欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (8): 1462-1467.doi: 10.3724/SP.J.1006.2009.01462

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

甘蓝型油菜发芽种子耐湿性的主基因+多基因遗传分析

丛野,程勇,邹崇顺,张学昆*,王汉中*   

  1. 中国农业科学院油料作物研究所,湖北武汉430062
  • 收稿日期:2008-12-31 修回日期:2009-03-17 出版日期:2009-08-12 网络出版日期:2009-06-10
  • 通讯作者: 张学昆, E-mail: seedcq@263.net; Tel: 027-86824573; 王汉中, E-mail: wanghz@oilcrops.cn; Tel: 027-86711916
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA10Z1C2),国际科技支撑计划项目(2006BAD07A04),中国农业科学院油料作物研究所所长基金项目资助。

Genetic Analysis of Waterlogging Tolerance for Germinated Seeds of Rapessed(Brassica napus L.) with Mixed Model of Major Gene Plus Polygene

CONG Ye,CHENG Yong,ZOU Cong-Shun,ZHANG Xue-Kun*,WANG Han-Zhong*   

  1. Oil Crops Research Institute,Chinese Academy of Agriculture Science,Wuhan 430062,China
  • Received:2008-12-31 Revised:2009-03-17 Published:2009-08-12 Published online:2009-06-10
  • Contact: ZHANG Xue-Kun, E-mail: seedcq@263.net; Tel: 027-86824573; WANG Han-Zhong, E-mail: wanghz@oilcrops.cn; Tel: 027-86711916

摘要:

油菜湿害是我国特有的自然灾害,对油菜种子发芽、出苗和幼苗生长造成严重影响,导致单产显著下降。为研究油菜种子发芽耐湿性的遗传规律,本文利用耐湿性遗传差异较大的2个甘蓝型油菜纯系中双9号和GH01的杂交后代衍生的世代家系群体构建油菜耐湿性遗传体系,并以主基因+多基因家系世代联合分析方法对油菜耐湿性的遗传规律进行分析。结果表明,中双9×GH01组合的耐湿性的遗传受2对完全显性主基因+加性-显性多基因控制,表现为耐湿对不耐湿完全显性。该组合的第1对主基因加性效应与显性效应相等,为0.0696;第2对主基因的加性效应与显性效应相等,为0.0530。多基因加性效应为0.3275,显性效应为负值([h]= –0.2137)。主基因存在显性效应,该组合的耐湿性存在杂种优势,多基因显性效应为负,多基因显性效应使F1代耐湿性降低。F2家系的主基因遗传力为73.57%,表现出较高的遗传力,建议育种工作者对耐湿性在早期选择效率较高。

关键词: 甘蓝型油菜, 耐湿性, 主基因+多基因, 遗传

Abstract:

In China, over 85% of the rapeseed production is from the Yangtze River Basin. Rapeseed planted as rotation crop following rice from autumn to beginning of the second year summer, often encounters waterlogging stress because of enduring rainfall in autumn and humid paddy soil, which results in reduced field emergence and weaker seedlings. To reveal the genetic mechanism of waterlogging tolerance in rapeseed, we studied a genetic system of waterlogging tolerance in rapeseed by means of a joint segregation analysis in the multi-family generations (P1, F1, P2, B1, B2, and F2) derived from a cross of Zhongshuang 9×GH01. The results showed that waterlogging tolerance of Zhongshuang 9×GH01 was dominated by two pair of major genes with complete dominance effects plus polygenes with additive-dominance effects (E-5 model). Additive effect (d = 0.0696) was equal to dominance effect (h=0.0696) in the first major gene, and also the additive effect (d = 0.0530) was equal to dominance effect (h=0.0530) in the second major gene of the genetic system. Effect of polygenes acted in the manner of additive ([d]=0.3275) as well as dominant with a negative value ([h]= –0.2137). It indicated that there was heterosis for waterlogging tolerance found in the cross that played an important role in the genetic system of waterlogging tolerance. Heritability of major gene (h2mg) in F2 population was 73.57%; it suggested that it will be effective way for waterlogging tolerance breeding to select at early generations.

