欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (10): 1459-1467.doi: 10.3724/SP.J.1006.2018.01459

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

山西花生地方品种芽期耐寒性鉴定及SSR遗传多样性

白冬梅1,*(),薛云云1,赵姣姣2,黄莉2,田跃霞1,权宝全1,姜慧芳2,*()   

  1. 1山西省农业科学院经济作物研究所, 山西汾阳 032200
    2中国农业科学院油料作物研究所, 湖北武汉 430062
  • 收稿日期:2018-02-24 接受日期:2018-06-12 出版日期:2018-10-10 网络出版日期:2018-07-03
  • 通讯作者: 白冬梅,姜慧芳
  • 基金资助:
    本研究由国家现代农业产业技术体系建设专项(CARS-13);山西省农业科学院生物育种工程项目(17yzgc051);山西省农业科学院科技自主创新能力提升工程项目(2017zzlx-07)

Identification of Cold-tolerance During Germination Stage and Genetic Diversity of SSR Markers in Peanut Landraces of Shanxi Province

Dong-Mei BAI1,*(),Yun-Yun XUE1,Jiao-Jiao ZHAO2,Li HUANG2,Yue-Xia TIAN1,Bao-Quan QUAN1,Hui-Fang JIANG2,*()   

  1. 1 Industrial Crops Research Institute, Shanxi Academy of Agricultural Sciences, Fenyang 032200, Shanxi, China
    2 Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, Hubei, China
  • Received:2018-02-24 Accepted:2018-06-12 Published:2018-10-10 Published online:2018-07-03
  • Contact: Dong-Mei BAI,Hui-Fang JIANG
  • Supported by:
    This study was supported by the China Agricultural Research System(CARS-13);the Biological Breeding Project of Shanxi Academy of Agricultural Sciences(17yzgc051);the Science and Technology Independent Innovation Ability Enhancement Project of Shanxi Academy of Agricultural Sciences(2017zzlx-07)

摘要:

低温寒害是引起花生产量和品质下降的主要因素之一, 培育和种植高产稳产耐寒性强的品种是降低低温寒害的理想途径。然而高耐寒性种质的缺乏和耐寒性鉴定的困难, 是限制耐寒性育种取得突破的主要原因。本研究对72份山西花生地方品种进行芽期耐寒性鉴定, 以其相对发芽率和相对发芽指数作为耐寒性评价指标, 初步将其分为高耐寒、耐寒、中感、敏感、高感5级。为了解山西花生地方品种耐寒性遗传多样性, 合理、高效利用耐寒型花生资源, 用多态性好的90对SSR引物评价了不同耐寒性花生品种, 结果显示, 参试品种遗传多样性存在较大差异, 在遗传距离为0.4时, 被聚类为三大类群。3份高耐寒品种和7份耐寒品种分别聚类到不同的3个类群中, 说明耐寒性花生遗传多样性丰富。

关键词: 花生, 地方品种, 芽期耐寒性, 遗传多样性

Abstract:

Cold injury is one of the main factors causing yield and quality decline in peanut. Cultivating and planting varieties with high and stable yield and strong cold tolerance is an ideal way to reduce cold injury, However, the lack of high cold tolerant germplasm and the difficulty of cold tolerance identification are the main reasons to limit the breakthrough of cold tolerance breeding. In this study, 72 local peanut varieties in Shanxi province were identified for cold tolerance at germination stage. Based on their relative germination rate and relative germination index, the cold tolerance of 72 peanut cultivars we preliminarily divided the 72 peanut cultivars into five grades, namely high-cold-tolerant type, cold-tolerant type, middle type, sensitive type, and high sensitive type. Ninety pairs of SSR primers with good polymorphism were used to evaluate the peanut cultivars with different cold-tolerance levels, and to examine the genetic diversity of cold-tolerant peanut landraces in Shanxi province making rational and efficient use of cold tolerant peanut resources. The tested cultivars were highly different in genetic diversity and were clustered into three groups with genetic distance of 0.4. Three high-cold-tolerant cultivars and seven cold-tolerant cultivars were clustered into three different groups, indicating that the cold-tolerant peanut varieties are rich in genetic diversity.

