欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (10): 1468-1477.doi: 10.3724/SP.J.1006.2019.91012

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

蚂蚱麦和小白麦衍生系的遗传多样性分析

白彦明1,2,李龙2,王绘艳1,2,柳玉平2,王景一2,毛新国2,昌小平2,孙黛珍1,*(),景蕊莲2,*()   

  1. 1山西农业大学农学院, 山西太谷 030800
    2中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2019-02-01 接受日期:2019-04-15 出版日期:2019-10-12 网络出版日期:2019-09-10
  • 通讯作者: 孙黛珍,景蕊莲
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0300202);山西省重点研发计划项目资助(201703D211007-6)

Genetic diversity assessment in derivative offspring of Mazhamai and Xiaobaimai wheat

BAI Yan-Ming1,2,LI Long2,WANG Hui-Yan1,2,LIU Yu-Ping2,WANG Jing-Yi2,MAO Xin-Guo2,CHANG Xiao-Ping2,SUN Dai-Zhen1,*(),JING Rui-Lian2,*()   

  1. 1College of Agronomy, Shanxi Agricultural University, Taigu 030800, Shanxi, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2019-02-01 Accepted:2019-04-15 Published:2019-10-12 Published online:2019-09-10
  • Contact: Dai-Zhen SUN,Rui-Lian JING
  • Supported by:
    This study was financially supported by the National Key Research and Development Program of China(2017YFD0300202);the Key Research and Development Program of Shanxi Province(201703D211007-6)

摘要:

陕西关中蚂蚱麦和山西平遥小白麦是我国北方小麦品种的原始骨干亲本, 解析蚂蚱麦和小白麦及其衍生系的遗传多样性对于小麦品种改良具有重要的参考意义。本研究利用小麦660K SNP芯片对蚂蚱麦、小白麦及其衍生品种(系)进行全基因组扫描, 分析其遗传多样性。结果表明, 小麦3个基因组的多态性SNP标记数为B>A>D, 第4同源群的多态性标记数最少, 149份供试材料基因多样性(H)范围为0.095~0.500, 平均值为0.336; 核苷酸多样性指数(π)范围为0.272~0.435, 平均值为0.340; 而遗传相似系数(GS)变幅为0.335~0.997, 平均值达0.619, 表明蚂蚱麦和小白麦衍生系的遗传多样性较低。聚类分析表明蚂蚱麦和小白麦紧密地聚在亚群I, 其衍生品种(系)分为5个亚群, 其中2000年以前以蚂蚱麦或小白麦的单一衍生系为主, 分在亚群I、II、III, 2000年以后多数品种同时拥有蚂蚱麦和小白麦血缘, 分在亚群IV、V, 遗传多样性较高, 且与大面积推广品种聚为一类。因此, 应加强优异基因资源导入, 拓宽小麦品种的遗传基础, 最终提高育种水平。

关键词: 小麦, 地方品种, 骨干亲本, SNP标记, 核苷酸多样性

Abstract:

“Mazhamai” originated in Guanzhong region of Shaanxi province, and “Xiaobaimai” in Pingyao county of Shanxi province, two landraces of wheat (Triticum aestivum L.), are the primitive founder parents of wheat cultivars in northern China. The genetic diversity assessment of “Mazhamai”, “Xiaobaimai” and their derivative offsprings will be helpful to wheat cultivar improvement. In this study, a wheat 660K SNP Array was used to perform genome-wide scanning for analyzing genetic diversity of “Mazhamai”, “Xiaobaimai” and their derivatives. The polymorphic SNP marker number in three genomes was B>A>D, and the fourth homoeologous group had the least number of polymorphic markers. The gene diversity (H) and nucleotide diversity (π) ranges were 0.095-0.500 and 0.272-0.435, with corresponding average values of 0.336 and 0.340 in 149 wheat accessions, respectively. The genetic similarity coefficient (GS) ranged from 0.335 to 0.997, with an average value of 0.619 in the wheat panel. It indicated a low genetic diversity in the derivative offsprings of “Mazhamai” and “Xiaobaimai”. Cluster analysis exhibited that the derived cultivars of “Mazhamai” and “Xiaobaimai” were divided into five clusters, “Mazhamai” and “Xiaobaimai” were closely grouped into Cluster I. The cultivars released before 2000 were mainly the single derivatives of “Mazhamai” or “Xiaobaimai” in Cluster I, II and III and grouped, while the most cultivars released after 2000 possessed both blood of “Mazhamai” and “Xiaobaimai” with higher genetic diversity than the former, and grouped in Cluster IV and V just like commercial cultivars widely grown. Therefore, we should strengthen the introduction of beneficial genetic resources, broaden the genetic basis of wheat cultivars, resulting in improved breeding level.

