[1] |
李清超, 李永祥, 杨钊钊, 刘成, 刘志斋, 李春辉, 彭勃, 张岩, 王迪, 谭巍巍, 孙宝成, 石云素, 宋燕春, 张志明, 潘光堂, 黎裕, 王天宇 . 基于多重相关RIL群体的玉米株高和穗位高QTL定位. 作物学报, 2013,39:1521-1529.
|
|
Li Q C, Li Y X, Yang Z Z, Liu C, Liu Z Z, Li C H, Peng B, Zhang Y, Wang D, Tan W W, Sun B C, Shi S Y, Song C Y, Zhang Z M, Pan G T, Li Y, Wang T Y . QTL mapping for plant height and ear height by using multiple related RIL populations in maize. Acta Agron Sin, 2013,39:1521-1529 (in Chinese with English abstract).
|
[2] |
何坤辉, 常立国, 崔婷婷, 渠建洲, 郭东伟, 徐淑兔, 张兴华, 张仁和, 薛吉全, 刘建超 . 多环境下玉米株高和穗位高的QTL定位. 中国农业科学, 2016,49:1443-1452.
|
|
He K H, Chang L G, Cui T T, Qu J Z, Guo D W, Xu S T, Zhang X H, Zhang R H, Xue J Q, Liu J C . Mapping QTL for plant height and ear height in maize under multi-environments. Sci Agric Sin, 2016,49:1443-1452 (in Chinese with English abstract).
|
[3] |
刘坤, 张雪海, 孙高阳, 闫鹏帅, 郭海平, 陈思远, 薛亚东, 郭战勇, 谢惠玲, 汤继华, 李卫华 . 玉米株型相关性状的全基因组关联分析. 中国农业科学, 2018,51:821-834.
|
|
Liu K, Zhang X H, Sun G Y, Yan P S, Guo H P, Chen S Y, Xue Y D, Guo Z Y, Xie H L, Tang J H, Li W H . Genome-wide association studies of plant type traits in maize. Sci Agric Sin, 2018,51:821-834 (in Chinese with English abstract).
|
[4] |
李凯, 张晓祥, 管中荣, 沈亚欧, 潘光堂 . 玉米株高和穗位高的全基因组关联分析. 玉米科学, 2017,25(6):1-7.
|
|
Li K, Zhang X X, Guan Z R, Shen Y O, Pan G T . Genome-wide association analysis of plant height and ear height in maize. J Maize Sci, 2017,25(6):1-7 (in Chinese with English abstract).
|
[5] |
Li X, Zhou Z, Ding J, Wu Y, Zhou B, Wang R, Ma J, Wang S, Zhang X, Xia Z, Chen J, Wu J . Combined linkage and association mapping reveals QTL and candidate genes for plant and ear height in maize. Front Plant Sci, 2016,7:833.
|
[6] |
Weng J, Xie C, Hao Z, Wang J, Liu C, Li M, Zhang D, Bai L, Zhang S, Li X . Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS One, 2011,6:e29229.
|
[7] |
Fujioka S, Yamane H, Spray C R, Gaskin P, Macmillan J, Phinney B O, Takahashi N . Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L. Plant Physiol, 1988,88:1367-1372.
|
[8] |
Winkler R G, Helentjaris T . The maize Dwarf3 gene encodes acytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell, 1995,7:1307-1317.
|
[9] |
Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Buckler E S . Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001,28:286-289.
|
[10] |
Lawit S J, Wych H M, Xu D, Kundu S, Tomes D T . Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol, 2010,51:1854-1868.
|
[11] |
Multani D S, Briggs S P, Chamberlin M A, Blakeslee J J, Murphy A S, Johal G S . Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science, 2003,302:81-84.
|
[12] |
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol, 2005, 4: Article 17.
|
[13] |
Zhang X, Hirsch C N, Sekhon R S, De Leon N, Kaeppler S M . Evidence for maternal control of seed size in maize from phenotypic and transcriptional analysis. J Exp Bot, 2016,67:1907-1917.
|
[14] |
Ma J, Zhang D, Cao Y, Wang L, Li J, Lübberstedt T, Wang T, Li Y, Li H . Heterosis-related genes under different planting densities in maize (Zea mays L.). J Exp Bot, 2018,69:5077-5087.
|
[15] |
Zhan J, Thakare D, Ma C, Lloyd A, Nixon N M, Arakaki A M, Burnett W J, Logan K O, Wang D, Wang X, Drews G N, Yadegari R . RNA sequencing of laser-capture microdissected compartments of the maize kernel identifies regulatory modules associated with endosperm cell differentiation. Plant Cell, 2015,27:513-531.