Key words: peanut, landraces, cold-tolerance at germination stage, genetic diversity

表1

72份山西供试花生地方品种编号、品名、类型"

编号
Code
品种
Cultiver
植物学类型
Botanical type
编号
Code
品种
Cultiver
植物学类型
Botanical type
1 汾西小粒Fenxixiaoli 珍珠豆型vulgaris 37 洪洞花生4 Hongtonghuasheng 4 普通型hypogaea
2 襄汾油花生Xiangfenyouhuasheng 多粒型fastigiata 38 洪洞大粒Hongtongdali 普通型hypogaea
3 隰县一把抓Xixianyibazhua 普通型hypogaea 39 乡宁花生Xiangninghuasheng 普通型hypogaea
4 洪洞花生5 Hongtonghuasheng 5 多粒型fastigiata 40 临汾小粒Linfenxiaoli 普通型hypogaea
5 难山小粒 Nanshanxiaoli 珍珠豆型vulgaris 41 临汾一窝蜂Linfenyiwofeng 多粒型fastigiata
6 吉县大花生Jixiandahuasheng 普通型hypogaea 42 高平花生Gaopinghuasheng 普通型hypogaea
7 大宁大花生Daningdahuasheng 普通型hypogaea 43 黎城花生Lichenghuasheng 普通型hypogaea
8 太谷二粒Taiguerli 珍珠豆型vulgaris 44 长子花生Zhangzihuasheng 多粒型fastigiata
9 石楼小粒Shilouxiaoli 珍珠豆型vulgaris 45 运城花生 Yunchenghuasheng 普通型hypogaea
10 临县多粒Linxianduoli 珍珠豆型vulgaris 46 新绛大花生Xinjiangdahuasheng 普通型hypogaea
11 安泽落花生Anzeluohuasheng 多粒型fastigiata 47 永济爬地垄Yongjipadilong 普通型hypogaea
12 吉县大粒秧Jixiandaliyang 普通型hypogaea 48 平陆大粒Pingludali 普通型hypogaea
13 翼城花生Yichenghuasheng 珍珠豆型vulgaris 49 稷山花生Jishanhuasheng 普通型hypogaea
14 浮山一把抓Fushanyibazhua 普通型hypogaea 50 榆次花生Yucihuasheng 普通型hypogaea
15 中阳花生Zhongyanghuasheng 普通型hypogaea 51 榆次伏花生Yucifuhuasheng 普通型hypogaea
16 沁水花生Qinshuihuasheng 普通型hypogaea 52 灵石小花生Lingshixiaohuasheng 珍珠豆型vulgaris
17 黎城花生Lichenghuasheng 普通型hypogaea 53 太谷大粒Taigudali 普通型hypogaea
18 运城小角花Yunchengxiaojiaohuasheng 普通型hypogaea 54 阳曲花生Yangquhuasheng 普通型hypogaea
19 运城大蔓花生Yunchengdamanhuasheng 普通型hypogaea 55 文水大花生Wenshuidahuasheng 普通型hypogaea
20 稷山小蔓Jishanxiaoman 普通型hypogaea 56 文水多粒Wenshuiduoli 多粒型fastigiata
21 垣曲长蔓Yuanquchangman 普通型hypogaea 57 汾阳大粒Fenyangdali 普通型hypogaea
22 祁县小花生Qixianxiaohuasheng 珍珠豆型vulgaris 58 汾阳多粒Fenyangduoli 多粒型fastigiata
23 兴县大花生Xingxiandahuasheng 普通型hypogaea 59 汾阳四粒红Fenyangsilihong 多粒型fastigiata
24 文水花生Wenshuihuasheng 普通型hypogaea 60 柳林二粒Liulinerli 普通型hypogaea
25 孝义花生Xiaoyihuasheng 普通型hypogaea 61 榆社花生Yushehuasheng 珍珠豆型vulgaris
26 临县大粒Linxiandali 普通型hypogaea 62 榆社红花生Yushehonghuasheng 多粒型fastigiata
27 临县小粒Linxianxiaoli 普通型hypogaea 63 榆社大粒Yushedali 普通型hypogaea
28 交口花生Jiaokouhuasheng 普通型hypogaea 64 曲沃一窝蜂Quwoyiwofeng 多粒型fastigiata
29 汾阳小粒Fenyangxiaoli 普通型hypogaea 65 洪洞花生1 Hongtonghuasheng 1 普通型hypogaea
30 柳林花生Liulinhuasheng 普通型hypogaea 66 武乡花生Wuxianghuasheng 普通型hypogaea
31 侯马大粒 Houmadali 普通型hypogaea 67 武乡白花生Wuxiangbaihuasheng 珍珠豆型vulgaris
32 吉县大粒1 Jixiandali 1 普通型hypogaea 68 武乡黑花生Wuxiangheihuasheng 普通型hypogaea
33 吉县大粒蔓Jixiandaliman 普通型hypogaea 69 武乡多粒Wuxiangduoli 多粒型fastigiata
34 曲沃小花生Quwoxiaohuasheng 普通型hypogaea 70 武乡彩粒Wuxiangcaili 普通型hypogaea
35 曲沃一把抓Quwoyibazhua 普通型hypogaea 71 河曲大粒Hequdali 普通型hypogaea
36 大宁一把抓Daningyibazhua 普通型hypogaea 72 柳林小粒Liulinxiaoli 普通型hypogaea

