.9 108.4 87.7 207.9 41.5
N420 14178.2 71.6 112.7 92.2 226.7 41.1 14156.4 68.7 112.2 90.4 213.7 43.6
种植密度×施氮量Plant density×N rate
D5.25×N0 10330.1 72.5 110.7 91.6 178.5 38.1 10044.1 66.2 104.7 85.5 171.8 38.5
D5.25×N105 10976.7 72.2 110.5 91.4 189.5 38.2 10370.4 66.0 105.5 85.7 172.6 39.5
D5.25×N210 11632.4 72.4 109.7 91.0 205.5 37.3 11781.5 67.7 109.0 88.3 187.5 41.3
D5.25×N315 12084.2 71.5 110.2 90.8 206.3 38.6 11908.0 67.9 108.8 88.4 191.4 40.9
D5.25×N420 11793.4 71.7 109.4 90.5 206.7 37.7 12847.2 69.7 112.3 91.0 198.1 42.6
D6.75×N0 13856.2 75.3 120.2 97.8 202.5 44.9 10773.0 64.0 104.7 84.4 174.7 40.7
D6.75×N105 14109.2 74.3 119.1 96.7 207.4 44.8 11976.6 66.2 106.1 86.2 197.7 39.9
D6.75×N210 14215.0 73.1 115.2 94.2 222.7 42.1 12568.9 65.6 105.1 85.4 209.5 39.5
D6.75×N315 15082.1 73.3 115.3 94.3 236.4 42.0 13201.8 66.8 106.9 86.9 217.0 40.1
D6.75×N420 14623.0 73.0 113.5 93.3 238.4 40.4 14206.0 68.1 110.7 89.4 219.4 42.6
D8.25×N0 14589.7 73.3 120.2 96.8 204.4 47.0 11858.7 63.7 109.6 86.7 169.6 46.0
D8.25×N105 15323.4 72.0 118.9 95.4 220.2 46.9 13520.2 65.6 112.9 89.3 187.7 47.4
D8.25×N210 16859.7 73.0 120.3 96.7 235.4 47.3 14639.3 67.1 113.7 90.4 206.5 46.7
D8.25×N315 16619.8 71.7 118.6 95.2 233.0 47.0 14241.1 66.0 109.6 87.8 215.3 43.6
D8.25×N420 16118.3 70.1 115.2 92.7 235.1 45.1 15416.1 68.2 113.7 90.9 223.6 45.5
平均Average 13880.9 72.6 115.1 93.9 214.8 42.5 12623.5 66.6 108.9 87.8 196.2 42.3

图2

不同种植密度和施氮量处理下棉花干物质积累动态 处理同表1。"

表2

不同种植密度和施氮量棉花氮素累积动态特征值"