Key words: wheat, landrace, founder parent, SNP marker, nucleotide diversity

图1

多态性SNP标记在染色体(A)、部分同源群(B)和基因组(C)上的分布"

图2

供试材料间遗传相似系数频次分布图"

表1

不同年代育成材料的核苷酸多样性"

年代
Era
π值
π value
品种数
No. of accession
Pre-1960 0.389 12
1960s 0.391 26
1970s 0.352 19
1980s 0.387 13
1990s 0.387 19
2000s 0.388 34
2010s 0.388 26

表2

蚂蚱麦各衍生世代材料及相关信息"

衍生世代
Generation
品种名称
Accession
品种数
No. of
accession
核苷酸多样性
Nucleotide
diversity (π)
1 碧蚂2号 Bima 2 1
2 衡水6404, 邢选1号, 北京8号, 陕农4号, 徐州6号, 淮沭10号, 昌乐5号, 济南2号, 石家庄54, 青春1号, 青春2号, 陕农17-17, 郑州24, 陕合6号, 陕农1号, 陕农18
Hengshui 6404, Xingxuan 1, Beijing 8, Shaannong 4, Xuzhou 6, Huaishu 10, Changle 5, Jinan 2, Shijiazhuang 54, Qingchun 1, Qingchun 2, Shaannong 17-17, Zhengzhou 24, Shaanhe 6, Shaannong 1, Shaannong 18
16 0.348
3 北京13, 农大198, 济南10号, 冀麦2号, 平凉35, 西峰9号, 冀麦1号
Beijing 13, Nongda 198, Jinan 10, Jimai 2, Pingliang 35, Xifeng 9, Jimai 1
7 0.305
4 晋麦29, 庆丰1号, ZHM 44, 晋麦47, 长武702, 丰抗13, 平凉21
Jinmai 29, Qingfeng 1, ZHM 44, Jinmai 47, Changwu 702, Fengkang 13, Pingliang 21
7 0.353
5 运旱20410, 临旱6号, 运旱22-33, 洛旱13, 晋麦79, 晋麦33, 洛旱2号, 丰抗8号, 丰抗7号, 京农79-13, 丰抗10号, 兰天4号, 京437, ZHM 40, ZHM 42, ZHM 43, 洛旱15, 中麦36
Yunhan 20410, Linhan 6, Yunhan 22-33, Luohan 13, Jinmai 79, Jinmai 33, Luohan 2, Fengkang 8, Fengkang 7, Jingnong 79-13, Fengkang 10, Lantian 4, Jing 437, ZHM 40, ZHM 42, ZHM 43, Luohan 15, Zhongmai 36
18 0.305
6 晋麦100, 晋麦92, 晋太170, 晋麦63, 西峰20, 中麦175, 北京8694, 京冬8号
Jinmai 100, Jinmai 92, Jintai 170, Jinmai 63, Xifeng 20, Zhongmai 175, Beijing 8694, Jingdong 8
8 0.355
7 陇育5号, 长4640, 长6878, 长6154, 长6452, 晋麦87, 长7016, 临丰615, 洛旱11, 洛旱9号, 洛旱6号, 洛旱3号
Longyu 5, Chang 4640, Chang 6878, Chang 6154, Chang 6452, Jinmai 87, Chang 7016, Linfeng 615, Luohan 11, Luohan 9, Luohan 6, Luohan 3
12 0.333
8 长武134, 宁冬16, 晋太1310, 晋太114, 长8744, 长6794, 长5222, 运旱137, 长麦6197, 长7050, ZHM 35, 鲁麦14, 衡136
Changwu 134, Ningdong 16, Jintai 1310, Jintai 114, Chang 8744, Chang 6794, Chang 5222, Yunhan 137, Changmai 6197, Chang 7050, ZHM 35, Lumai 14, Heng 136
13 0.339
9 长6990, 长6388, 长9499, ZHM 41, ZHM 45
Chang 6990, Chang 6388, Chang 9499, ZHM 41, ZHM 45
5 0.275

