作物学报 ›› 2018, Vol. 44 ›› Issue (9): 1320-1333.doi: 10.3724/SP.J.1006.2018.01320
Cong HUANG1(),Xiao-Fang LI2,Ding-Guo LI2,*(),Zhong-Xu LIN1,*()
摘要:
棉花的产量、生育期和株高是重要的农艺性状, 决定着棉花的经济效益和生产方式。为了研究这些性状的遗传基础, 利用8个亲本构建的包含960个株系的陆地棉MAGIC (multi-parent advanced generation inter-cross)群体和SSR标记对这些性状进行关联分析。对产量、生育期和株高共8个相关性状进行了3年3个地点共5个环境的田间试验。经过最佳线性无偏预测(BLUP)综合多环境的表型数据, 发现MAGIC群体比亲本有更丰富的表型变异。8个性状的广义遗传力(H 2)变化范围为0.17~0.71。结合284个SSR标记基因型数据, 利用混合线性模型对产量、生育期和株高相关性状进行关联分析, 分别检测到51、27和9个显著关联的位点, 这些位点都表现出微效性, 表明该陆地棉MAGIC群体在性状位点的挖掘方面具有高效性。检测到20个标记位点或区间控制多个性状, 还发现单株有效铃数、单铃皮棉重、第一果枝节位和株高存在染色体热点区域, 对多性状综合研究或单性状深入挖掘具有重要价值。本研究为后续深入利用MAGIC群体进行遗传研究提供参考, 一些表型优良的材料和关联到的位点为育种改良奠定了基础。
[1] | 李培良, 雷亚平, 李亚兵, 魏晓文 . 中国棉花产业发展现状与未来展望. 农业展望, 2016, ( 12):38-45 |
Li P L, Lei Y P, Li Y B, Wei X W . Development status quo of China's cotton industry and its outlook. Agric Outlook, 2016, ( 12):38-45 (in Chinese with English abstract) | |
[2] | 李雪源, 王俊铎, 郑巨云, 梁亚军, 艾先涛, 龚照龙, 买买提·莫明, 郭江平., 新疆棉花产业发展与供给侧改革. 中国棉花, 2017,44(8):1-7 |
Li X Y, Wang J D, Zheng J Y, Liang Y J, Ai X T, Gong Z L, Maimaiti M M, Guo J P . Cotton industry development and the supply-side reform in Xinjiang, China. China Cotton, 2017,44(8):1-7 (in Chinese with English abstract) | |
[3] | 陈美华 . 提高机采棉质量的几点对策. 中国棉花加工, 2013, ( 4):19-20 |
Chen H M . Several countermeasures to improve the quality of machine pick cotton. China Cotton Process, 2013, ( 4):19-20 (in Chinese) | |
[4] | Huang C, Nie X, Shen C, You C, Li W, Zhao W, Zhang X, Lin Z . Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs. Plant Biotechnol J, 2017,15:1374-1386 |
[5] | Liu R, Wang B, Guo W, Qin Y, Wang L, Zhang Y, Zhang T . Quantitative trait loci mapping for yield and its components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L. Mol Breed, 2011,29:297-311 |
[6] | Zhang S, Wang T, Liu Q, Gao X, Zhu X, Zhang T, Zhou B . Quantitative trait locus analysis of boll-related traits in an intraspecific population of Gossypium hirsutum. Euphytica, 2014,203:121-144 |
[7] | Xu Y, Lu Y, Xie C, Gao S, Wan J, Prasanna B M . Whole-genome strategies for marker-assisted plant breeding. Mol Breed, 2012,29:833-854 |
[8] | Wang H, Huang C, Zhao W, Dai B, Shen C, Zhang B, Li D, Lin Z . Identification of QTL for fiber quality and yield traits using two immortalized backcross populations in upland cotton. PLoS One, 2016,11:e0166970 |
[9] | Said J I, Song M, Wang H, Lin Z, Zhang X, Fang D D, Zhang J . A comparative meta-analysis of QTL between intraspecific Gossypium hirsutum and interspecific G. hirsutum × G. barbadense populations. Mol Genet Genomics, 2015,290:1003-1025 |
[10] | Yan J, Shah T, Warburton M L, Buckler E S, McMullen M D,Crouch J. , Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One, 2009,4:e8451 |
[11] | 冯建英, 温阳俊, 张瑾, 章元明 . 植物关联分析方法的研究进展. 作物学报, 2016,42:945-956 |
Feng J Y, Wen Y J, Zhang J, Zhang Y M . Advances on methodologies for genome-wide association studies in plants. Acta Agron Sin, 2016,42:945-956 (in Chinese with English abstract) | |
[12] | 杨小红, 严建兵, 郑艳萍, 余建明, 李建生 . 植物数量性状关联分析研究进展. 作物学报 2007,33:523-530 |
Yang X H, Yan J B, Zheng Y P, Yu J M, Li J S . Reviews of association analysis for quantitative traits in plants. Acta Agron Sin, 2007,33:523-530 (in Chinese with English abstract) | |