图1

低温胁迫后部分花生品种萌发情况"

表2

供试品种的耐寒性鉴定"

基因型
Gene type
编号
Code
相对发芽率 Relative germination rate (%) 相对发芽指数 Relative germination index (%)
2016 2017 Mean 2016 2017 Mean
高耐寒 10 92.27 94.44 93.36 93.01 91.29 92.15
High cold-tolerant 46 96.64 96.36 96.50 94.20 94.71 94.46
50 94.64 93.10 93.87 90.15 94.03 92.09
耐寒 1 94.44 92.72 93.58 86.14 85.09 85.62
Cold-tolerant 2 90.60 92.30 91.45 81.47 81.70 81.59
24 94.64 92.47 93.56 85.93 86.23 86.08
44 98.56 92.72 95.64 81.42 86.81 84.12
47 94.34 92.98 93.66 87.55 88.87 88.21
63 93.57 92.72 93.15 87.07 89.59 88.33
64 98.18 94.23 96.21 84.00 82.08 83.04
中间 9 64.78 76.47 70.63 51.18 53.20 52.19
Middle 15 55.12 60.34 57.73 51.69 51.45 51.57
23 71.69 68.52 70.11 55.64 54.34 54.99
25 51.77 54.54 53.16 53.91 55.52 54.72
32 86.50 78.42 82.46 62.95 61.72 62.34
33 86.60 78.97 82.79 68.64 62.15 65.40
34 77.35 76.36 76.86 55.80 55.15 55.48
36 62.71 74.54 68.63 52.54 52.14 52.34
37 70.33 66.67 68.50 50.73 52.31 51.52
38 77.35 70.59 73.97 52.35 54.28 53.32
39 63.00 55.36 59.18 50.13 50.20 50.17
40 88.47 79.25 83.86 51.72 57.93 54.83
41 59.22 64.81 62.02 50.27 53.71 51.99
49 82.95 80.36 81.66 58.19 58.06 58.13
57 54.70 50.00 52.35 51.67 52.61 52.14
60 55.12 52.63 53.88 50.33 50.68 50.51
69 73.01 72.22 72.62 51.90 60.75 56.33
基因型
Gene type
编号
Code
相对发芽率 Relative germination rate (%) 相对发芽指数 Relative germination index (%)
2016 2017 Mean 2016 2017 Mean
敏感 3 28.55 31.47 30.01 33.36 31.33 32.35
Sensitive 4 31.41 32.73 32.07 40.62 34.00 37.31
5 48.11 37.50 42.81 42.97 40.00 41.49
6 43.18 43.63 43.41 31.59 29.32 30.46
7 16.67 21.81 19.24 36.85 27.72 32.29
8 29.27 29.82 29.55 31.91 32.17 32.04
11 41.18 33.33 37.26 20.61 23.27 21.94
12 40.37 38.89 39.63 36.89 34.07 35.48
13 30.68 29.63 30.16 23.95 24.78 24.37
14 33.93 41.81 37.87 49.76 47.43 48.60