|
[16] |
杨宇昕, 桑志勤, 许诚, 代文双, 邹枨 . 利用WGCNA进行玉米花期基因共表达模块鉴定. 作物学报, 2019,45:161-174.
|
|
Yang Y X, Sang Z Q, Xu C, Dai W S, Zou C . Identification of maize flowering gene co-expression modules by WGCNA. Acta Agron Sin, 2019,45:161-174 (in Chinese with English abstract).
|
[17] |
Peng H, He X, Gao J, Ma H, Zhang Z, Shen Y, Pan G, Lin H . Transcriptomic changes during maize roots development responsive to Cadmium (Cd) pollution using comparative RNA seq- based approach. Biochem Biophys Res Commun, 2015,464:1040-1047.
|
[18] |
Thirunavukkarasu N, Hossain F, Mohan S, Shiriga K, Mittal S, Sharma R, Singh R K, Gupta H S . Genome-wide expression of transcriptomes and their co-expression pattern in subtropical maize (Zea mays L.) under waterlogging stress. PLoS One, 2013,8:e70433.
|
[19] |
Lyu Y, Liang Z, Ge M, Qi W, Zhang T, Lin F, Peng Z, Zhao H . Genome-wide identification and functional prediction of nitrogen-responsive intergenic and intronic long non-coding RNAs in maize ( Zea mays L.). BMC Genomics, 2016,17:350.
|
[20] |
Zhang S, Yang W, Zhao Q, Zhou X, Jiang L, Ma S, Liu X, Li Ye, Zhang C, Fan Y, Chen R . Analysis of weighted co-regulatory networks in maize provides insights into new genes and regulatory mechanisms related to inositol phosphate metabolism. BMC Genomics, 2016,17:129-146.
|
[21] |
Tao Y, Zheng J, Xu Z, Zhang X, Zhang K, Wang G . Functional analysis of ZmDWF1, a maize homolog of the Arabidopsis brassinosteroids biosynthetic DWF1/DIM gene. Plant Sci, 2004,167:741-751.
|
[22] |
Wu L, Zhang D, Xue M, Qian J, He Y, Wang S . Overexpression of the maize GRF10, an endogenous truncated growth regulating factor protein, leads to reduction in leaf size and plant height. J Integr Plant Biol, 2014,56:1053-1063.
|
[23] |
Hartwig T, Chuck G S, Fujioka S, Klempien A, Weizbauer R, Potluri D P, Choe S, Johal G S, Schulz B . Brassinosteroid control of sex determination in maize. Proc Natl Acad Sci USA, 2011,108:19814-19819.
|
[24] |
Tamotsu H, Rod W K, Chris A H, Masaji K . The involvement of gibberellin 20-oxidase genes in phytochrome-regulated petiole elongation of Arabidopsis. Plant Physiol, 2005,138:1106-1116.
|
[25] |
Zhao W, Langfelder P, Fuller T, Dong J, Li A, Hovarth S . Weighted gene coexpression network analysis: state of the art. J Biopharm Stat, 2010,20:281-300.
|
[26] |
Wang H, Gu L, Zhang X, Liu M, Jiang H, Cai R, Zhao Y, Cheng B . Global transcriptome and weighted gene co-expression network analyses reveal hybrid-specific modules and candidate genes related to plant height development in maize. Plant Mol Biol, 2018,98:187-203.
|
[27] |
Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K . AP2/ERF family transcription factors in plant abiotic stress responses. BBA-Gene Regul Mech, 2012,1819:86-96.
|
[28] |
Hinz M, Wilson I W, Yang J, Buerstenbinder K, Llewellyn D, Dennis E S, Sauter M, Dolferus R . Arabidopsis RAP2: 2. An ethylene response transcription factor that is important for hypoxia survival. Plant Physiol, 2010,153:757-772.
|
[29] |
Licausi F, Ohme Takagi M, Perata P . APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol, 2013,199:639-649.
|
[30] |
Cassani E, Bertolini E, Cerino B F, Landoni M, Gavina D, Sirizzotti A, Pilu R . Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the dwarf8 gene. Mol Breed, 2009,24:375-385.
|
[31] |
Teng F, Zhai L, Liu R, Bai W, Wang L, Huo D, Tao Y, Zheng Y, Zhang Z . ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J, 2013,73:405-416.
|
[32] |
郑雷, 周羽, 曾兴, 邸宏, 翁建峰, 李新海, 王振华 . 玉米株高QTL定位研究进展. 作物杂志, 2016, ( 2):8-13.
|
|
Zheng L, Zhou Y, Zeng X, Di H, Weng J F, Li X H, Wang Z H . QTL Mapping of plant height in maize. Crops, 2016, ( 2):8-13 (in Chinese with English abstract).
|