欢迎访问作物学报,今天是

作物学报 ›› 2018, Vol. 44 ›› Issue (6): 931-937.doi: 10.3724/SP.J.1006.2018.00931

• 研究简报 • 上一篇    下一篇

小麦骨干亲本临汾5064单元型区段的遗传解析

乔玲1,刘成2,郑兴卫1,赵佳佳1,尚保华1,马小飞1,乔麟轶1,盖红梅3,姬虎太1,刘建军2,张建诚1,*(),郑军1,*()   

  1. 1 山西省农业科学院小麦研究所, 山西临汾 041000
    2 山东省农业科学院作物研究所 / 农业部黄淮北部小麦生物学与遗传育种重点实验室, 山东济南 250100
    3 青岛市农业科学研究院, 山东青岛 266100
  • 收稿日期:2017-11-13 接受日期:2018-03-25 出版日期:2018-06-12 网络出版日期:2018-04-18
  • 通讯作者: 张建诚,郑军
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0100600);山西省主要农作物种质创新与分子育种重点科技创新平台(201605D151002);山西省农业科学院育种工程项目(17yzgc010);山西省重点研发计划项目资助(201703D211007)

Genetic Analysis of Haplotype-blocks from Wheat Founder Parent Linfen 5064

Ling QIAO1,Cheng LIU2,Xing-Wei ZHENG1,Jia-Jia ZHAO1,Bao-Hua SHANG1,Xiao-Fei MA1,Lin-Yi QIAO1,Hong-Mei GE3,Hu-Tai JI1,Jian-Jun LIU2,Jian-Cheng ZHANG1,*(),Jun ZHENG1,*()   

  1. 1 Wheat Research Institute, Shanxi Academy of Agricultural Sciences, Linfen 041000, Shanxi, China
    2 Crop Research Institute, Shandong Academy of Agricultural Sciences / Key Laboratory of Wheat Biology and Genetic Improvement in the Northern Yellow-Huai Rivers Valley of Ministry of Agriculture, Jinan 250100, Shandong, China
    3 Qingdao Academy of Agricultural Sciences, Qingdao 266100, Shandong, China
  • Received:2017-11-13 Accepted:2018-03-25 Published:2018-06-12 Published online:2018-04-18
  • Contact: Jian-Cheng ZHANG,Jun ZHENG
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0100600);the Key Scientific and Technological Innovation Platform for Main Crop Germplasm Innovation and Molecular Breeding(201605D151002);the Breeding Program of Shanxi Academy of Agricultural Sciences(17yzgc010);the Nation Key Research and Development Program of Shanxi Province(201703D211007)

摘要:

利用分子标记解析骨干亲本临汾5064单元型区段在其衍生后代中的遗传规律, 可以为小麦分子育种提供依据。在临汾5064及其21个衍生品种(系)中, 395个SSR标记共检测出895个等位变异, 不同位点的等位变异为1~8个, 平均2.27个, 平均多态性指数为0.25。临汾5064及衍生后代中146个位点具有相同等位变异, 遗传贡献超过80%的位点有30个。实验结果表明, 临汾5064对衍生子一代和子二代的遗传贡献率分别为65.30%和64.24%, 且未随着世代的增加而明显下降。所有衍生后代与亲本完全相同的单元型区段有16个, 贡献率大于80%的染色体区段分布在所有染色体上。关联分析发现这些单元型区段存在重要农艺性状的QTL簇, 几乎都与重要农艺性状显著相关, 表明这些区段在育种过程中受到强烈选择。

关键词: 小麦, 骨干亲本, 临汾5064, 遗传贡献, 单元型区段

Abstract:

The objective of this study was to provide essential basis for further utilization of Linfen 5064, an elite founder parent, through dissecting haplotype-blocks of Linfen 5064 transmitted to its progenies. A total of 895 alleles were detected on 395 SSR loci in Linfen 5064 and the 21 derived varieties (lines), with 1-8 alleles per locus and an average of 2.27. The average polymorphism information content (PIC) was 0.25. On 146 loci, the alleles were identical between all derived varieties (lines) and the parent, and genetic contributions of the parent were higher than 80% on 30 loci. Generally, the genetic contributions of Linfen 5064 to the first- and second-derived generations were 65.30% and 64.24%, and the contribution ratio did not decrease significantly along with the increase of generations. Sixteen haplotype-blocks were inherited completely from the parent to all derived varieties (lines) and the haplotype-blocks with contribution ratios higher than 80% were distributed on all the 21 chromosomes. In combination with the results of association analysis, almost every haplotype-block was associated with QTLs controlling important agronomic traits, indicating these chromosomal segments were strongly selected in breeding programs.