表3

小白麦/燕大1817各衍生世代材料及相关信息"

衍生世代
Generation
品种名称
Accession
品种数
No. of
accession
核苷酸多样性Nucleotide
diversity (π)
1 农大36, 农大183, 农大311, 农大90, 太原566, 石家庄407, 北京5号, 北京6号, 北京
7号
Nongda 36, Nongda 183, Nongda 311, Nongda 90, Taiyuan 566, Shijiazhuang 407, Beijing 5, Beijing 6, Beijing 7
9 0.233
2 晋麦1号, 农大155, 农大166, 工农12, 渭麦4号, 科遗29, 旱选1号, 旱选2号, 旱选3号, 晋麦5号, 晋麦8号, 晋麦17, 冀麦32, 延安15, 冀麦6号, 洛农10号, 济南10号
Jinmai 1, Nongda 155, Nongda 166, Gongnong 12, Weimai 4, Keyi 29, Hanxuan 1, Hanxuan 2, Hanxuan 3, Jinmai 5, Jinmai 8, Jinmai 17, Jimai 32, Yanan 15, Jimai 6, Luonong 10, Jinan 10
17 0.299
3 晋麦44, 晋麦16, 长治515, 东方红3号, 晋麦13, 冀麦9号, 西峰16, 沧麦6005, 北京10号, 北京13, 丰抗8号, 丰抗7号, 京农79-13, 丰抗10号, 衡水6404, 邢选1号, 晋麦29
Jinmai 44, Jinmai 16, Changzhi 515, Dongfanghong 3, Jinmai 13, Jimai 9, Xifeng 16, Cangmai 6005, Beijing 10, Beijing 13, Fengkang 8, Fengkang 7, Jingnong 79-13, Fengkang 10, Hengshui 6404, Xingxuan 1, Jinmai 29
17 0.323
4 冀麦22, 兰天10号, 冀麦29, 晋麦18, 晋麦51, 兰天9号, 晋麦33, 农大198, 庆丰1号, 北京8694, 京冬8号
Jimai 22, Lantian 10, Jimai 29, Jinmai 18, Jinmai 51, Lantian 9, Jinmai 33, Nongda 198, Qingfeng 1, Beijing 8694, Jingdong 8
11 0.359
5 晋麦46, 晋麦53, 晋麦92, 晋麦79, 洛旱2号, 兰天4号, 晋麦47
Jinmai 46, Jinmai 53, Jinmai 92, Jinmai 79, Luohan 2, Lantian 4, Jinmai 47
7 0.375
6 太10604, 运旱20410, 临旱6号, 运旱22-33, 长武134, 晋麦100, 洛旱13, 晋麦63, 西峰20, 京437, ZHM 40, ZHM 42, ZHM 43, 洛旱15, 中麦36
Tai 10604, Yunhan 20410, Linhan 6, Yunhan 22-33, Changwu 134, Jinmai 100, Luohan 13, Jinmai 63, Xifeng 20, Jing 437, ZHM 40, ZHM 42, ZHM 43, Luohan 15, Zhongmai 36
15 0.304
7 陇育5号, 长4640, 晋太170, 长6878, 长6154, 长6452, 晋麦87, 长7016, 中麦175
Longyu 5, Chang 4640, Jintai 170, Chang 6878, Chang 6154, Chang 6452, Jinmai 87, Chang 7016, Zhongmai 175
9 0.306
8 宁冬16, 晋太1310, 晋太114, 长8744, 长6794, 长5222, 运旱137, 长麦6197, 长7050, ZHM 35
Ningdong 16, Jintai 1310, Jintai 114, Chang 8744, Chang 6794, Chang 5222, Yunhan 137, Changmai 6197, Chang 7050, ZHM 35
10 0.329
9 长6990, 长6388, 长9499, ZHM 41, ZHM 45, 鲁麦14
Chang 6990, Chang 6388, Chang 9499, ZHM 41, ZHM 45, Lumai 14
6 0.259
10 ZHM 44 ZHM 44 1