[13] | Crowell S, Korniliev P, Falcao A, Ismail A, Gregorio G, Mezey J , McCouch S. Genome-wide association and high-resolution phenotyping link Oryza sativa panicle traits to numerous trait-specific QTL clusters. Nat Commun, 2016,7:10527 |
[14] | Remington D L, Thornsberry J M, Matsuoka Y, Wilson L M, Whitt S R, Doebley J, Kresovich S, Goodman M M, Buckler E S . Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA, 2001,98:11479-11484 |
[15] | Fang D D, Hinze L L, Percy R G, Li P, Deng D, Thyssen G . A microsatellite-based genome-wide analysis of genetic diversity and linkage disequilibrium in upland cotton (Gossypium hirsutum L.) cultivars from major cotton-growing countries. Euphytica, 2013,191:391-401 |
[16] |
Larsson S J, Lipka A E, Buckler E S . Lessons from Dwarf8 on the strengths and weaknesses of structured association mapping. PLoS Genet, 2013,9:e1003246
doi: 10.1371/journal.pgen.1003246 pmid: 23437002 |
[17] |
Mackay I, Powell W . Methods for linkage disequilibrium mapping in crops. Trends Plant Sci, 2007,12:57-63
doi: 10.1016/j.tplants.2006.12.001 pmid: 17224302 |
[18] |
Xiao Y, Liu H, Wu L, Warburton M, Yan J . Genome-wide association studies in Maize: praise and stargaze. Mol Plant, 2017,10:359-374
doi: 10.1016/j.molp.2016.12.008 pmid: 28039028 |
[19] |
Fragoso C A, Moreno M, Wang Z H, Heffelfinger C, Arbelaez L J, Aguirre J A, Franco N, Romero L E, Labadie K, Zhao H Y, Dellaporta S L, Lorieux M . Genetic architecture of a rice nested association mapping population. G3-Genes Genom Genet, 2017,7:1913-1926
doi: 10.1534/g3.117.041608 pmid: 5473768 |
[20] | Kump K L, Bradbury P J, Wisser R J, Buckler E S, Belcher A R ,Oropeza-Rosas M A, Zwonitzer J C, Kresovich S, McMullen M D, Ware D, Balint-Kurti P J, Holland J B. , Genome-wide association study of quantitative resistance to southern leaf blight in the maize nested association mapping population. Nat Genet, 2011,43:163-168 |
[21] | Maurer A, Draba V, Pillen K . Genomic dissection of plant development and its impact on thousand grain weight in barley through nested association mapping. J Exp Bot, 2016,67:2507-2518 |
[22] | Tian F, Bradbury P J, Brown P J, Hung H, Sun Q, Flint-Garcia S, Rocheford T R ,McMullen M D, Holland J B, Buckler E S. , Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet, 2011,43:159-162 |
[23] | Yu J, Holland J B ,McMullen M D, Buckler E S. , Genetic design and statistical power of nested association mapping in maize. Genetics, 2008,178:539-551 |
[24] | Zhang N, Gibon Y, Wallace J G, Lepak N, Li P, Dedow L, Chen C, So Y S, Kremling K, Bradbury P J, Brutnell T, Stitt M, Buckler E S . Genome-wide association of carbon and nitrogen metabolism in the maize nested association mapping population. Plant Physiol, 2015,168:575-583 |
[25] |
Pan Q, Li L, Yang X, Tong H, Xu S, Li Z, Li W, Muehlbauer G J, Li J, Yan J . Genome-wide recombination dynamics are associated with phenotypic variation in maize. New Phytol, 2016,210:1083-1094
doi: 10.1111/nph.13810 pmid: 26720856 |
[26] |
Xiao Y, Tong H, Yang X, Xu S, Pan Q, Qiao F, Raihan M S, Luo Y, Liu H, Zhang X, Yang N, Wang X, Deng M, Jin M, Zhao L, Luo X, Zhou Y, Li X, Liu J, Zhan W, Liu N, Wang H, Chen G, Gai Y, Xu G, Wang W, Zheng D, Yan J . Genome-wide dissection of the maize ear genetic architecture using multiple populations. New Phytol, 2016,210:1095-1106
doi: 10.1111/nph.13814 pmid: 26715032 |