处理
Treatment
2016 2017
Ym
(kg hm-2)
t1
(d)
t2
(d)
tm
(d)
Vm
(kg hm-2 d-1)
T
(d)
Ym
(kg hm-2)
t1
(d)
t2
(d)
tm
(d)
Vm
(kg hm-2 d-1)
T
(d)
种植密度Plant density (×104 plants·hm-2)
D5.25 245.7 71.7 119.5 95.6 3.4 47.8 223.4 62.3 105.5 83.9 3.4 43.2
D6.75 256.9 69.0 116.5 92.8 3.6 47.5 237.2 60.1 101.7 80.9 3.8 41.6
D8.25 260.0 64.7 113.7 89.2 3.5 49.0 235.7 58.1 99.8 79.0 3.7 41.7
施氮量N rate (kg hm-2)
N0 193.3 65.1 108.1 86.6 3.0 42.9 174.3 56.2 92.1 74.1 3.2 35.9
N105 245.6 69.2 118.9 94.1 3.3 49.7 218.5 59.2 102.5 80.9 3.3 43.2
N210 271.0 69.5 121.1 95.3 3.5 51.6 246.7 60.9 104.8 82.8 3.7 43.8
N315 281.1 69.4 117.6 93.5 3.9 48.2 255.1 61.7 104.2 82.9 4.0 42.5
N420 280.1 69.0 117.1 93.1 3.9 48.1 265.9 62.8 108.1 85.5 3.9 45.4
种植密度×施氮量Plant density×N rate
D5.25×N0 192.2 69.4 112.4 90.9 3.0 43.0 171.7 58.8 95.2 77.0 3.1 36.4
D5.25×N105 231.4 72.1 118.3 95.2 3.3 46.2 214.3 61.6 106.7 84.2 3.1 45.1
D5.25×N210 258.0 72.0 122.3 97.2 3.4 50.3 239.8 63.0 107.2 85.1 3.6 44.2
D5.25×N315 274.8 72.4 122.6 97.5 3.6 50.2 250.6 64.2 110.3 87.2 3.6 46.1
D5.25×N420 271.9 72.4 121.8 97.1 3.6 49.4 240.6 63.9 108.1 86.0 3.6 44.2
D6.75×N0 196.5 64.7 109.2 87.0 2.9 44.5 177.5 56.0 92.3 74.2 3.2 36.4
D6.75×N105 254.7 70.3 121.5 95.9 3.3 51.2 223.0 59.5 101.6 80.6 3.5 42.0
D6.75×N210 279.1 70.9 122.7 96.8 3.6 51.8 258.2 61.2 104.9 83.1 3.9 43.7
D6.75×N315 284.0 70.1 115.8 92.9 4.1 45.7 257.5 61.6 101.9 81.7 4.2 40.3
D6.75×N420 270.2 69.1 113.4 91.3 4.0 44.3 269.8 62.0 107.7 84.8 3.9 45.6
D8.25×N0 191.1 61.3 102.6 81.9 3.1 41.3 173.6 53.7 88.8 71.3 3.3 35.1
D8.25×N105 250.6 65.3 116.9 91.1 3.3 51.6 218.3 56.6 99.1 77.8 3.4 42.5
D8.25×N210 275.9 65.5 118.2 91.9 3.5 52.7 242.2 58.5 102.1 80.3 3.7 43.6
D8.25×N315 284.3 65.7 114.5 90.1 3.9 48.8 257.1 59.3 100.3 79.8 4.1 41.0
D8.25×N420 298.1 65.6 116.2 90.9 3.9 50.6 287.4 62.4 108.7 85.6 4.1 46.4
平均Average 254.2 68.5 116.6 92.5 3.5 48.1 232.1 60.2 102.3 81.2 3.6 42.2

图3

不同种植密度和施氮量处理下氮素积累动态 处理同表1。"

表3

种植密度和施氮量对棉花干物质分配的影响"

处理
Treatment
2016 2017
营养器官分配量
DVO
生殖器官分配量
DRO
营养器官分配量
DVO
生殖器官分配量
DRO
种植密度Plant density (×104 plant hm-2)
D5.25 5008.6 c (44.6) 6184.5 c (55.4) 4842.2 c (43.3) 6317.8 c (56.7)
D6.75 6259.7 b (47.5) 6902.1 b (52.5) 5713.9 b (45.4) 6847.5 b (54.6)
D8.25 7114.0 a (49.3) 7286.1 a (50.7) 6406.1 a (47.4) 7082.7 a (52.6)
施氮量N rate (kg hm-2)
N0 5365.9 d (45.2) 6473.0 b (54.8) 4910.9 d (43.6) 6319.7 b (56.4)
N105 5788.7 c (46.5) 6581.1 b (53.5) 5155.9 c (44.1) 6483.0 b (55.9)
N210 6205.8 b (46.8) 6944.8 a (53.2) 5855.4 b (45.8) 6892.7 a (54.2)
N315 6462.8 b (47.7) 7002.0 a (52.3) 5987.6 b (46.1) 6956.9 a (53.9)
N420 6813.9 a (49.4) 6953.6 a (50.6) 6360.7 a (47.2) 7094.4 a (52.8)
种植密度×施氮量Plant density × N rate
D5.25×N0 4725.7 g (43.4) 6155.9 d (56.6) 4326.7 f (41.3) 6142.7 d (58.7)
D5.25×N105 4633.6 g (42.8) 6176.8 d (57.2) 4297.0 f (41.2) 6139.7 d (58.8)
D5.25×N210 4742.6 g (43.2) 6234.7 d (56.8) 5005.7 e (44.0) 6381.0 d (56.0)
D5.25×N315 5126.6 fg (45.3) 6160.1 d (54.7) 5048.0 e (44.1) 6406.7 d (55.9)
D5.25×N420 5814.8 e (48.5) 6195.2 d (51.5) 5534.0 cd (45.9) 6519.0 cd (54.1)
D6.75×N0 5455.1 ef (45.2) 6606.5 c (54.8) 4876.7 e (43.8) 6263.7 d (56.2)
D6.75×N105 5832.6 e (47.3) 6497.9 cd (52.7) 5202.0 de (44.6) 6459.0 cd (55.4)
D6.75×N210 6432.6 cd (47.5) 7091.3 b (52.5) 5908.0 bc (45.7) 7032.7 ab (54.3)
D6.75×N315 6753.8 c (48.1) 7289.7 ab (51.9) 5990.0 b (45.6) 7133.0 ab (54.4)
D6.75×N420 6824.5 c (49.3) 7025.2 b (50.7) 6593.0 a (47.3) 7349.3 a (52.7)
D8.25×N0 5917.1 de (47.1) 6656.7 c (52.9) 5529.3 cd (45.8) 6552.7 cd (54.2)
D8.25×N105 6900.1 bc (49.4) 7068.7 b (50.6) 5968.7 b (46.6) 6850.3 bc (53.4)
D8.25×N210 7442.1 ab (49.8) 7508.3 a (50.2) 6652.7 a (47.8) 7264.3 ab (52.2)
D8.25×N315 7508.0 a (49.8) 7556.3 a (50.2) 6924.7 a (48.6) 7331.0 a (51.4)
D8.25×N420 7802.5 a (50.5) 7640.4 a (49.5) 6955.0 a (48.4) 7415.0 a (51.6)
变异来源 Source of variation
种植密度Density (D) ** ** ** **
施氮量Nitrogen (N) ** ** ** **
种植密度×施氮量 D×N ns ** ns ns

