作物学报 ›› 2019, Vol. 45 ›› Issue (10): 1488-1502.doi: 10.3724/SP.J.1006.2019.91002
翟俊鹏,李海霞,毕惠惠,周思远,罗肖艳,陈树林,程西永(),许海霞()
ZHAI Jun-Peng,LI Hai-Xia,BI Hui-Hui,ZHOU Si-Yuan,LUO Xiao-Yan,CHEN Shu-Lin,CHENG Xi-Yong(),XU Hai-Xia()
摘要:
为解析小麦复杂农艺性状的遗传机制, 本研究以150份小麦品种(系)为自然群体, 在4个环境条件下测定了9个主要农艺性状, 利用小麦35K SNP芯片, 结合5种关联模型(Q、PCA、K、PCA+K、Q+K), 进行全基因组关联分析。结果表明, 全基因组多态性信息量PIC的范围为0.0950~0.5000, 最小等位基因频率MAF值为0.0500~0.5000; 群体结构分析和PCA分析均表明参试材料可分为两个亚群; 连锁不平衡分析发现A基因组、B基因组、D基因组和全基因组的LD衰减距离分别为4.7、8、11和6 Mb。9个性状共检测到652个显著的关联位点(P≤0.001), 其中21个SNP在2个或2个以上的环境中被重复检测到, 分布在1A(1)、1B(4)、2A(3)、2D(2)、3A(1)、5A(1)、5B(5)、6A(1)、6B(2)和7D(3)染色体上; 1个SNP标记的物理位置未知, 3个SNP标记同时与2个性状显著关联; 单个SNP 的表型贡献率为7.67%~18.79%。8个优势等位变异在供试群体中所占比例较低, 筛选出14个可能与小麦农艺性状相关的候选基因, 其中TraesCS5B02G237200、TraesCS7D02G129700和TraesCS1B02G426300可能在植物抵御生物与非生物胁迫中起作用, TraesCS5B02G010800和TraesCS7D02G436800可能与植物激素的合成和响应有关, TraesCS2A02G092200可能与植物细胞壁的增强有关, TraesCS5A02G438800可能参与叶绿体发育, 另外7个候选基因的功能未知。
[1] | Deng S, Wu X, Wu Y, Zhou R, Wang H, Jia J, Liu S . Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat. Theor Appl Genet, 2011,122:281-289. |
[2] | Zhang H, Chen J, Li R, Deng Z, Zhang K, Liu B, Tian J . Conditional QTL mapping of three yield components in common wheat ( Triticum aestivum L.). Crop J, 2016,4:220-228. |
[3] | 丁安明, 崔法, 李君, 赵春华, 王秀芹, 王洪刚 . 小麦单株产量与株高的QTL分析. 中国农业科学, 2011,44:2857-2867. |
Ding A M, Cui F, Li J, Zhao C H, Wang X Q, Wang H G . QTL analysis on grain yield per plant and plant height in wheat. Sci Agric Sin, 2011,44:2857-2867 (in Chinese with English abstract). | |
[4] | 金立桥 . 冬小麦麦穗光合生理特性及其对籽粒灌浆的影响. 山东农业大学博士学位论文, 山东泰安, 2017. |
Jin L Q . Photosynthetic Characteristics of Ear and Contribution of Ear Photosynthesis to Grain Filling in Winter Wheat. PhD Dissertation of Shandong Agricultural University, Tai ,an, Shandong, China, 2017 ( in Chinese with English abstract) | |
[5] | Gan Y, Stobbe E H . Seedling vigor and grain yield of ‘Roblin’ wheat affected by seed size. Agron J, 1996,88. |
[6] | Rodrigues O, Teixeira M C C, Costenaro E R, Damo R . Influence of vernalization and photoperiod on the duration of stem elongation and spikelet fertility in wheat. Agric Sci, 2014,05:1547-1557. |
[7] | Dubcovsky J, Dvorak J . Genome plasticity a key factor in the success of polyploid wheat under domestication. Science, 2007,316:1862-1866 |
[8] | Holland J B . Genetic architecture of complex traits in plants. Curr Opin Plant Biol, 2007,10:156-161. |
[9] | Collard B C Y, Mackill D J . Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond, 2008,363:557-572. |
[10] | Coleman R K, Gill G S, Rebetzke G J . Identification of quantitative trait loci for traits conferring weed competitiveness in wheat ( Triticum aestivum L.). Aust J Agric Res, 2001,52:1235-1246. |
[11] | Nelson J C, Andreescu C, Breseghello F, Finney P L, Gualberto D G, Bergman C, Peña R J, Perretant M R, Leroy P, Qualset C O, Sorrells M E . Quantitative trait locus analysis of wheat quality traits. Euphytica, 2006,149:145-159. |
[12] | Ramya P, Chaubal A, Kulkarni K, Gupta L, Kadoo N, Dhaliwal H S, Chhuneja P, Lagu M, Gupt V . QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat ( Triticum aestivum L.). J Appl Genet, 2010,51:421-429. |
[13] | Ren Y, Huang L, Shao M, Sun L, Zhao K, Wang J, Xu X, Feng W, Wang J, Yan L, Wang S, Wang L . QTL mapping for plant height of wheat under different irrigation modes. Agric Biotechnol, 2017: 15-19. |
[14] | 张坤普, 徐宪斌, 田纪春 . 小麦籽粒产量及穗部相关性状的QTL定位. 作物学报, 2009,35:270-278. |
Zhang K P, Xu X B, Tian J C . QTL mapping for grain yield and spike related traits in common wheat. Acta Agron Sin, 2009,35:270-278 (in Chinese with English abstract). | |
[15] | Zegeye H, Rasheed A, Makdis F, Badebo A, Ogbonnaya F C . Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic hexaploid wheat. PLoS One, 2014,9:e105593. |
[16] | Ding J, Ali F, Chen G, Chen G, Li H, Mahuku G, Yang N, Narro L, Magorokosho C, Makumbi D, Yan J . Genome-wide association mapping reveals novel sources of resistance to northern corn leaf blight in maize. BMC Plant Biol, 2015,15:206. |
[17] | Hwang E Y, Song Q, Jia G, Specht J E, Hyten D L, Costa J, Cregan P B . A genome-wide association study of seed protein and oil content in soybean. BMC Genomics, 2014,15:1. |