16 36.01 33.93 34.97 38.36 35.65 37.01
17 28.84 27.78 28.31 35.59 34.87 35.23
18 30.80 32.73 31.77 23.17 27.10 25.14
19 29.41 32.68 31.05 35.57 33.08 34.33
20 22.88 28.84 25.86 37.53 38.47 38.00
21 22.22 21.82 22.02 29.78 28.45 29.12
22 26.39 25.92 26.16 25.62 27.28 26.45
26 37.71 35.71 36.71 23.47 23.72 23.60
27 36.19 36.84 36.52 31.32 29.26 30.29
28 35.69 29.82 32.76 20.67 21.30 20.99
29 35.90 34.55 35.23 21.16 21.12 21.14
30 49.95 46.55 48.25 27.91 30.77 29.34
35 41.18 31.48 36.33 34.88 31.58 33.23
42 39.34 33.93 36.64 31.05 32.78 31.92
43 47.51 48.28 47.90 40.62 39.76 40.19
45 21.05 38.18 29.62 21.64 25.45 23.55
48 39.64 33.33 36.49 29.29 30.76 30.03
51 29.67 30.35 30.01 28.36 25.78 27.07
52 26.32 21.43 23.88 25.14 24.19 24.67
53 16.67 30.90 23.79 36.80 34.28 35.54
54 28.79 29.82 29.31 19.77 19.86 19.82
55 24.97 36.36 30.67 20.66 22.69 21.68
58 48.23 49.13 48.68 32.72 38.17 35.45
59 24.53 29.82 27.18 40.78 34.90 37.84
61 35.69 34.55 35.12 35.37 34.58 34.98
62 15.79 15.25 15.52 36.80 21.39 29.10
65 33.37 35.71 34.54 29.35 30.18 29.77
66 32.64 30.90 31.77 29.48 23.86 26.67
67 43.18 47.26 45.22 34.22 28.71 31.47
68 33.33 33.93 33.63 27.82 31.45 29.64
70 36.19 33.90 35.05 25.21 26.44 25.83
71 48.23 50.00 49.12 37.68 37.61 37.65
72 16.08 21.82 18.95 30.50 30.58 30.54
高感 31 8.20 11.76 9.98 18.20 16.90 17.55
High-sensitive 56 6.82 6.90 6.86 16.09 9.64 12.87

图2

引物A06B209在72份花生品种中的扩增"

表3

90个SSR标记的遗传参数"

项目
Item
等位基因数Allele number (Na) 主基因频率
Major allele frequency
(MAF)
基因多样性指数
Gene diversity
(GD)
多态信息含量指数
Polymorphism information content (PIC)
Shannon’s信息指数
Shannon’s information index (I)
最大值 Max 8 0.8986 0.7711 0.7378 1.6734
最小值 Min 2 0.2917 0.1823 0.1657 0.3283
合计 Total 317
平均值 Mean 3.5222 0.6834 0.4537 0.4047 0.8092

图3

基于SSR标记的72份山西花生地方品种的聚类分析图"