表4

种植密度和施氮量对棉花氮素分配的影响"

处理
Treatment
2016 2017
营养器官分配量
DVO
生殖器官分配量
DRO
营养器官分配量
DVO
生殖器官分配量
DRO
种植密度Plant density (×104 plants hm-2)
D5.25 96.8 b (44.1) 122.4 b (55.9) 93.0 c (43.7) 119.7 c (56.3)
D6.75 105.4 a (45.2) 127.6 a (54.8) 100.8 b (44.0) 127.9 a (56.0)
D8.25 107.3 a (45.4) 129.1 a (54.6) 104.2 a (45.7) 123.0 b (54.3)
施氮量N rate (kg hm-2)
N0 81.7 c (44.6) 101.6 c (55.4) 75.0 e (43.6) 97.1 d (56.4)
N105 99.3 b (45.3) 119.7 b (54.7) 92.1 d (43.8) 118.3 c (56.2)
N210 103.3 b (43.3) 135.0 a (56.7) 105.6 c (44.7) 130.6 b (55.3)
N315 114.2 a (45.0) 139.2 a (55.0) 109.9 b (44.9) 134.9 a (55.1)
N420 117.4 a (46.2) 136.2 a (53.8) 114.0 a (45.4) 136.7 a (54.6)
种植密度×施氮量Plant density×N rate
D5.25×N0 79.2 g (44.0) 100.8 f (56.0) 73.5 i (43.5) 95.6 h (56.5)
D5.25×N105 95.6 f (45.7) 113.4 e (54.3) 88.1 h (43.4) 115.2 g (56.6)
D5.25×N210 94.0 f (41.6) 131.9 bc (58.4) 99.4 fg (43.6) 128.5 cd (56.4)
D5.25×N315 108.0 cde (44.8) 132.9 bc (55.2) 102.3 def (43.5) 132.6 bc (56.5)
D5.25×N420 107.0 cde (44.6) 132.8 bc (55.4) 101.6 ef (44.5) 126.5 cde (55.5)
D6.75×N0 82.4 g (44.4) 103.2 f (55.6) 76.2 i (43.5) 98.9 h (56.5)
D6.75×N105 103.4 def (46.1) 121.0 de (53.9) 94.4 gh (43.7) 121.4 efg (56.3)
D6.75×N210 106.6 cde (43.7) 137.2 ab (56.3) 108.3 cde (43.8) 138.8 ab (56.2)
D6.75×N315 118.7 b (45.6) 141.4 ab (54.4) 110.9 bc (44.4) 138.9 ab (55.6)
D6.75×N420 116.1 bc (46.2) 135.0 ab (53.8) 114.0 bc (44.6) 141.4 a (55.4)
D8.25×N0 83.6 g (45.4) 100.8 f (54.6) 75.3 i (43.8) 96.8 h (56.2)
D8.25×N105 98.9 ef (44.2) 124.9 cd (55.8) 93.8 gh (44.2) 118.4 fg (55.8)
D8.25×N210 109.2 bcd (44.6) 136.0 ab (55.4) 109.0 cd (46.6) 124.6 def (53.4)
D8.25×N315 115.8 bc (44.7) 143.1 a (55.3) 116.5 b (46.7) 133.3 bc (53.3)
D8.25×N420 129.1 a (47.9) 140.7 ab (52.1) 126.4 a (47.1) 142.1 a (52.9)
变异来源 Source of variation
种植密度Density (D) ** * ** **
施氮量Nitrogen (N) ** ** ** **
种植密度×施氮量 D×N ns ns ** **