[27] |
Huang B E, Verbyla K L, Verbyla A P, Raghavan C, Singh V K, Gaur P, Leung H, Varshney R K, Cavanagh C R . MAGIC populations in crops: current status and future prospects. Theor Appl Genet, 2015,128:999-1017
doi: 10.1007/s00122-015-2506-0 pmid: 25855139 |
[28] | 王建康, 李慧慧, 张学才, 尹长斌, 黎裕, 马有志, 李新海, 邱丽娟, 万建民 . 中国作物分子设计育种. 作物学报, 2011,37:191-201 |
Wang J K, Li H H, Zhang X C, Yin C B, Li Y, Ma Y Z, Li X H, Qiu L J, Wan J M . Molecular design breeding in crops in China. Acta Agron Sin, 2011,37:191-201 (in Chinese with English abstract) | |
[29] | 申聪聪, 朱亚军, 陈凯, 陈慧珍, 吴志超, 孟丽君, 徐建龙 . 利用水稻MAGIC群体关联定位抽穗期和株高QTL. 作物学报, 2017,43:1611-1621 |
Shen C C, Zhu Y J, Chen K, Chen H Z, Wu Z C, Meng L J, Xu J L . Mapping of QTLs for heading date and plant height using MAGIC populations of rice. Acta Agron Sin, 2017,43:1611-1621 (in Chinese with English abstract) | |
[30] | Huang B E, George A W, Forrest K L, Kilian A, Hayden M J, Morell M K, Cavanagh C R . A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J, 2012,10:826-839 |
[31] | Dell’Acqua M, Gatti D M, Pea G, Cattonaro F, Coppens F, Magris G, Hlaing A L, Aung H H, Nelissen H, Baute J, Frascaroli E, Churchill G A, Inze D, Morgante M, Pe M E . Genetic properties of the MAGIC maize population: a new platform for high definition QTL mapping in Zea mays. Genome Biol, 2015,16:167 |
[32] | Bandillo N, Raghavan C, Muyco P A, Sevilla M A L, Lobina I T, Dilla-Ermita C J, Tung C W, McCouch S, Thomson M, Mauleon R, Singh R K, Gregorio G, Redona E, Leung H. , Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice, 2013,6:11 |
[33] | Islam M S, Thyssen G N, Jenkins J N, Zeng L, Delhom C D ,McCarty J C, Deng D D, Hinchliffe D J, Jones D C, Fang D D. , A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genomics, 2016,17:903 |
[34] | Li D G, Li Z X, Hu J S, Lin Z X, Li X F . Polymorphism analysis of multi-parent advanced generation inter-cross (MAGIC) populations of upland cotton developed in China. Genet Mol Res, 2016,15:4 |
[35] | Huang C, Shen C, Wen T, Gao B, Zhu D, Li X, Ahmed M M, Li D, Lin Z . SSR-based association mapping of fiber quality in upland cotton using eight-way MAGIC population. Mol Genet Genomics, 2018, doi: 10.1007/s00438-018-1419-4 |
[36] | Bradbury P J, Zhang Z, Kroon D E, Casstevens T M, Ramdoss Y, Buckler E S . TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 2007,23:2633-2635 |
[37] | Bland J M, Altman D G . Multiple significance tests: the Bonferroni method. BMJ, 1995,310:170 |
[38] | Li F, Fan G, Lu C, Xiao G, Zou C, Kohel R J, Ma Z, Shang H, Ma X, Wu J, Liang X, Huang G, Percy R G, Liu K, Yang W, Chen W, Du X, Shi C, Yuan Y, Ye W, Liu X, Zhang X, Liu W, Wei H, Wei S, Huang G, Zhang X, Zhu S, Zhang H, Sun F, Wang X, Liang J, Wang J, He Q, Huang L, Wang J, Cui J, Song G, Wang K, Xu X, Yu J Z, Zhu Y, Yu S . Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol, 2015,33:524-530 |
[39] | Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski C A, Scheffler B E, Stelly D M ,Hulse-Kemp A M, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride R C, Chen X, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Chen S, Tian Y, Xiang D, Li X, Ding J, Zuo Q, Tao L, Liu Y, Li J, Lin Y, Hui Y, Cao Z, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen Z J. , Sequencing of allotetraploid cotton ( Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015,33:531-537 |