[1] 禹山林 . 中国花生品种及其系谱. 上海: 上海科学技术出版社, 2008. pp 1-5
Yu S L. Peanut Varieties and Pedigree in China. Shanghai: Shanghai Scientific and Technical Publishers, 2008. pp 1-5(in Chinese)
[2] 万书波 . 中国花生栽培学. 上海: 上海科学技术出版社, 20013. pp 20-21
Wan S B. Peanut Cultivation in China. Shanghai: Shanghai Scientific and Technical Publishers, 2013. pp 20-21(in Chinese)
[3] 沈浩, 刘登义 . 遗传多样性概述. 生物学杂志, 2001,18(2):4-7
Shen H, Liu D Y . Summary of genetic diversity. Chin J Biol, 2001,18(2):4-7 (in Chinese with English abstract)
[4] 白冬梅, 王国桐, 薛云云, 田跃霞, 权宝全 . 山西省地方花生品种农艺性状的遗传多样性分析. 山西农业科学, 2014,42:542-547
Bai D M, Wang G T, Xue Y Y, Tian Y X, Quan B Q . Analysis of genetic diversity of Shanxi peanut landrace based on agronomic traits. Shanxi Agric Sci, 2014,42:542-547 (in Chinese with English abstract)
[5] 白冬梅, 王国桐, 薛云云, 田跃霞, 权宝全 . 山西省地方花生种质资源品质性状的综合评价. 中国农学通报, 2014,30(24):187-193
Bai D M, Wang G T, Xue Y Y, Tian Y X, Quan B Q . Comprehensive evaluation of peanut germplasm resources in Shanxi province based on quality traits. Chin Agric Sci Bull, 2014,30(24):187-193 (in Chinese with English abstract)
[6] Cuc L M, Mace E S, Crouch J H, Quang V D, Long T D, Varshney R K . Isolation and characterization of novel microsatellite markers and their application for diversity assessment in cultivated ground-nut (Arachis hypogaea L.). BMC Plant Biol, 2008,8:55
[7] 陈本银, 姜慧芳, 廖伯寿, 任小平, 黄家权, 雷永, 王圣玉 . 野生花生种质的 SSR 遗传多样性. 热带亚热带植物学报, 2008,16:296-303
doi: 10.3969/j.issn.1005-3395.2008.04.002
Chen B Y, Jiang H F, Liao B S, Ren X P, Huang J Q, Lei Y, Wang S Y . Genetic diversity analysis of Arachis gerplasm by SSR. J Trop Subtrop Bot, 2008,16:296-303 (in Chinese with English abstract)
doi: 10.3969/j.issn.1005-3395.2008.04.002
[8] Lin K . Muse S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005,21:2128-2129
doi: 10.1093/bioinformatics/bti282 pmid: 15705655
[9] Ferguson M E, Burow M D, Schulze S R, Bramel P J, Paterson A H, Kresovich S, Mitchell S . Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet, 2004,108:1064-1070
doi: 10.1007/s00122-003-1535-2 pmid: 15067392
[10] He G H, Meng R H, Newman M, Gao G Q, Pittman R N, Prakash C S . Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol, 2003,3:3
[11] 任小平, 张晓杰, 廖伯寿, 雷永, 黄家权, 陈玉宁, 姜慧芳 . ICRISAT 花生微核心种质资源SSR 标记遗传多样性分析. 中国农业科学, 2010,43:2848-2858
Ren X P, Zhang X J, Liao B S, Lei Y, Huang J Q, Chen Y N, Jiang H F . Analysis of genetic diversity in ICRISAT mini core collection of peanut( Arachis hypogaea L.) by SSR markers.Sci Agric Sin, 2010, 43:2848-2858 (in Chinese with English abstract)
[12] 封海胜 . 花生种子吸胀期间耐低温性鉴定. 中国油料, 1991, ( 1):67-70
Feng H S . Identification on low temperature resistance of peanut seed during imbibition stage. Chin Oil Crop Sci, 1991, ( 1):67-70 (in Chinese)
[13] 刘海龙, 陈小姝, 杨富军, 白冬梅, 孙晓苹, 吕永超, 任小平, 姜慧芳, 高华援 . 花生种质资源耐低温表型鉴定方法研究. 花生学报, 2017,46:20-25
doi: 10.14001/j.issn.1002-4093.2017.03.004