表5

增密减氮对棉花产量及其构成因素的影响"

密度
Plant density
(×104 plants hm-2)
施氮量
N rate
(kg hm-2)
铃数
Boll density
(×104 bolls hm-2)
铃重
Boll weight
(g boll-1)
衣分
Lint percentage
(%)
籽棉实产
Seed cotton yield
(kg hm-2)
皮棉实产
Lint yield
(kg hm-2)
2016
D5.25 N0 64.6 d 5.3 cd 41.9 a 3283.7 e 1375.1 e
N105 71.8 c 5.6 b 41.7 a 3584.3 d 1493.1 d
N210 72.4 c 5.8 a 41.6 a 3998.0 bc 1662.2 bc
N315 71.7 c 6.0 a 41.8 a 4234.3 a 1769.7 a
N420 71.6 c 5.4 bc 41.7 a 3964.7 c 1653.9 bc
D6.75 N0 66.9 d 5.6 b 41.5 a 3425.0 e 1421.1 e
N105 76.3 b 5.6 b 41.5 a 4126.0 ab 1713.0 ab
N210 78.0 b 5.9 a 41.5 a 4208.3 a 1745.3 a
N315 76.5 b 5.6 b 41.7 a 3898.0 c 1626.6 c
D6.75 N420 76.5 b 5.6 b 41.4 a 3714.7 d 1538.5 d
D8.25 N0 72.5 c 5.2 d 41.8 a 3373.0 e 1409.3 e
N105 82.0 a 5.2 d 41.5 a 3591.7 d 1490.3 d
N210 84.7 a 5.3 cd 41.7 a 3659.3 d 1526.8 d
N315 84.2 a 5.6 b 41.8 a 3581.3 d 1497.7 d
N420 83.3 a 5.3 cd 41.8 a 3609.3 d 1506.9 d
2017
D5.25 N0 69.0 f 5.4 c 41.2 a 3391.3 e 1396.3 e
N105 76.0 d 5.7 ab 41.0 a 3859.3 d 1583.7 d
N210 75.8 d 5.7 ab 41.0 a 4157.7 b 1704.7 b
N315 76.7 d 5.8 a 41.1 a 4429.3 a 1818.3 a
N420 76.3 d 5.6 ab 41.5 a 4096.3 b 1699.0 b
D6.75 N0 69.9 f 5.5 c 41.3 a 3471.0 e 1433.0 e
N105 80.2 c 5.7 ab 41.4 a 4117.7 b 1705.7 b
N210 81.5 c 5.8 a 41.4 a 4415.7 a 1826.3 a
N315 80.9 c 5.6 b 41.2 a 4017.0 bc 1653.3 bc
N420 81.8 c 5.7 ab 41.2 a 3896.0 cd 1605.7 cd
D8.25 N0 73.3 e 5.3 c 41.0 a 3519.3 e 1444.3 e
N105 85.3 ab 5.4 c 41.5 a 3770.7 d 1564.0 d
N210 85.9 ab 5.4 c 41.2 a 3898.3 cd 1607.7 cd
N315 87.6 a 5.4 c 41.1 a 3901.0 cd 1605.0 cd
N420 85.1 b 5.4 c 41.4 a 3778.3 d 1564.3 d
变异来源 Source of variation
年份Year ** ns ns ** **
种植密度Density (D) ** ** ns ** **
施氮量Nitrogen (N) ** ** ns ** **
种植密度×施氮量 D×N ** ** ns ** **
[1] 喻树迅, 范术丽, 王寒涛, 魏恒玲, 庞朝友 . 中国棉花高产育种研究进展. 中国农业科学, 2016,49:3465-3476.
Yu S X, Fan S L, Wang H T, Wei H L, Pang C Y . Progresses in research on cotton high yield breeding in China. Sci Agric Sin, 2016,49:3465-3476 (in Chinese with English abstract).
[2] Manderscheid R, Pacholski A, Frühauf C, Weigel H J . Effects of free air carbon dioxide enrichment and nitrogen supply on growth and yield of winter barley cultivated in a crop rotation. Field Crops Res, 2009,110:185-196.
[3] Dai J L, Li W J, Tang W, Zhang D M, Li Z H, Lu H Q, Eneji A E, Dong H Z . Manipulation of dry matter accumulation and partitioning with plant density in relation to yield stability of cotton under intensive management. Field Crops Res, 2015,180:207-215.
[4] 李鹏程, 董合林, 刘爱忠, 刘敬然, 孙淼, 王国平, 刘绍东, 赵新华, 李亚兵 . 植密度氮肥互作对棉花产量及氮素利用效率影响. 农业工程学报, 2015,31(23):122-130.