[40] | 王娟, 董承光, 刘丽, 孔宪辉, 王旭文, 余渝 . 陆地棉主要产量相关性状的SSR标记关联分析. 植物遗传资源学报, 2017,18:720-727 |
Wang J, Dong C G, Liu L, Kong X H, Wang X W, Yu Y . Association analysis of yield-related traits with SSR markers in upland cotton (Gossypium hirsutum). . J Plant Genet Resour, 2017,18:720-727 (in Chinese with English abstract) | |
[41] | 刘其宝, 李黎贝, 张驰, 宿俊吉, 魏恒玲, 王寒涛, 喻树迅 . 陆地棉叶片叶绿素含量与SSR标记的关联分析及优异等位变异的挖掘. 中国农业科学, 2017,50:3439-3449 |
Liu Q B, Li L B, Zhang C, Su J J, Wei H L, Wang H T, Yu S X . Association analysis of leaf chlorophyll content with SSR markers and exploration of superior alleles in upland cotton. Sci Agric Sin, 2017,50:3439-3449 (in Chinese with English abstract) | |
[42] | 郭志军, 赵云雷, 陈伟, 李运海, 王红梅, 龚海燕, 桑晓慧 . 陆地棉SSR标记遗传多样性及其与农艺性状的关联分析. 棉花学报,2014, 26:420-430 |
Guo Z J, Zhao Y L, Chen W, LI Y H, Wang H M, Gong H Y, Sang X H . Genetic diversity and association analysis of upland cotton based on SSR markers. Cotton Sci, 2014,26:420-430 (in Chinese with English abstract) | |
[43] | Zhao Y, Wang H, Chen W, Li Y, Gong H, Sang X, Huo F, Zeng F . Genetic diversity and population structure of elite cotton (Gossypium hirsutum L.) germplasm revealed by SSR markers. Plant Syst Evol, 2014,301:327-336 |
[44] | Wang M, Li C, Wang Q . Quantitative trait loci mapping and genetic dissection for lint percentage in upland cotton (Gossypium hirsutum). J Genet, 2014,93:371-378 |
[45] | Xia Z, Zhang X, Liu Y Y, Jia Z F, Zhao H H, Li C Q, Wang Q L . Major gene identification and quantitative trait locus mapping for yield-related traits in upland cotton ( Gossypium hirsutum L.). J Integr Agric, 2014,13:299-309 |
[46] | Liu D X, Liu F, Shan X R, Zhang J, Tang S Y, Fang X M, Liu X Y, Wang W W, Tan Z Y, Teng Z H, Zhang Z S, Liu D J . Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.). Mol Genet Genomics, 2015,290:1683-1700 |
[47] | Li C, Zhang J, Hu G, Fu Y, Wang Q . Association mapping and favorable allele mining for node of first fruiting/sympodial branch and its height in upland cotton (Gossypium hirsutum L.). Euphytica, 2016,210:57-68 |
[48] | 吕海舟, 刘琬菁, 何柳, 徐志超, 罗红梅 . 植物次生代谢基因簇研究进展. 植物科学学报, 2017,35:609-621 |
Lyu H Z, Liu W J, He L, Xu Z C, Luo H M . Advances on the study of gene clusters involved in plant secondary metabolism. Plant Sci J, 2017,35:609-621 (in Chinese with English abstract) | |
[49] | Said J I, Lin Z, Zhang X, Song M, Zhang J . A comprehensive meta QTL analysis for fiber quality, yield, yield related and morphological traits, drought tolerance, and disease resistance in tetraploid cotton. BMC Genomics, 2013,14:776 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[3] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[4] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[7] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[8] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[9] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[10] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[11] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[12] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[13] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[14] | 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016. |
[15] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
|