Key words: wheat, founder parent, Linfen 5064, genetic contribution, haplotype-block

附图1

临汾5064及其衍生品种系谱图"

附表1

临汾5064及其衍生品种(系)信息"

品种 世代 系谱 审定年份 审定类别
临汾5064 亲本 临汾5694/沙瑞克//临汾5054 1988 -
济麦19 子一代 鲁麦13/临汾 2001 山东省
济南17 子一代 临汾5064/鲁麦13 1999 山东省
临优145 子一代 临汾5064/陕优225 2003 山西省
临汾8050 子一代 临汾5064/陕7622 2007 山西省
临优2018 子一代 农科2号/临汾5064 2005 山西省
临汾138 子一代 临汾5064/烟农15 2003 山西省
农大152 子一代 陕优225/临汾5064 - 北京市
临汾139 子一代 太原136/临汾5064 2006 陕西省
晋麦83 子二代 临汾5064//烟农15/临辐8001 2007 山西省
中麦155 子二代 济麦19/鲁麦21 2012 河北省
婴泊700 子二代 太谷核不育/济麦19 2012 河北省
临优2069 子二代 临优145/5445 2005 山西省
晋麦94 子二代 临优2018航天育种 2014 山西省
鲁原502 子二代 9940168/济麦19 2011 国家黄淮冬麦区
晋麦82 子二代 临汾138/陕88316 2007 山西省
荷麦19 子二代 烟农19/临汾139 - -
新麦26 子二代 新麦18/济南17 2010 国家黄淮冬麦区
中洛08-2 子二代 偃展1号/济南17 2011 河南省
山农14 子二代 G91605/济南17 2006 山东省
山农15 子二代 济南17/济核916 2006 山东省
郑麦0943 子二代 郑97199/济麦19 2014 河南省

表1

临汾5064及衍生后代品种的HMW-GS组成"

类别
Type
品种
Variety
亚基组成
HMW-GS
亲本 Parent 临汾5064 Linfen 5064 1, 7+8, 2+12
衍生后代
Derived varieties
or lines
济麦19 Jimai 19 1, 7+8, 2+12
济南17 Jinan 17 1, 7+8, 5+12
临优145 Linyou 145 1, 7+8, 2+12
临汾8050 Linfen 8050 1, 7+8, 2+12
临优2018 Linyou 2018 1, 7+8, 5+10
临汾138 Linfen 138 1, 7+9, 2+12
农大152 Nongda 152 1, 7+8, 2+12
临汾139 Linfen 139 null, 7+8, 2+12
晋麦83 Jinmai 83 1, 14+15, 2+12
中麦155 Zhongmai 155 null, 7+8, 5+12
婴泊700 Yingbo 700 1, 7+9, 5+10
临优2069 Linyou 2069 1, 7+8, 5+12
晋麦94 Jinmai 94 1, 7+8, 5+10
鲁原502 Luyuan 502 1, 7+8, 5+12
晋麦82 Jinmai 82 1, 7+9, 2+12
荷麦19 Hemai 19 null, 17+18, 5+10
新麦26 Xinmai 26 1, 7+9, 5+10
中洛08-2 Zhongluo 08-2 1, 14+15, 5+12
山农14 Shannong 14 1, 7+8, 5+12
山农15 Shannong 15 1, 7+8, 5+12
郑麦0943 Zhengmai 0943 1, 7+9, 5+12

图1

临汾5064及衍生品种聚类分析(NJ法)"