Key words: Brassica napus L., Waterlogging tolerance, Major gene hlus polygene model, Genetic analysis

[1]Fu T D, Yang G S, Tu J X, Ma C Z. The Present and Future of Rapeseed Production in China. In: Proceedings of International Symposium on Rapeseed Science. New York: Science Press, 2001. pp 3−5
[2] Ashraf M, Mehmood S. Effects of waterlogging on growth and some physiological parameters of four Brassica species. Plant Soil, 1990, 121: 203-210
[3] Li C-J(李翠金). A statistical analysis of the storm flood disasters in China. J Catastrophol (灾害学), 1996, 11(1): 59-63 (in Chinese)
[4] Leul M, Zhou W J. Alleviation of waterlogging damage in winter rape by application of uniconazole: Effects on morphological characteristics, hormones and photosynthesis. Field Crops Res,1998, 59: 121-127
[5] Gutierrez B F H, Lavado R S, Porcelli C A. Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed. Field Crops Res, 1996, 47: 175-179
[6] Zhou W-J, Lin X Q. Effects of waterlogging at different growth stages on physiological characteristics and seed yield of winter rape (Brassica napus L.). Field Crops Res, 1995, 44: 103-110
[7] Fan Q-X(范其新), Zhang X-K(张学昆), Chen L(谌利), Li J-N(李加纳). Effects of anoxic condition on germination of yellow and black-seed lines in Brassica napus L. Chin J Oilcrop Sci (中国油料作物学报), 2005, 27(3): 84-87 (in Chinese with English abstract)
[8] Chen J(陈洁), Zhang X-K(张学昆), Chen L(谌利), Chao G-H(晁国红李加纳). Evaluation of waterlogging tolerance germplasm in rapeseed (Brassica napus L.) with germinated seeds with anoxic stress. Chin J Oil Crop Sci (中国油料作物学报), 2006, 28(2): 138-143 (in Chinese with English abstract)), Li J-N(
[9] Zhang X-K(张学昆), Fan Q-X(范其新), Chen J (陈洁), Li J-N(李加纳), Wang H-Z(王汉中). Physiological reaction differences of different waterlogging-tolerant genotype rapeseed (Brassica napus L.) to anoxia. Sci Agric Sin (中国农业科学), 2007, 40(3): 485-491 (in Chinese with English abstract)
[10]Zhang X-K(张学昆), Chen J(陈洁), Wang H-Z(王汉中), Li J-N(李加纳), Zou C-S(邹崇顺). Genetic difference of waterlogging tolerance in rapeseed (Brassica napus L.). Chin J Oil Crop Sci (中国油料作物学报), 2007, 29(2): 204-208 (in Chinese with English abstract)
[11]Gai J-Y(盖钧镒), Zhang Y-M(章元明), Wang J-K(王建康). Genetic System of Quantitative Traits in Plants (植物数量性状遗传体系). Beijing: Science Press, 2003. pp 8-6, 224-265, 351-370 (in Chinese)
[12]Gai J-Y(盖钧镒), Zhang Y-M(章元明), Wang J-K(王建康). A joint analysis of multiple generations for QTL models extended to mix two major genes plus polygenes. Acta Agron Sin (作物学报), 2000, 26(4): 385-391 (in Chinese with English abstract)
[13]Zhang Y-M(章元明), Gai J-Y(盖钧镒), Qi C-K(戚存扣). Identification of polygene by using the population of family lines. J Biomath (生物数学学报), 2001, 16(1): 96-102 (in Chinese with English abstract)
[14]Poysa V W. The genetic control of low temperature ice-encasement and flooding tolerance by chromosomes 5A, 5B and 5D in wheat .Cereal Res Commun, 1984, 12: 135-141
[15]Cao Y(曹旸), Cai S-B(蔡士宾), Wu Z-S(吴兆苏), Zhu W(朱伟), Fang X-W(方先文), Xiong E-H(熊恩惠). Studies on genetic features of waterlogging tolerance in wheat. Jiangsu J Agric Sci, 1995, 11(2): 11-15
[16]Boru G, van Ginkel M, Kronstad W E, Boersma L. Expression and inheritance of tolerance to waterlogging stress in wheat. Euphytica, 2001, 117: 91-98
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 王靖天, 张亚雯, 杜应雯, 任文龙, 李宏福, 孙文献, 葛超, 章元明. 数量性状主基因+多基因混合遗传分析R软件包SEA v2.0[J]. 作物学报, 2022, 48(6): 1416-1424.
[4] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[5] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[6] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[7] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[8] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[9] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[10] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[11] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[12] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[13] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[14] 陶军, 兰秀锦. 小麦-中间偃麦草2A/6St代换系014-459的分子细胞遗传学鉴定[J]. 作物学报, 2022, 48(2): 511-517.
[15] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!