Liu H L, Chen X S, Yang F J, Bai D M, Sun X P, Lyu Y C, Ren X P, Jiang H F, Gao H Y . Research of identification method on low temperature resistance of peanut germpasm resources phenotype. J Peanut Sci, 2017,46:20-25 (in Chinese with English abstract)
doi: 10.14001/j.issn.1002-4093.2017.03.004
[14] 吕建伟, 马天进, 李正强, 陈锋, 姜慧芳 . 花生种质资源出苗期耐低温性鉴定方法及应用. 花生学报, 2014,43(3):13-18
Lyu J W, Ma T J, Li Z Q, Chen F, Jiang H F . Identification method of low temperature tolerance on peanut germplasm resource. J Peanut Sci, 2014,43(3):13-18 (in Chinese with English abstract)
[15] 唐月异, 王传堂, 高华媛, 凤桐, 张树伟, 王秀贞, 张建成, 禹山林 . 花生种子吸胀期间耐低温性及其与品质性状的相关研究. 核农学报, 2011,25:436-442
Tang Y Y, Wang C T, Gao H Y, Feng T, Zhang S W, Wang X Z, Zhang J C, Yu S L . Low temperature tolerance during seed imbibition and its relationship to main quality in peant. Acta Agric Nucl Sin, 2011, 25:436-442 (in Chinese with English abstract)
[16] 常硕其, 邓启云, 罗祎, 陈小龙 . 超级杂交稻及其亲本的耐冷性研究. 杂交水稻, 2015,30(1):51-57
Chang S Q, Deng Q Y, Luo W, Chen X L . Research on low temperature tolerance in super hybrid rice and parent. Hybrid Rice, 2015,30(1):51-57 (in Chinese with English abstract)
[17] 康旭梅, 李小湘, 潘孝武, 刘文强 . 普通野生稻耐冷性研究进展. 杂交水稻, 2017,32(2):1-5
doi: 10.16267/j.cnki.1005-3956.201702001
Kang X M, Li X X, Pan X W, Liu W Q . Research progress on low temperature tolerance in Oryza rufipogon Griff. Hybrid Rice, 2017, 32(2):1-5 (in Chinese with English abstract)
doi: 10.16267/j.cnki.1005-3956.201702001
[18] Subramanian V, Gurtu S, Rao R C N, Nigam S N . Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome, 2000,43:656-660
doi: 10.1139/g00-034
[19] Tang R H, Gao G Q, He L Q, Han Z Q, Shan S H, Zhong R C, Zhou C Q, Jiang J, Li Y R, Zhuang W J . Genetic diversity in cultivated groundnut based on SSR markers. J Genet Genomics, 2007,34:449-459
doi: 10.1016/S1673-8527(07)60049-6 pmid: 17560531
[20] 林茂, 李正强, 郑治洪, 吕建伟, 马天进, 李超, 阚健全 . 贵州省花生地方品种的遗传多样性. 作物学报, 2012,38:1387-1396
Lin M, Li Z Q, Zheng Z H, Lyu J W, Ma T J, Li C, Kan J Q . Genetic diversity of peanut landraces in Guizhou province. Acta Agron Sin, 2012,38:1387-1396 (in Chinese with English abstract)
[21] 姜慧芳, 任小平, 廖伯寿, 黄家权, 雷永, 陈本银, Guo B Z, Holbrook C C, Upadhyaya H D . 中国花生核心种质的建立及与ICRISAT 花生微核心种质的比较. 作物学报, 2008,34:25-30
doi: 10.3724/SP.J.1006.2008.00025
Jiang H F, Ren X P, Liao B S, Huang J Q, Lei Y, Chen B Y, Guo B Z, Holbrook C C, Upadhyaya H D . Peanut core collection established in China and compared with ICRISAT mini core collection. Acta Agron Sin, 2008,34:25-30 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2008.00025
[22] Han Z Q, Gao G Q, Wei P X, Tang R H, Zhong R C . Analysis of DNA polymorphism and genetic relationships in cultivated peanut (Arachis hypogaea L.) using micro-satellite markers. Acta Agron Sin, 2004,30:1097-1101
[23] 洪彦彬, 梁炫强, 陈小平, 林坤耀, 周桂元, 李少雄, 刘海燕 . 花生栽培种(Arachis hypogaea L.)类型间遗传差异的SSR分析. 分子植物育种, 2008,6:71-78