Li P C, Dong H L, Liu A Z, Liu J R, Sun M, Wang G P, Liu S D, Zhao X H, Li Y B . Effects of planting density and nitrogen fertilizer interaction on yield and nitrogen use efficiency of cotton. Trans CSAE, 2015,31(23):122-130 (in Chinese with English abstract).
[5] 李小勇, 周敏, 王涛, 张兰, 周广生, 蒯婕 . 种植密度对油菜机械收获关键性状的影响. 作物学报, 2018,44:278-287.
Li X Y, Zhou M, Wang T, Zhang L, Zhou G S, Kuai J . Effects of planting density on the mechanical harvesting characteristics of semi-winter rapeseed. Acta Agron Sin, 2018,44:278-287 (in Chinese with English abstract).
[6] 徐娇, 孟亚利, 睢宁, 宋为超, 周治国 . 种植密度对转基因棉氮、磷、钾吸收和利用的影响. 植物营养与肥料学报, 2013,19:174-181.
Xu J, Meng Y L, Sui N, Song W C, Zhou Z G . Effects of planting density on uptake and utilization of N, P and K of transgenic cotton. Plant Nutr Fert Sci, 2013,19:174-181 (in Chinese with English abstract).
[7] 曹胜彪, 张吉旺, 董树亭, 刘鹏, 赵斌, 杨今胜 . 施氮量和种植密度对高产夏玉米产量和氮素利用效率的影响. 植物营养与肥料学报, 2012,18:1343-1353.
Cao S B, Zhang J W, Dong S T, Liu P, Zhao B, Yang J S . Effects of nitrogen rate and planting density on grain yield and nitrogen utilization efficiency of high yield summer maize. Plant Nutr Fert Sci, 2012,18:1343-1353 (in Chinese with English abstract).
[8] Yang G Z, Luo X J, Nie Y C, Zhang X L . Effects of plant density on yield and canopy microenvironment in hybrid cotton. Integr Agric, 2014,13:2154-2163.
[9] Dong H Z, Li W J, Egrinya E A, Zhang D M . Nitrogen rate and plant density effects on yield and late-season leaf senescence of cotton raised on a saline field. Field Crops Res, 2012,126:137-144.
[10] 李鹏程, 董合林, 刘爱忠, 刘敬然, 李如义, 孙淼, 李亚兵, 毛树春 . 施氮量对棉花功能叶片生理特性、氮素利用效率及产量的影响. 植物营养与肥料学报, 2015,21:81-91.
Li P C, Dong H L, Liu A Z, Liu J R, Li R Y, Sun M, Li Y B, Mao S C . Effects of nitrogen application rates on physiological characteristics of functional leaves, nitrogen use efficiency and yield of cotton. Plant Nutr Fert Sci, 2015,21:81-91 (in Chinese with English abstract).
[11] 祝珍珍, 陈亮, 杨国正, 宋学贞, 王德鹏, 陈求柱 , Mokhele B. 国内棉花干物质及养分积累与分配研究进展. 江西棉花, 2011,3(3):7-10.
Zhu Z Z, Chen L, Yang G Z, Song X Z, Wang D P, Chen Q Z, Mokhele B . Study progress on dry matter and nutrient accumulation distribution of China cotton. Jiangxi Cotton, 2011,33(3):7-19 (in Chinese with English abstract).
[12] 叶欣, 王永东, 李瑞雪 . 不同品种棉花干物质积差异对比研究. 西南农业大学学报, 2004,26:749-752.
Ye X, Wang Y D, Li R X . Comparative studies of dry matter accumulation in different cotton varieties. J Southwest Agric Univ, 2004,26:749-752 (in Chinese with English abstract).
[13] 邢晋, 张思平, 赵新华, 闫贞贞, 魏然, 张立祯 . 种植密度和缩节胺互作对棉花株型及产量的调控效应. 棉花学报, 2018,30:53-61.