图3

149份材料基于多态性SNP的聚类分析图 黑色表示蚂蚱麦和小白麦/燕大1817; 紫色表示蚂蚱麦衍生系; 红色表示小白麦衍生系; 蓝色表示有蚂蚱麦和小白麦共同血缘的衍生品(系); 绿色表示大面积推广品种。"

表4

各亚群材料的育成年代"

育成年代
Released era
亚群I
Subgroup I
亚群II
Subgroup II
亚群III
Subgroup III
亚群IV
Subgroup IV
亚群V
Subgroup V
Pre-1960 11 1
1960s 11 6 7 2
1970s 6 6 6 1
1980s 3 3 6 1
1990s 6 2 7 2 2
2000s 1 2 17 15
2010s 1 2 2 9 11
合计Total 39 19 30 32 29

表5

各亚群材料的地理来源分布"

来源
Origin
亚群I
Subgroup I
亚群II
Subgroup II
亚群III
Subgroup III
亚群IV
Subgroup IV
亚群V
Subgroup V
山西Shanxi 17 7 15 9
陕西Shaanxi 7 1 3 4 2
河北Hebei 5 1 3 4 1
河南Henan 1 4 7
北京Beijing 7 8 12 5 4
甘肃Gansu 1 4 5
江苏Jiangsu 1 1
山东Shandong 1 3 5
宁夏Ningxia 1
合计Total 39 19 30 32 29

表6

蚂蚱麦、小白麦及燕大1817间的遗传相似系数"