表2

临汾5064对衍生品种(系)的遗传贡献分析"

基因组
Genome
标记/衍生世代
Marker/derived generation
染色体 Chromosome 平均
Average
1 2 3 4 5 6 7
A 标记数量 No. of markers 16 25 21 18 21 14 17 132
子一代 First generation 68.75 41.50 63.10 61.81 70.83 65.18 76.92 64.10
子二代 Second generation 71.63 42.76 65.00 58.12 67.03 69.23 73.76 63.93
B 标记数量 No. of markers 16 19 17 12 23 9 11 107
子一代 First generation 49.22 69.74 63.24 68.75 67.93 75.00 73.86 66.82
子二代 Second generation 47.11 68.82 62.44 67.95 65.55 79.49 69.93 65.89
D 标记数量 No. of markers 22 21 16 16 38 18 25 156
子一代 First generation 57.95 60.11 73.44 67.97 65.46 68.06 62.50 65.07
子二代 Second generation 58.04 60.80 75.48 61.06 65.09 61.96 56.92 62.89

附图2

临汾5064衍生后代染色体单元型分析 红色区为后代品种(系)与亲本相同的单元型区段,绿色区域为子一代与亲本相同的单元型区段,黑色横线为临汾5064所特有等位变异;染色体右边的竖线代表贡献率超过80%的单元型区段"