Xing J, Zhang S P, Zhao X H, Yan Z Z, Wei R, Zhang L Z . Interaction of plant density with mepiquat chloride affects plant architecture and yield in cotton. Cotton Sci, 2018,30:53-61 (in Chinese with English abstract).
[14] 马宗斌, 严根土, 刘桂珍, 黄群, 李伶俐, 朱伟 . 施氮量对黄河滩区棉花叶片生理特性干物质积累及产量的影响. 植物营养与肥料学报, 2013,19:849-857.
Ma Z B, Yan G T, Liu G Z, Huang Q, Li L L, Zhu W . Effects of nitrogen application rates on main physiological characteristics of leaves, dry matter accumulation and yield of cotton cultivated in the Yellow River bottomlands. Plant Nutr Fert Sci, 2013,19:849-857 (in Chinese with English abstract).
[15] 李伶俐, 房卫平, 谢德意, 马宗斌, 杜远仿, 张东林 . 施氮量对杂交棉干物质积累、分配和氮磷钾吸收、分配与利用的影响. 棉花学报, 2010,22:347-353.
Li L L, Fang W P, Xie D Y, Ma Z B, Du Y F, Zhang D L . Effects of nitrogen application rate on dry matter accumulation and N, P, K uptake and distribution in different organs and utilization of hybrid cotton under high-yield cultivated condition. Cotton Sci, 2010,22:347-353 (in Chinese with English abstract).
[16] 王士红, 杨中旭, 李秋芝, 李海涛, 尹会会, 李彤 . 鲁西地区抗虫棉品种筛选试验. 山东农业科学, 2013,45(12):5-7.
Wang S H, Yang Z X, Li Q Z, Li H T, Yin H H, Li T . Screening test of insect-resistant cotton varieties in western Shandong. Shandong Agric Sci, 2013,45(12):5-7 (in Chinese).
[17] 王家宝, 王留明, 姜辉, 赵军胜, 陈莹, 高明伟, 王秀丽, 董合忠 . 高产稳产型棉花品种鲁棉研28号选育及其栽培生理特性研究. 棉花学报, 2014,26:569-576.
Wang J B, Wang L M, Jiang H, Zhao J S, Chen Y, Gao M W, Wang X L, Dong H Z . Breeding of high and stable-yielding cotton variety SCRC28 and its physiological characteristics for cultivation. Cotton Sci, 2014,26:569-576 (in Chinese with English abstract).
[18] 卢合全, 李振怀, 李维江, 孔祥强, 代建龙, 唐薇, 张冬梅, 董合忠 . 适宜轻简栽培的棉花品种K836的选育及高产简化栽培技术. 中国棉花, 2015,42(6):33-37.
Lu H Q, Li Z H, Li W J, Kong X Q, Dai J L, Tang W, Zhang D M, Dong H Z . Breeding of cotton cultivar K836 suitable for extensive farming and its high-yielding cultivation techniques. China Cotton, 2015,42(6):33-37 (in Chinese with English abstract).
[19] 尹会会, 李秋芝, 李海涛, 商娜, 张晗, 李彤, 王士红, 杨中旭 . 鲁西地区不同类型土壤对棉花产量及其构成因素与成铃时空分布的影响. 中国农学通报, 2016,32(36):87-90.
Yin H H, Li Q Z, Li H T, Shang N, Zhang H, Li T, Wang S H, Yang Z X . Effect of different soil textures on cotton yield, composition factors and boll spatial-temporal distribution in western Shandong. Chin Agric Sci Bull, 2016,32(36):87-90 (in Chinese with English abstract).
[20] 郑剑超, 闫曼曼, 张巨松, 高丽丽, 石洪亮, 郑慧, 张玉玲 . 遮荫条件下氮肥运筹对棉花生长和氮素积累的影响. 植物营养与肥料学报, 2016,22:94-103.
Zheng J C, Yan M M, Zhang J S, Gao L L, Shi H L, Zheng H, Zhang Y L . Effects of nitrogen application on growth and nitrogen accumulation of cotton under shading condition. Plant Nutr Fert Sci, 2016,22:94-103 (in Chinese with English abstract).