品种
Accession
D1 (岐山蚂蚱麦)
Mazhamai of Qishan
D2 (武功蚂蚱麦)
Mazhamai of Wugong
D3 (扶风蚂蚱麦)
Mazhamai of Fufeng
D4 (冠县蚂蚱麦)
Mazhamai of Guanxian
D5 (小白麦)
Xiaobaimai
D2 (武功蚂蚱麦)
Mazhamai of Wugong
0.747
D3 (扶风蚂蚱麦)
Mazhamai of Fufeng
0.889 0.802
D4 (冠县蚂蚱麦)
Mazhamai of Guanxian
0.738 0.849 0.787
D5 (小白麦)
Xiaobaimai
0.798 0.663 0.636 0.628
D7 (燕大1817)
Yanda 1817
0.799 0.664 0.635 0.628 0.989
[1] Godfray H C J, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M, Toulmin C . Food security: the challenge of feeding 9 billion people. Science, 2010,327:812-818.
[2] Tilman D, Balzer C, Hill J, Befort B L . Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci USA, 2011,108:20260-20264.
[3] Ray D K, Mueller N D, West P C, Foley J A . Yield trends are insufficient to double global crop production by 2050. PLoS One, 2013,8:e66428
[4] 赵俊晔, 于振文 . 中国小麦生产“十三五”发展规划研究. 北京: 中国农业科学技术出版社, 2017. pp 1-2.
Zhao J Y, Yu Z W. Study on The Development Plan of China’s Wheat Production During The 13th Five-Year Plan Period. Beijing: China Agricultural Science and Technology Press, 2017. pp 1-2(in Chinese).
[5] 庄巧生 . 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003. pp 34-170.
Zhuang Q S. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003. pp 34-170(in Chinese).
[6] Tanksley S D, McCouch S R . Seed banks and molecular maps: unlocking genetic potential from the wild. Science, 1997,277:1063-1066.
[7] Royo C, Elias E M, Manthey F A . Durum Wheat Breeding. Springer US, 2009. pp 199-226.
[8] 曹廷杰, 谢菁忠, 吴秋红, 陈永兴, 王振忠, 赵虹, 王西成, 詹克慧, 徐如强, 王际睿, 罗明成, 刘志勇 . 河南省近年审定小麦品种基于系谱和SNP标记的遗传多样性分析. 作物学报, 2015,41:197-206.
Cao T J, Xie J Z, Wu Q H, Chen Y X, Wang Z Z, Zhao H, Wang X C, Zhan K H, Xu R Q, Wang J R, Luo M C, Liu Z Y . Genetic diversity of registered wheat varieties in henan province based on pedigree and single-nucleotide polymorphism. Acta Agron Sin, 2015,41:197-206 (in Chinese with English abstract).
[9] Wilson E O . The biological diversity crisis. Bioscience, 1985,35:700-706.
[10] 陈天青, 黄芳, 李文贞, 蒋选利, 王伟, 刘冬成, 阳文龙, 张爱民, 张立异 . 西南地区小麦抗条锈病种质的遗传多样性及群体结构分析. 植物遗传资源学报, 2015,16:1157-1167.
Chen T Q, Huang F, Li W Z, Jiang X L, Wang W, Liu D C, Yang W L, Zhang A M, Zhang L Y . Investigation and analysis of genetic diversity and population structure for wheat germplasms resistant to stripe rust in southwest China. J Plant Genet Resour, 2015,16:1157-1167 (in Chinese with English abstract).
[11] Nasu S, Suzuki J, Ohta R, Hasegawa K, Yui R, Kitazawa N, Monna L, Minobe Y . Search for and analysis of single nucleotide polymorphisms (SNPs) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers. DNA Res, 2002,9:163-171.
[12] 邹喻苹, 葛颂 . 新一代分子标记——SNPs及其应用. 生物多样性, 2003,11:370-382.
Zou Y P, Ge S . A novel molecular marker—SNPs and its application. Biodiversity Sci, 2003,11:370-382 (in Chinese with English abstract)
[13] Chao S, Rouse M N, Acevedo M, Szabo-Hever A, Bockelman H, Bonman J M, Elias E, Klindworth D, Xu S . Evaluation of genetic diversity and host resistance to stem rust in USDA NSGC durum wheat accessions. Plant Genome, 2017,10:1-13.
[14] 陈广凤, 田纪春 . 基于SNP标记小麦自然群体遗传多样性及复合图谱的构建. 分子植物育种, 2015,13:1441-1449.
Chen G F, Tian J C . Genetic analysis of natural population of wheat and construction of composite map using SNP markers. Mol Plant Breed, 2015,13:1441-1449 (in Chinese with English abstract).
[15] 刘新伦, 王长有, 王亚娟, 张宏, 吉万全 . 小麦骨干亲本阿夫及其衍生品种(系)重要性状的演变规律. 西北农林科技大学学报(自然科学版), 2011,39(1):96-102.
Liu X L, Wang C Y, Wang Y J, Zhang H, Ji W Q . Evolution trend of important characters of wheat core parents Funo and its derived varieties. J Northwest A&F Univ ( Nat Sci Edn), 2011,39(1):96-102 (in Chinese with English abstract).
[16] 李小军 . 小麦骨干亲本碧蚂4号的遗传效应分析. 中国农业科学院博士学位论文, 北京, 2009.
Li X J . Analysis of Genetic Effects of Wheat (Triticum aestivum L.) Variety Bima 4 as a Founder Parent . PhD Dissertation of Chinese Academy of Agricultural Sciences, Beijing, China, 2009 (in Chinese with English abstract).
[17] 韩俊, 张连松, 李静婷, 石丽娟, 解超杰, 尤明山, 杨作民, 刘广田, 孙其信, 刘志勇 . 小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析. 作物学报, 2009,35:1395-1404.