[1] 何中虎, 夏先春, 陈新民, 庄巧生 . 中国小麦育种进展与展望. 作物学报, 2011,37:202-215
He Z H, Xia X C, Chen X M, Zhuang Q S . Progress of wheat breeding in China and the future perspective. Acta Agron Sin, 2011,37:202-215 (in Chinese with English abstract)
[2] 魏益民, 张波, 关二旗, 张国权, 张影全, 宋哲民 . 中国冬小麦品质改良研究进展. 中国农业科学, 2013,46:4189-4196
doi: 10.3864/j.issn.0578-1752.2013.20.002
Wei Y M, Zhang B, Guan E Q, Zhang G Q, Zhang Y Q, Song Z M . Advances in study of quality property improvement of winter wheat in China. Sci Agric Sin, 2013,46:4189-4196 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2013.20.002
[3] 李振声 . 我国小麦育种的回顾和展望. 中国农业科技导报, 2010, ( 12):1-4
doi: 10.3969/j.issn.1008-0864.2010.02.01
Li Z S . Retrospect and prospect of wheat breeding in China. Rev China Agric Sci Technol, 2010, ( 12):1-4 (in Chinese with English abstract)
doi: 10.3969/j.issn.1008-0864.2010.02.01
[4] 陆懋曾 . 山东小麦遗传改良. 北京: 中国农业出版社, 2007. pp 297-300.
Lu M Z . Shandong Wheat Improvement. Beijing: China Agriculture Press, 2007. pp 297-300. (in Chinese)
[5] 杨丽娟, 蒋志凯, 盛坤, 李晓航, 赵宗武 . 氮肥追施时期对强筋小麦产量和面粉品质的影响. 中国农学通报, 2015,31(6):26-30
Yang L J, Jiang Z K, Sheng K, Li X H, Zhao Z W . Effect of nitrogen dressing application in different period on the yield and grain quality of strong gluten wheat. Chin Agric Sci Bull, 2015,31(6):26-30 (in Chinese with English abstract)
[6] 庄巧生 . 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003. pp 534-535
Zhuang Q S. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003. pp 534-535(in Chinese)
[7] 盖红梅, 王兰芬, 游光霞, 郝晨阳, 董玉琛, 张学勇 . 基于SSR标记的小麦骨干亲本育种重要性研究. 中国农业科学, 2009,42:1503-1511
Ge H M, Wang L F, You G X, Hao C Y, Dong Y C, Zhang X Y . Fundamental roles of cornerstone breeding lines in wheat reflected by SSR random scanning. Sci Agric Sin, 2009,42:1503-1511 (in Chinese with English abstract)
[8] 盖红梅, 李玉刚, 王瑞英, 李振清, 王圣健, 高峻岭, 张学勇 . 鲁麦14对山东新选育小麦品种的遗传贡献. 作物学报, 2012,38:954-961
Ge H M, Li Y G, Wang R Y, Li Z Q, Wang S J, Gao J L, Zhang X Y . Genetic contribution of Lumai 14 to novel wheat varieties developed in Shangdong province. Acta Agron Sin, 2012,38:954-961 (in Chinese with English abstract)
[9] 徐鑫, 李小军, 李秀全, 杨欣明, 刘伟华, 高爱农, 李立会 . 小麦骨干亲本碧蚂4号系谱品种HMW-GS组成分析. 植物遗传资源学报, 2010,11:439-444
Xu X, Li X J, Li X Q, Yang X M, Liu W H, Gao A N, Li L H . Analysis of high-molecular-weight glutenin subunit composition in pedigree cultivars of founder parent Bima 4. J Plant Genet Resour, 2010,11:439-444 (in Chinese with English abstract)
[10] 李小军, 徐鑫, 刘伟华, 李秀全, 李立会 . 利用SSR标记探讨骨干亲本欧柔在衍生品种的遗传. 中国农业科学, 2009,42:3397-3404
Li X J, Xu X, Liu W H, Li X Q, Li L H . Genetic diversity of the founder parent Orofen and its progenies revealed by SSR markers. Sci Agric Sin, 2009,42:3397-3404 (in Chinese with English abstract)
[11] 李红琴, 相吉山, 郭青云, 杨欣明, 李秀全, 刘伟华, 李立会 . 小麦骨干亲本阿夫及其衍生品种(系)的高分子量麦谷蛋白亚基演变分析. 植物遗传资源学报, 2009,10:37-41
Li H Q, Xiang J S, Guo Q Y, Yang X M, Li X Q, Liu W H, Li L H . Analysis of HMW-GS evolution in Funo and its derived varieties. J Plant Genet Resour, 2009,10:37-41 (in Chinese with English abstract)
[12] 韩俊, 张连松, 李静婷, 石丽娟, 解超杰, 尤明山, 杨作民, 刘广田, 孙其信, 刘志勇 . 小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析. 作物学报, 2009,35:1395-1404
Han J, Zhang L S, Li J T, Shi L J, Xie C J, You M S, Yang Z M, Liu G T, Sun Q X, Liu Z Y . Molecular dissection of core parental cross “Triumph/Yanda 1817” and its derivatives in wheat breeding program. Acta Agron Sin, 2009,35:1395-1404 (in Chinese with English abstract)
[13] 陈国跃, 刘伟, 何员江, 苟璐璐, 余马, 陈时盛, 魏育明, 郑有良 . 小麦骨干亲本繁6条锈病成株抗性特异位点及其在衍生品种中的遗传解析. 作物学报, 2013,39:827-836