[21] 薛晓萍, 郭文琦, 王以琳, 张丽娟, 周治国 . 不同施氮水平下棉花生物量动态增长特征研究. 棉花学报, 2006,18:323-326.
Xue X P, Guo W Q, Wang Y L, Zhang L J, Zhou Z G . Research on dynamic increase characteristics of dry matter of cotton at different nitrogen levels. Cotton Sci, 2006,18:323-326 (in Chinese with English abstract).
[22] 李春艳, 文如意, 石洪亮, 严青青, 张巨松 . 海岛棉与陆地棉干物质积累与氮素吸收分配的特点. 干旱地区农业研究, 2017,35(1):175-181.
Li C Y, Wen R Y, Shi H L, Yan Q Q, Zhang J S . Dry matter and nitrogen accumulation distribution on island cotton and upland cotton. Agric Res Arid Areas, 2017,35(1):175-181 (in Chinese with English abstract).
[23] 娄善伟, 马腾飞, 托合提·艾买提, 张怀军, 王大光, 边洋, 司地克江, 张鹏忠. 新疆农业科学, 2017,54:2182-2189.
Lou S W, Ma T F, Aimait T, Zhang H J, Wang D G, Bian Y, Sidi K J, Zhang P Z . Study on the correlation between nitrogen content and dry matter accumulation in cotton. Xinjiang Agric Sci, 2017,54:2182-2189 (in Chinese with English abstract).
[24] 徐新朋, 周卫, 梁国庆, 孙静文, 王秀斌, 何萍, 徐芳森, 余喜初 . 氮肥用量和密度对双季稻产量及氮肥利用率的影响. 植物营养与肥料学报, 2015,21:763-772.
Xu X P, Zhou W, Liang G Q, Sun J W, Wang X B, He P, Xu F S, Yu X C . Effects of nitrogen and density interactions on grain yield and nitrogen use efficiency of double-rice systems. Plant Nutr Fert Sci, 2015,21:763-772 (in Chinese with English abstract).
[25] 杨艳君, 王宏富, 郭平毅, 王玉国, 原向阳, 邢国芳, 邵东红, 祁祥, 解丽丽, 聂萌恩, 郭俊, 宁娜 . 施肥和密度对张杂谷5号光合特性及产量的影响. 植物营养与肥料学报, 2013,19:566-576.
Yang Y J, Wang H F, Guo P Y, Wang Y G, Yuan X Y, Xing G F, Shao D H, Qi X, Xie L L, Nie M E, Guo J, Ning N . Effects of fertilization and density on photosynthetic characteristics and yield of hybrid foxtail millet. Plant Nutr Fert Sci, 2013,19:566-576 (in Chinese with English abstract).
[26] 刘瑞显, 史伟, 徐立华, 杨长琴, 郭文琦, 张培通 . 长江下游棉区抗虫杂交棉适宜密度研究. 棉花学报, 2010,22:634-638.
Liu R X, Shi W, Xu L H, Yang C Q, Guo W Q, Zhang P T . Planting density of insect-resistant hybrid cotton in lower reaches of Yangtze River Valley. Cotton Sci, 2010,22:634-638 (in Chinese with English abstract).
[27] 张旺锋, 王振林, 余松烈, 李少昆, 房建, 童文崧 . 种植密度对新疆高产棉花群体光合作用、冠层结构及产量形成的影响. 植物生态学报, 2004,28:164-171.
Zhang W F, Wang Z L, Yu S L, Li S K, Fang J, Tong W S . Effects of planting density on canopy photosynthesis, canopy structure and yield formation of high-yield cotton in Xinjiang, China. Chin Plant Ecol, 2004,28:164-171 (in Chinese with English abstract).
[28] 娄善伟, 高云光, 郭仁松, 赵强, 张巨松 . 不同栽培密度对棉花植株养分特征及产量的影响. 植物营养与肥料学报, 2010,16:953-958.
Lou S W, Gao Y G, Guo R S, Zhao Q, Zhang J S . Effects of planting density on nutrition characteristics and yield of cotton. Plant Nutr Fert Sci, 2010,16:953-958 (in Chinese with English abstract).
