作物学报 ›› 2018, Vol. 44 ›› Issue (9): 1311-1319.doi: 10.3724/SP.J.1006.2018.01311
魏大勇1,2,3(),崔艺馨3,4,梅家琴3,4,汤青林1,2,李加纳3,4,钱伟3,4,*()
Da-Yong WEI1,2,3(),Yi-Xin CUI3,4,Jia-Qin MEI3,4,Qing-Lin TANG1,2,Jia-Na LI3,4,Wei QIAN3,4,*()
摘要:
含油量是油菜最重要的性状之一, 目前已有较多的油菜种子含油量定位研究, 然而各研究系统相对独立, 群体与标记的差别使得难以比较不同研究结果。本研究连续4年种植了一个含308份材料的油菜自然群体, 结合60K SNP芯片数据对种子含油量进行了全基因组关联分析(GWAS), 并将所鉴定的显著位点与早前2个自然群体及10个分离群体鉴定到的位点进行全基因组比较与整合。结果显示, 通过GWAS共检测到8个与种子含油量显著关联的位点, 单个位点解释的表型变异度为3.22%~5.13%; 结合其他12个群体的定位结果, 共获得193个油菜含油量整合位点, 分布于油菜的所有19条染色体, A亚基因组平均每条染色体有13个位点, 显著高于C亚基因组(7个)。对不同群体鉴定结果的比较发现, 7个整合区间能在至少3个群体中被检测到, 均位于A亚基因组染色体(A01、A02、A03、A06、A08、A09和A10)上, 其中有3个与C亚基因组上的区间存在同源性, 在这3个区间中共鉴定到26个已知的油脂代谢相关基因。本研究将193个位点锚定到法国公布的甘蓝型油菜参考基因组, 构建了一个可视的油菜种子含油量位点全基因组整合系统, 可为油菜种子含油量重要位点的确定提供帮助, 并为制定提高油菜种子含油量的育种方案提供参考。
[1] | 王汉中 . 我国油菜产业发展的历史回顾与展望. 中国油料作物学报, 2010,32:300-302 |
Wang H Z . Review and future development of rapeseed industry in China. Chin J Oil Crop Sci, 2010,32:300-302 (in Chinese with English abstract) | |
[2] | 李殿荣, 郑磊, 李少钦 . 近十三年我国冬油菜新品种单产与含油量的变化分析. 种子, 2014,33:96-100 |
Li D R, Zheng L, Li S Q . The development analysis on yield and oil content of winter rapeseed varieties in Brassica napus L.. from 2000 to 2012 in China. Seed, 2014,33:96-100 (in Chinese with English abstract) | |
[3] | Hu Q, Hua W, Yin Y, Zhang X, Liu L, Shi J, Zhao Y, Qin L, Chen C, Wang H . Rapeseed research and production in China. Crop J, 2017,5:127-135 |
[4] | 李超, 李波, 曲存民, 阎星颖, 付福友, 刘列钊, 谌利, 李加纳 . 两种环境下甘蓝型油菜含油量的差值QTL分析. 作物学报, 2011,37:249-254 |
Li C, Li B, Qu C M, Yan X Y, Fu F Y, Liu L Z, Chen L, Li J N . Analysis of difference QTLs for oil content between two environments in Brassica napus L.. Acta Agron Sin, 2011,37:249-254 (in Chinese with English abstract) | |
[5] | 刘后利 . 油菜遗传育种学 . 北京: 中国农业大学出版社, 2000. pp 146-154 |
Liu H L. Genetics and Breeding in Rrapeseed. Beijing: Chinese Agricultural Universitatis Press, 2000. pp 146-154(in Chinese with English abstract) | |
[6] | 马珍珍, 李加纳 Wittkop B, Frauen M, 阎星颖, 刘列钊, 肖阳. 甘蓝型油菜籽粒含油量、蛋白质、纤维素及半纤维素含量QTL分析. 作物学报, 2013,39:1214-1222 |
Ma Z Z, Li J N, Wittkop B, Frauen M, Yan X Y, Liu L Z, Xiao Y . QTL mapping for oil, protein, cellulose, and hemicellulose contents in seeds of Brassica napus L. Acta Agron Sin, 2013,39:1214-1222 (in Chinese with English abstract) | |
[7] | Yan R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu J E, Deschamps M, Margale E, Vincourt P, Renard M . Genetic control of oil content in oilseed rape ( Brassica napus L.). Theor Appl Genet, 2006,113:1331-1345 |
[8] | Yan X Y, Li J N, Fu F Y, Jin M Y, Chen L, Liu L Z . Co-location of seed oil content, seed hull content and seed coat color QTL in three different environments in Brassica napus L. Euphytica, 2009,170:355-364 |
[9] | Shi J, Li R, Zou J, Yan L, Meng J . A dynamic and complex network regulates the heterosis of yield-correlated traits in rapeseed (Brassica napus L.). PLoS One, 2011,6:e21645 |
[10] | Sun M, Hua W, Liu J, Huang S, Wang X, Liu G, Wang H . Design of new genome- and gene-sourced primers and identification of QTL for seed oil content in a specially high-oil Brassica napus cultivar. PLoS One, 2012,7:e47037 |
[11] | Zhao J, Huang J, Chen F, Xu F, Ni X, Xu H, Wang Y, Jiang C, Wang H, Xu A, Huang R, Li D, Meng J . Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. Theor Appl Genet, 2012,124:407-421 |
[12] | Wang X, Hao W, Yan L, Li D, Yin Y, Tian J, Li C, Liu L, Zhao W, Zhao Y . Identification of QTLs associated with oil content in a high-oil Brassica napus cultivar and construction of a high-density consensus map for QTLs comparison in B. napus. PLoS One, 2013,8:e80569 |
[13] |
Jiang C, Shi J, Li R, Long Y, Wang H, Li D, Zhao J, Meng J . Quantitative trait loci that control the oil content variation of rapeseed ( Brassica napus L.). Theor Appl Genet, 2014,127:957-968
doi: 10.1007/s00122-014-2271-5 pmid: 24504552 |
[14] | Javed N, Geng J, Tahir M, McVetty P B E, Li G, Duncan R W. , Identification of QTL influencing seed oil content, fatty acid profile and days to flowering in Brassica napus L. Euphytica, 2015,207:191-211 |
[15] | Liu S, Fan C, Li J, Cai G, Yang Q, Wu J, Yi X, Zhang C, Zhou Y . A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus. Theor Appl Genet, 2016,129:1203-1215 |