Han J, Zhang L S, Li J T, Shi L J, Xie C J, You M S, Yang Z M, Liu G T, Sun Q X, Liu Z Y . Molecular dissection of core parental cross “Triumph/Yanda 1817” and its derivatives in wheat breeding program. Acta Agron Sin, 2009,35:1395-1404 (in Chinese with English abstract).
[18] Saghai Maroof M A, Biyashev R M, Yang G P, Zhang Q, Allard R W . Extraordinarily polymorphic microsatellite DNA in barley: species diversity, chromosomal locations, and population dynamics. Proc Natl Acad Sci USA, 1994,91:5466-5470.
[19] Liu K, Muse S V . PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005,21:2128-2129.
[20] Nei M . Genetic distance between populations. Am Nat, 1972,106:283-292.
[21] Jing R L, Chang X P, M Broggio, Jia J Z . Detection of allelic variation in Chinese wheat ( Triticum aestivum L.) germplasm with drought tolerance using SSR markers. Agric Sci China, 2002,1:1083-1088.
[22] 魏添梅, 昌小平, 闵东红, 景蕊莲 . 小麦抗旱品种的遗传多样性分析及株高优异等位变异挖掘. 作物学报, 2010,36:895-990.
Wei T M, Chang X P, Min D H, Jing R L . Analysis of genetic diversity and tapping elite alleles for plant height in drought-tolerant wheat varieties. Acta Agron Sin, 2010,36:895-990 (in Chinese with English abstract).
[23] 张莉莉, 韩芳, 马守才, 亓佳佳, 陈蕴文, 余欣欣, 薛小雁, 郑雅潞, 张改生, 牛娜 . 小麦品种豫麦2号及其衍生系的遗传差异分析. 中国农业大学学报, 2015,20(4):1-11.
Zhang L L, Han F, Ma S C, Yuan J J, Chen Y W, Yu X X, Xue X Y, Zheng Y L, Zhang G S, Niu N . Genetic differentiation analysis on derived lines from wheat cultivar Yumai 2. J China Agric Univ, 2015,20(4):1-11 (in Chinese with English abstract).
[24] 张德强, 宋晓朋, 冯洁, 连俊芳, 孙道杰 . 小麦周8425B及其衍生品种与黄淮麦区主栽品种的遗传解析. 麦类作物学报, 2016,36:1328-1334.
Zhang D Q, Song X P, Feng J, Lian J F, Sun D J . Genetic dissection on the derived lines from wheat cultivar Zhou 8425B and widely grown cultivars in Huang huai region. J Triticeae Crops, 2016,36:1328-1334 (in Chinese with English abstract).
[25] Guo J, Shi W, Zhang Z, Cheng J, Sun D, Yu J, Li X, Guo P, Hao C . Association of yield-related traits in founder genotypes and derivatives of common wheat ( Triticum aestivum L.). BMC Plant Biol, 2018, 1471-1486.
[26] Ma F F, Xu Y F, Ma Z Q, Li L H, An D G . Genome-wide association and validation of key loci for yield-related traits in wheat founder parent Xiaoyan 6. Mol Breed, 2018,38:91-105.
[27] 贾继增, 张正斌, Devos K, Gale M D . 小麦21条染色体RFLP作图位点遗传多样性分析. 中国科学: C辑, 2001,31:13-21.
Jia J Z, Zhang Z B, Devos K, Gale M D . Genetic diversity of 21 chromosomes in wheat revealed by RFLP mapping. Sci China ( Ser C), 2001,31:13-21 (in Chinese).
[28] 景蕊莲, 昌小平 . SSR标记在小麦种质资源研究中的应用. 作物品种资源, 1999, ( 2):17-20.
Jing R L, Chang X P . Application of SSR markers in the study of wheat germplasm resources. Crop Germplasm Resour, 1999, ( 2):17-20 (in Chinese).
[29] Maccaferri M, Sanguineti M C, Donini P, Tuberosa R . Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theor Appl Genet, 2003,107:783-797.
[30] Cui D, Li J, Tang C, A X, Yu T, Ma X, Zhang E, Cao G, Xu F, Qiao Y, Dai L, Han L . Diachronic analysis of genetic diversity in rice landraces under on-farm conservation in Yunnan, China. Theor Appl Genet, 2016,129:155-168.
[31] Rashid M A, Zhao Y, Zhang H, Li J, Li Z . Nucleotide diversity, natural variation, and evolution of flexible culm-1 and strong culm-2 lodging resistance genes in rice. Genome, 2016,59:473-483.
[32] 庄巧生 . 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003. pp 54-55.
Zhuang Q S. Chinese Wheat Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003. pp 54-55(in Chinese).
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[6] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[7] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[8] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[9] 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352.
[10] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[11] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[12] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[13] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[14] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[15] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!