Hong Y B, Liang X Q, Chen X P, Lin K Y, Zhou G Y, Li S X, Liu H Y . Genetic differences in peanut cultivated types (Arachis hypogaea L.) revealed by SSR polymorphism. Mol Plant Breed, 2008,6:71-78 (in Chinese with English abstract)
[24] Jiang H F, Liao B S, Ren X P, Lei Y, Mace E, Fu T D, Crouch J H . Comparative assessment of genetic diversity of peanut (Arachis hypogaea L.) genotypes with various levels of resistance to bacteria wilt through SSR and AFLP analyses. J Genet Genomics, 2007,34:544-554
[25] 黄莉, 任小平, 张晓杰, 陈玉宁, 姜慧芳 . ICRISAT 花生微核心种质农艺性状和黄曲霉抗性关联分析. 作物学报, 2012,38:935-946
Huang L, Ren X P, Zhang X J, Chen Y N, Jiang H F . Association analysis of agronomic traits and resistance to aspergillus flavus in the ICRISAT peanut mini-core collection. Acta Agron Sin, 2012,38:935-946 (in Chinese with English abstract)
[26] Krishna G K, Zhang J, Burow M, Pittman R N, Delikostadinov S G, Lu Y Z, Puppala N . Genetic diversity analysis in peanut (Arachis hypogaea L.) using microsatellite markers. Cell Mol Biol Lett, 2004,9:685-697
[27] He G H, Channapatna P . Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers. Genet Resour Crop Evol, 2001,48:347-352
[28] He G H, Meng R H, Gao H, Guo B Z, Gao G Q, Melanie N, Roy N P, Prakash C S . Simple sequence repeat markers for botanical varieties of cultivated peanut (Arachis hypogaea L.). Euphytica, 2005,142:131-136
[29] 宗绪晓, 关建平, 王述民, 刘庆昌 . 中国豌豆地方品种SSR标记遗传多样性分析. 作物学报, 2008,34:1330-1338
Zong X X, Guan J P, Wang S M, Liu Q C . Genetic diversity among Chinese pea (Pisum sativum L.) landraces revealed by SSR markers. Acta Agron Sin, 2008,34:1330-1338 (in Chinese with English abstract)
[30] 宗绪晓, Ford R, Robert R R, 关建平, 王述民 . 豌豆属(Pisum) SSR标记遗传多样性结构鉴别与分析. 中国农业科学, 2009,42:36-46
doi: 10.3864/j.issn.0578-1752.2009.01.005
Zong X X, Ford R, Robert R R, Guan J P, Wang S M . Identification and analysis of genetic diversity structure within Pisum genus based on microsatellite markers. Sci Agric Sin, 2009,42:36-46 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2009.01.005
[31] 刘金, 关建平, 徐东旭, 张晓艳, 顾竟, 宗绪晓 . 小扁豆种质资SSR标记遗传多样性及群体结构分析. 作物学报. 2008,34:1901-1909
Liu J, Guan J P, Xu D X, Zhang X Y, Gu J, Zong X X . Analysis of genetic diversity and population structure in Lentil (Lens culinaris Medik.) germplasm by SSR markers. Acta Agron Sin, 2008,34:1901-1909 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[5] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[6] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[7] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[8] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[9] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[10] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[11] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[12] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[13] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[14] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[15] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!