[16] | Fu Y, Zhang D, Gleeson M, Zhang Y, Lin B, Hua S, Ding H, Frauen M, Li J, Qian W, Yu H . Analysis of QTL for seed oil content in Brassica napus by association mapping and QTL mapping. Euphytica, 2017,213:17 |
[17] | Chalhoub B, Denoeud F, Liu S, Parkin I A, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Correa M, Da Silva C, Just J, Falentin C, Koh C S, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger P P, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N ,Le Paslier M C, Fan G, Renault V, Bayer P E, Golicz A A, Manoli S, Lee T H, Thi V H, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom C H, Wang X, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu Z, Sun F, Lim Y P, Lyons E, Town C D, Bancroft I, Wang X, Meng J, Ma J, Pires J C, King G J, Brunel D, Delourme R, Renard M, Aury J M, Adams K L, Batley J, Snowdon R J, Tost J, Edwards D, Zhou Y, Hua W, Sharpe A G, Paterson A H, Guan C, Wincker P., Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 2014,345:950-953 |
[18] | Li F, Chen B Y, Xu K, Wu J F, Song W L, Bancroft I, Harper A L, Trick M, Liu S Y, Gao G Z, Wang N, Yan G X, Qiao J W, Li J, Li H, Xiao X, Zhang T Y, Wu X M . Genome-wide association sudy dissects the genetic architecture of seed weight and seed quality in rapeseed ( Brassica napus L.). DNA Res, 2014,21:355-367 |
[19] | Wei D, Cui Y, He Y, Xiong Q, Qian L, Tong C, Lu G, Ding Y, Li J, Jung C, Qian W . A genome-wide survey with different rapeseed ecotypes uncovers footprints of domestication and breeding. J Exp Bot, 2017,68:4791-4801 |
[20] | Wei L, Jian H, Lu K, Filardo F, Yin N, Liu L, Qu C, Li W, Du H, Li J . Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant Biotechnol J, 2015: 1-13 |
[21] | SASV9.13 software . SAS Institute, Cary, NC, USA, 2005 |
[22] | 魏大勇, 谭传东, 崔艺馨, 吴道明, 李加纳, 梅家琴, 钱伟 . 甘蓝型油菜pol CMS育性恢复位点的全基因组关联分析. 中国农业科学, 2017,50:802-819 |
Wei D Y, Tan C D, Cui Y X, Wu D M, Li J N, Mei J Q, Qian W . Genome-wide association study of the fertility restorer loci for pol CMS in rapeseed( Brassica napus L.).. Sci Agric Sin, 2017,50:802-819 (in Chinese with English abstract) | |
[23] | Aulchenko Y S, Ripke S, Isaacs A , Van Duijn C M. GenABEL: an R library for genome-wide association analysis. Bioinformatics, 2007,23:1294-1296 |
[24] | Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S J, Marra M A . Circos: an information aesthetic for comparative genomics. Genome Res, 2009,19:1639-1645 |
[25] | Merk H L, Yarnes S C, Van Deynze A, Tong N K, Menda N, Mueller L A, Mutschler M A, Loewen S A, Myers J R, Francis D M . Trait diversity and potential for selection indices based on variation among regionally adapted processing tomato germplasm. J Am Soc Hort Sci, 2012,137:427-437 |
[26] | NU. Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar bode of fertilization. Jpn J Bot, 1935,7:389-452 |
[27] | Qian L, Qian W, Snowdon R J . Sub-genomic selection patterns as a signature of breeding in the allopolyploid Brassica napus genome. BMC Genomics, 2014,15:1170 |
[28] | Wang N, Li F, Chen B, Xu K, Yan G, Qiao J, Li J, Gao G, Bancroft I, Meng J, King G J, Wu X . Genome-wide investigation of genetic changes during modern breeding of Brassica napus. Theor Appl Genet, 2014,127:1817-1829 |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[3] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[4] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[5] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[6] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[7] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[8] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[9] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[10] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[11] | 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395. |
[12] | 赵海涵, 练旺民, 占小登, 徐海明, 张迎信, 程式华, 楼向阳, 曹立勇, 洪永波. 水稻协优9308重组自交系群体白叶枯病抗性的全基因组关联分析[J]. 作物学报, 2022, 48(1): 121-137. |
[13] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[14] | 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480. |
[15] | 马娟, 曹言勇, 李会勇. 玉米穗轴粗全基因组关联分析[J]. 作物学报, 2021, 47(7): 1228-1238. |
|