[18] | Zhang X, Zhang J, He X, Wang Y, Ma X, Yin D . Genome-wide association study of major agronomic traits related to domestication in peanut. Front Plant Sci, 2017,8:1611. |
[19] | Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler E S, Qian Q, Zhang Q, Li J, Han B . Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010,42:961. |
[20] | Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds M P . Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor Appl Genet, 2015,128:353-363. |
[21] | Turuspekov Y, Baibulatova A, Yermekbayev K, Tokhetova L, Chudinov V, Sereda G, Ganal M, Griffiths S, Abugalieva S . GWAS for plant growth stages and yield components in spring wheat ( Triticum aestivum L.) harvested in three regions of Kazakhstan. BMC Plant Biol, 2017,17:51-61. |
[22] | 朱玉磊, 王升星, 赵良侠, 张德新, 胡建帮, 曹雪连, 杨亚杰, 常成, 马传喜, 张海萍 . 以关联分析发掘小麦整穗发芽抗性基因分子标记. 作物学报, 2014,40:1725-1732. |
Zhu Y L, Wang S X, Zhao L X, Zhang D X, Hu J B, Cao X L, Yang Y J, Chang C, Ma C X, Zhang H P . Exploring molecular markers of preharvest sprouting resistance gene using wheat intact spikes by association analysis. Acta Agron Sin, 2014,40:1725-1732 (in Chinese with English abstract). | |
[23] | Wang S X, Zhu Y L, Zhang D X, Shao H, Liu P, Hu J B, Zhang H, Zhang H P, Chang C, Lu J, Xia X C, Sun G L, Ma C X . Genome-wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. PLoS One, 2017,12:e0188662. |
[24] | Mwadzingeni L, Shimelis H, Rees D J G, Tsilo T J . Genome-wide association analysis of agronomic traits in wheat under drought-stressed and non-stressed conditions. PLoS One, 2017,12:e0171692. |
[25] | Liu Y, Lin Y, Gao S, Li Z, Ma J, Deng M, Chen G, Wei Y, Zheng Y . A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. Plant J, 2017,91:861. |
[26] | Würschum T, Langer S M, Longin C F, Korzun V, Akhunov E, Ebmeyer E, Schachschneider R, Schacht J, Kazman E, Reif J C . Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor Appl Genet, 2013,126:1477-1486. |
[27] | Meng L, Li H, Zhang L, Wang J . QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015,3:269-283. |
[28] | 陈昆松, 李方, 徐昌杰, 张上隆, 傅承新 . 改良CTAB法用于多年生植物组织基因组DNA的大量提取. 遗传, 2004,26:529-531. |
Chen K S, Li F, Xu C J, Zhang S L, Fu C X . An efficient macro-method of genomic DNA isolation from Actinidia chinensis leaves. Hereditas, 2004,26:529-531 (in Chinese with English abstract). | |
[29] | Allen A M, Winfield M O, Burridge A J, Downie R C, Benbow H R, Barker G L, Wilkinson P A, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, Griffiths S, Bentley A R, Alda M, Jack P, Phillips A L, Edwards K J . Characterization of a wheat breeders’ array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat ( Triticum aestivum). Plant Biotechnol J, 2017,15:390-401. |
[30] | Botstein D, White R, Skolnick M, Davis R . Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980,32:314-331. |
[31] | Evanno G, Regnaut S, Goudet J . Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005,14:2611-2620. |
[32] | Neumann K, Kobiljski B, Denčić S, Varshney R K, Börner A . Genome-wide association mapping: a case study in bread wheat ( Triticum aestivum L.). Mol Breed, 2011,27:37-58. |
[33] | Kuznetsova A, Brockhoff P B, Christensen R H B . lmerTest: Tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). 2013. |
[34] | Sukumaran S, Xiang W, Bean S R, Pedersen J F . Association mapping for grain quality in a diverse sorghum collection. Plant Genome, 2012,5:126-135. |
[35] | Breseghello F, Sorrells M E . Association mapping of kernel size and milling quality in wheat ( Triticum aestivum L.) cultivars. Genetics, 2006,172:1165-1177. |
[36] | Yu J, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S . A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006,38:203-208. |
[37] | 要燕杰 . 我国冬小麦品种(系)遗传多样性及部分产量性状和品质性状位点的关联分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2014. |
Yao Y J . Genetic Diversity and Association Analysis of Loci for Yield and Quality Traits in Wheat. MS Thesis of Northwest A&F University, Yangling, Shaansi, China, 2014 (in Chinese with English abstract). | |