[29] 支晓宇, 毛树春, 韩迎春, 李亚兵, 杜文丽, 李小新, 王国平, 范正义, 杨北方, 冯璐 . 密度对棉花产量及棉铃内部产量构成的影响. 棉花学报, 2015,27:216-222.
Zhi X Y, Mao S C, Han Y C, Li Y B, Du W L, Li X X, Wang G P, Fan Z Y, Yang B F, Feng L . Effects of cultivars and planting density on yield components and seed characteristics on cotton. Cotton Sci, 2015,27:216-222 (in Chinese with English abstract).
[30] Zhang D M, Luo Z, Liu S H, Li W J, Tang W, Dong H Z . Effects of deficit irrigation and plant density on the growth, yield and fiber quality of irrigated cotton. Field Crops Res, 2016,197:1-9.
[1] 杨志远,李娜,马鹏,严田蓉,何艳,蒋明金,吕腾飞,李郁,郭翔,胡蓉,郭长春,孙永健,马均. 水肥“三匀”技术对水稻水、氮利用效率的影响[J]. 作物学报, 2020, 46(3): 408-422.
[2] 郑飞娜,初金鹏,张秀,费立伟,代兴龙,贺明荣. 播种方式与种植密度互作对大穗型小麦品种产量和氮素利用率的调控效应[J]. 作物学报, 2020, 46(3): 423-431.
[3] 解松峰,吉万全,张耀元,张俊杰,胡卫国,李俊,王长有,张宏,陈春环. 小麦重要产量性状的主基因+多基因混合遗传分析[J]. 作物学报, 2020, 46(3): 365-384.
[4] 刘永晨,司成成,柳洪鹃,张彬彬,史春余. 改善土壤通气性促进甘薯源库间光合产物运转的原因解析[J]. 作物学报, 2020, 46(3): 462-471.
[5] 叶夕苗,程鑫,安聪聪,袁剑龙,余斌,文国宏,李高峰,程李香,王玉萍,张峰. 马铃薯产量组分的基因型与环境互作及稳定性[J]. 作物学报, 2020, 46(3): 354-364.
[6] 丁永刚, 李福建, 王亚华, 汤小庆, 杜同庆, 朱敏, 李春燕, 朱新开, 丁锦峰, 郭文善. 稻茬小麦氮高效品种产量构成和群体质量特征[J]. 作物学报, 2020, 46(04): 544-556.
[7] 卫平洋, 裘实, 唐健, 肖丹丹, 朱盈, 刘国栋, 邢志鹏, 胡雅杰, 郭保卫, 高尚勤, 魏海燕, 张洪程. 安徽沿淮地区优质高产常规粳稻品种筛选及特征特性[J]. 作物学报, 2020, 46(04): 571-585.
[8] 赵小红, 白羿雄, 王凯, 姚有华, 姚晓华, 吴昆仑. 种植密度对2个青稞品种抗倒伏及秸秆饲用特性的影响[J]. 作物学报, 2020, 46(04): 586-595.
[9] 金容, 李钟, 杨云, 周芳, 杜伦静, 李小龙, 孔凡磊, 袁继超. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响[J]. 作物学报, 2020, 46(04): 614-630.
[10] 罗俊, 林兆里, 李诗燕, 阙友雄, 张才芳, 杨仔奇, 姚坤存, 冯景芳, 陈建峰, 张华. 不同土壤改良措施对机械压实酸化蔗地土壤理化性质及微生物群落结构的影响[J]. 作物学报, 2020, 46(04): 596-613.
[11] 陈晓影,刘鹏,程乙,董树亭,张吉旺,赵斌,任佰朝,韩坤. 基于磷肥施用深度的夏玉米根层调控提高土壤氮素吸收利用[J]. 作物学报, 2020, 46(02): 238-248.
[12] 赵伟,甄天悦,张子山,徐铮,高大鹏,丁聪,刘鹏,李耕,宁堂原. 增施磷肥提高弱光环境中夏大豆叶片光合能力及产量[J]. 作物学报, 2020, 46(02): 249-258.
[13] 廖萍,刘磊,何宇轩,唐刚,张俊,曾勇军,吴自明,黄山. 施石灰和秸秆还田对双季稻产量和氮素吸收的互作效应[J]. 作物学报, 2020, 46(01): 84-92.
[14] 王素芳,薛惠云,张志勇,汤菊香. 棉花根系生长与叶片衰老的协调性[J]. 作物学报, 2020, 46(01): 93-101.
[15] 王艳,易军,高继平,张丽娜,杨继芬,赵艳泽,辛威,甄晓溪,张文忠. 不同叶龄蘖、穗氮肥组合对粳稻产量及氮素利用的影响[J]. 作物学报, 2020, 46(01): 102-116.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清;李阳生;吴福顺;廖江林;李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[5] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .
[6] 邢光南, 周斌, 赵团结, 喻德跃, 邢邯, 陈受宜, 盖钧镒. 大豆抗筛豆龟蝽Megacota cribraria (Fabricius)的QTL分析[J]. 作物学报, 2008, 34(03): 361 -368 .
[7] 王逸群. 根瘤菌对水稻的感染[J]. 作物学报, 2002, 28(01): 32 -35 .
[8] 吕丽华;陶洪斌;夏来坤; 张雅杰; 赵明; 赵久然;王璞. 不同种植密度下的夏玉米冠层结构及光合特性[J]. 作物学报, 2008, 34(03): 447 -455 .
[9] 胡玉琪;廖晓海. 玉米叶形系数研究[J]. 作物学报, 1986, (01): 71 -72 .
[10] 梁太波;尹燕枰;蔡瑞国;闫素辉;李文阳;耿庆辉;王平;王振林. 大穗型小麦品种强、弱势籽粒淀粉积累和相关酶活性的比较[J]. 作物学报, 2008, 34(01): 150 -156 .