Chen G Y, Liu W, He Y J, Gou L L, Yu M, Chen S S, Wei Y M, Zheng Y L . Specific loci for adult-plant resistance to stripe rust in wheat founder parent Fan 6 and their genetic dissection in its derivatives. Acta Agron Sin, 2013,39:827-836 (in Chinese with English abstract)
[14] 肖永贵, 殷贵鸿, 李慧慧, 夏先春, 阎俊, 郑天存, 吉万全, 何中虎 . 小麦骨干亲本“周8425B”及其衍生品种的遗传解析和抗条锈病基因定位. 中国农业科学, 2011,44:3919-3929
Xiao Y G, Yin G H, Li H H, Xia X C, Yan J, Zheng T C, Ji W Q, He Z H . Genetic diversity and genome-wide association analysis of stripe rust resistance among the core wheat parent Zhou 8425B and its derivatives. Sci Agric Sin, 2011,44:3919-3929 (in Chinese with English abstract)
[15] 赵春华, 樊小莉, 王维莲, 张玮, 韩洁, 纪军, 崔法, 李俊明 . 小麦候选骨干亲本科农9204遗传构成及其传递率. 作物学报, 2015,41:574-584
doi: 10.3724/SP.J.1006.2015.00574
Zhao C H, Fan X L, Wang W L, Zhang W, Han J, Ji J, Cui F, Li J M . Genetic composition and its transmissibility analysis of wheat candidate backbone parent Kenong 9204. Acta Agron Sin, 2015,41:574-584 (in Chinese with English abstract)
doi: 10.3724/SP.J.1006.2015.00574
[16] 何中虎, 晏月明, 庄巧生, 张艳, 夏先春, 胡英考, 蔡民华, 陈新民, 阎俊, 周阳 . 中国小麦品种品质评价体系建立与分子改良技术研究. 中国农业科学, 2006,39:1091-1101
He Z H, Yan Y M, Zhuang Q S, Zhang Y, Xia X C, Hu Y K, Cai M H, Chen X M, Yan J, Zhou Y . Establishment of quality evaluation system and utilization of molecular methods for the improvement of Chinese wheat quality. Sci Agric Sin, 2006,39:1091-1101 (in Chinese with English abstract)
[17] Laemmli U K . Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970,227:680-685
doi: 10.1038/227680a0
[18] Payne P I, Lawrence G J . Catalogue of alleles for the complex gene loci, Glu-A1, Clu-B1 and Glu-D1 which code for high molecular weight subunits of gluten in hexaploid wheat. Cereal Res Commun, 1983,11:29-35
[19] Devos K M, Gale M D . The use of random amplified polymorphic DNA marker in wheat. Theor Appl Genet, 1992,84:567-572
[20] 郝晨阳, 董玉琛, 王兰芬, 游光霞, 张洪娜, 盖红梅, 贾继增, 张学勇 . 我国普通小麦核心种质的构建及遗传多样性分析. 科学通报, 2008,53:908-915
Hao C Y, Dong Y C, Wang L F, You G X, Zhang H N, Ge H M, Jia J Z, Zhang X Y . Genetic diversity and construction of core collection in Chinese wheat genetic resources. Chin Sci Bull, 2008,53:908-915
[21] 盖红梅 . 我国小麦主要品种的选择牵连效应分析. 中国农业科学院博士学位论文, 北京, 2008
Ge H M . Selection Sweeps in Chinese Major Cultivars of Triticum aestivum L. PhD Dissertation of Chinese Academy of Agricultural Sciences. Beijing, China, 2008 ( in Chinese with English abstract)
[22] Ge H M, You G X, Wang L F, Hao C Y, Dong Y C, Li Z S, Zhang X Y . Genome selection sweep and association analysis shed light on future breeding by design in wheat. Crop Sci, 2012,52:1218-1228.
doi: 10.2135/cropsci2010.12.0680
[23] Wang L F, Ge H M, Hao C Y, Dong Y C, Zhang X Y . Identifying loci influencing 1000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PLoS One, 2012,7:e29432
doi: 10.1371/journal.pone.0029432 pmid: 3273457
[24] 全国农业技术推广服务中心. 2016年全国农作物主要品种推广情况表. 北京: 全国农业技术推广服务中心, 2017
National Agricultural Technology Extension and Service Center . Planting Area of Major Varieties of Crops in China in 2016. Beijing: National Agricultural Technology Extension and Service Center, 2017 ( in Chinese)
[25] 陈建省 . 小麦高密度遗传图谱构建和品质性状的QTL分析及分子标记开发. 山东农业大学博士学位论文. 山东泰安, 2015
Chen J S . Construction of High Density Genetic Map of Wheat (Triticum aestivum L.) and QTL Analysis for Quality and Molecular Marker Exploration . PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2015 ( in Chinese with English abstract)