[38] | Jaiswal V, Gahlaut V, Meher P K, Mir R R, Jaiswal J P, Rao A R, Balyan H S, Gupta P K . Genome wide single locus single trait, multi-locus and multi-trait association mapping for some important agronomic traits in common wheat ( T. aestivum L.). PLoS One, 2016,11:e0159343. |
[39] | Shi W, Hao C, Zhang Y, Cheng J, Zhang Z, Liu J, Yi X, Cheng X, Sun D, Xu Y, Zhang X, Cheng S, Guo P, Guo J . A combined association mapping and linkage analysis of kernel number per spike in common wheat ( Triticum aestivum L.). Front Plant Sci, 2017,8:1412. |
[40] | Zanke C, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann F, Eichhorn A, Polley A, Jaenecke C, Ganal M W, Röder M S . Analysis of main effect QTL for thousand grain weight in European winter wheat ( Triticum aestivum L.) by genome-wide association mapping. Front Plant Sci, 2015,6:644. |
[41] | Sukumaran S, Reynolds M P, Sansaloni C . Genome-wide association analyses identify QTL hotspots for yield and component traits in durum wheat grown under yield potential, drought, and heat stress environments. Front Plant Sci, 2018,9:81. |
[42] | Ain Q, Rasheed A, Anwar A, Mahmood T, Imtiaz M, Mahmood T, Xia X, He Z, Quraishi U M . Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Front Plant Sci, 2015,6:743. |
[43] | Zanke C, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Beier S, Ganal M W, Röder M S . Genetic architecture of main effect QTL for heading date in European winter wheat. Front Plant Sci, 2014,5:217. |
[44] | 靖华, 亢秀丽, 马爱平, 崔欢虎, 王娟玲, 刘建华 . 晋南旱垣春季低温对不同播种期小麦冻害的影响. 中国农学通报, 2011,27(9):76-80 |
Jing H, Kang X L, Ma A P, Cui H H, Wang J L, Liu J H . Effect of spring low temperature on different sowing date winter wheat frozen injury on the arid area of southern Shanxi province. Chin Agric Sci Bull, 2011,27(9):76-80 (in Chinese with English abstract). | |
[45] | Pei Z M, Murata Y, Benning G, Thomine S, Klüsener B, Allen G J, Grill E, Schroeder J I . Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature, 2000,406:731-734. |
[46] | Van Ooijen G, Mayr G, Kasiem M M, Albrecht M, Cornelissen B J, Takken F . Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. J Exp Bot, 2008,59:1383-1397. |
[47] | Hong M J, Lee Y M, Son Y S, Im C H, Yi Y B, Rim Y G, Bahk J D, Heo J B . Rice Rab11 is required for JA-mediated defense signaling. Biochem Biophys Res Commun, 2013,434:797-802. |
[48] | Graaf B H J D, Cheung A Y, Andreyeva T, Levasseur K, Kieliszewski M, Wu H M . Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco. Plant Cell, 2005,17:2564-2579. |
[49] | Asaoka R, Uemura T, Ito J, Fujimoto M, Ito E, Ueda T, Nakano A . Arabidopsis RABA1 GTPases are involved in transport between the trans-Golgi network and the plasma membrane, and are required for salinity stress tolerance. Plant J, 2013,73:240-249. |
[50] | Keates S E, Kostman T A, Anderson J D, Bailey B A . Altered gene expression in three plant species in response to treatment with Nep1, a fungal protein that causes necrosis. Plant Physiol, 2003,132:1610-1622. |
[51] | 苏延萍, 路小铎, 沈颂东, 张春义 . 拟南芥GATL12基因影响叶绿体的形成. 植物学报, 2011,46:379-385. |
Su Y P, Lu X D, Shen S D, Zhang C Y . GATL12 is essential for chloroplast biogenesis in Arabidopsis. Chin Bull Bot, 2011,46:379-385 (in Chinese with English abstract). |
[1] | 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345. |
[2] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[3] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[4] | 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272. |
[5] | 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090. |
[6] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[7] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[8] | 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715. |
[9] | 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725. |
[10] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[11] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[12] | 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462. |
[13] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[14] | 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447. |
[15] | 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164. |
|