[26] 刘颖, 阳文龙, 郭小丽, 瞿晓, 刘冬成, 孙家柱, 夏石头, 张爱民 . Rht12矮秆小麦GA3ox基因的克隆与表达分析. 分子植物育种, 2015,13:241-253
Liu Y, Yang W L, Guo X L, Qu X, Liu D C, Sun J Z, Xia S T, Zhang A M . Cloning and expression analysis of GA3ox genes from Rht12 dwarfing wheat. Mol Plant Breed, 2015,13:241-253 (in Chinese with English abstract)
[27] 赵振东, 刘建军, 董进英 . 冬小麦早熟性遗传分析. 莱阳农学院学报, 1989,6(3):8-16
Zhao Z D, Liu J J, Dong J Y . Genetic analysis of early maturity of winter wheat. J Laiyang Agric Coll, 1989,6(3):8-16 (in Chinese with English abstract)
[28] 朱金宝, 刘广田, 张树榛 . 基因型和环境对小麦烘烤品质的影响. 作物学报, 1995,21:679-684
Zhu J B, Liu G T, Zhang S Z . Genotype and environment effects on baking quality of wheat. Acta Agron Sin, 1995,21:679-684 (in Chinese with English abstract)
[29] Zhang W, Chao S, Manthey F, Chicaiza O, Brevis J C, Echenique V, Dubcovsky J . QTL analysis of pasta quality using a composite microsatellite and SNP map of durum wheat. Theor Appl Cenet, 2008,117:1361-1377
doi: 10.1007/s00122-008-0869-1
[30] Kumar N, Kulwal P L, Balyan H S, Gupta P K . QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed, 2007,19:163-177
doi: 10.1007/s11032-006-9056-8
[31] Joppa L R, Du C, Hart G E, Hareland G A . Mapping gene(s) for grain protein in tetraploid wheat ( Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci, 1997,37:1586-1589
[32] Prasad M, Kumar N, Kulwal P L, Roder M S, Balyan H S, Dhaliwal H S, Roy J K, Gupta P K . QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor Appl Genet, 2003,106:659-667
doi: 10.1007/s00122-002-1114-y
[33] Cui F, Fan X L, Zhao C H, Zhang W, Chen M, Ji J, Li J M . A novel genetic map of wheat: utility for mapping QTL for yield under different nitrogen treatments. BMC Genetics, 2014,15:57
doi: 10.1186/1471-2156-15-57 pmid: 24885313
[34] Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humpphreys D G, Noll J S, Somers D J, Brown P D . Molecular detection of QTLs for agronomic and quality traits in a double haploid population derived from two Canadian wheats ( Triticum aestivum L.). Theor Appl Genet, 2006,113:753-766
doi: 10.1007/s00122-006-0346-7 pmid: 16838135
[35] 吴云鹏, 张业伦, 肖勇贵, 阎俊, 张勇, 张晓科, 张利民, 夏先春, 何中虎 . 小麦重要品质性状的QTL定位. 中国农业科学, 2008,41:331-339
doi: 10.3864/j.issn.0578-1752.2008.02.003
Wu Y P, Zhang Y L, Xiao Y G, Yan J, Zhang Y, Zhang X K, Zhang L M, Xia X C, He Z H . QTL mapping for important quality traits in common wheat. Sci Agric Sin, 2008,41:331-339 (in Chinese with English abstract)
doi: 10.3864/j.issn.0578-1752.2008.02.003
[36] Cui F, Zhang N, Fan X L, Zhang W, Zhao C H, Yang L J, Pan R Q, Chen M, Han J, Zhao X Q, Ji J, Tong Y P, Zhang H X, Jia J Z, Zhao G Y, Li J M . Utilization of a wheat 660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Sci Rep, 2017,7:3788
doi: 10.1038/s41598-017-04028-6 pmid: 28630475
[37] Hao C Y, Wang Y Q, Chao S M, Li T, Liu H X, Wang L F, Zhang X Y . The iSelect 9K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat. Sci Rep, 2017,7:41247
doi: 10.1038/srep41247 pmid: 28134278
[38] Ott A, Trautschold B, Sandhu D . Using microsatellites to understand the physical distribution of recombination on soybean chromosomes. PLoS One, 2011,6:e22306
doi: 10.1371/journal.pone.0022306
[39] Zhao G Y, Zou C, Li K, Wang K, Li T B, Gao L F, Zhang X X, Wang H J, Yang Z J, Liu X, Jiang W K, Mao L, Kong X Y, Jiao Y N, Jia J Z . The Aegilops tauschii genome reveals multiple impacts of transposons. Nat Plants, 2017,3:946-955
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!