欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (10): 1488-1502.doi: 10.3724/SP.J.1006.2019.91002

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

普通小麦主要农艺性状的全基因组关联分析

翟俊鹏,李海霞,毕惠惠,周思远,罗肖艳,陈树林,程西永(),许海霞()   

  1. 河南农业大学 / 省部共建小麦玉米作物学国家重点实验室 / 河南省粮食作物协同创新中心, 河南郑州450046
  • 收稿日期:2019-01-06 接受日期:2019-04-15 出版日期:2019-10-12 网络出版日期:2019-09-10
  • 通讯作者: 程西永,许海霞
  • 基金资助:
    本研究由国家重点研发计划项目(2017YFD0100706);国家转基因生物新品种培育重大专项(2016ZX08002003-004);国家重点基础研究发展计划(973计划)项目(2014CB138105)

Genome-wide association study for main agronomic traits in common wheat

ZHAI Jun-Peng,LI Hai-Xia,BI Hui-Hui,ZHOU Si-Yuan,LUO Xiao-Yan,CHEN Shu-Lin,CHENG Xi-Yong(),XU Hai-Xia()   

  1. Henan Agricultural University / National Key Laboratory of Wheat and Maize Crop Science / Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450046, Henan, China
  • Received:2019-01-06 Accepted:2019-04-15 Published:2019-10-12 Published online:2019-09-10
  • Contact: Xi-Yong CHENG,Hai-Xia XU
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0100706);the National Major Project for Developing New GM Crops(2016ZX08002003-004);the National Key Basic Research Program (973 Program)(2014CB138105)

摘要:

为解析小麦复杂农艺性状的遗传机制, 本研究以150份小麦品种(系)为自然群体, 在4个环境条件下测定了9个主要农艺性状, 利用小麦35K SNP芯片, 结合5种关联模型(Q、PCA、K、PCA+K、Q+K), 进行全基因组关联分析。结果表明, 全基因组多态性信息量PIC的范围为0.0950~0.5000, 最小等位基因频率MAF值为0.0500~0.5000; 群体结构分析和PCA分析均表明参试材料可分为两个亚群; 连锁不平衡分析发现A基因组、B基因组、D基因组和全基因组的LD衰减距离分别为4.7、8、11和6 Mb。9个性状共检测到652个显著的关联位点(P≤0.001), 其中21个SNP在2个或2个以上的环境中被重复检测到, 分布在1A(1)、1B(4)、2A(3)、2D(2)、3A(1)、5A(1)、5B(5)、6A(1)、6B(2)和7D(3)染色体上; 1个SNP标记的物理位置未知, 3个SNP标记同时与2个性状显著关联; 单个SNP 的表型贡献率为7.67%~18.79%。8个优势等位变异在供试群体中所占比例较低, 筛选出14个可能与小麦农艺性状相关的候选基因, 其中TraesCS5B02G237200TraesCS7D02G129700TraesCS1B02G426300可能在植物抵御生物与非生物胁迫中起作用, TraesCS5B02G010800TraesCS7D02G436800可能与植物激素的合成和响应有关, TraesCS2A02G092200可能与植物细胞壁的增强有关, TraesCS5A02G438800可能参与叶绿体发育, 另外7个候选基因的功能未知。

关键词: 小麦, 农艺性状, 连锁不平衡, 全基因组关联分析, 候选基因

Abstract:

To illustrate the genetic mechanism of complex agronomic traits in wheat, we investigated nine agronomic traits using 150 wheat cultivars (lines) from China across four environments. Genome-wide association analysis was performed using wheat 35K genotyping assay with five association models (Q, PCA, K, PCA+K, Q+K). The results revealed that the polymorphic information content (PIC) of values was between 0.0950 and 0.5000, and the minimum allele frequency (MAF) was between 0.0500 and 0.5000. Both the population structure analysis and the PCA analysis showed that the tested materials could be divided into two sub-populations. Linkage disequilibrium analysis found that the LD decay distances of the A, B, D, and the whole genome were approximately 4.7, 8, 11, and 6 Mb, respectively. A total of 652 significant (P ≤ 0.001) marker-trait associations (MTAs) were detected, thereinto, 21 SNPs could be detected on chromosomes 1A(1), 1B(4), 2A(3), 2D(2), 3A(1), 5A(1), 5B(5), 6A(1), 6B(2), and 7D(3) in two or more environments. Three SNPs were significantly associated with two traits and the physical position of one SNP was unknown. Single SNPs could explain 7.67 % to 18.79 % phenotypic variation. It was found that eight favorable allelic variations accounted for a low proportion in the tested population. Fourteen candidate genes that may be related to agronomic traits of wheat were identified. Among them, TraesCS5B02G237200, TraesCS7D02G129700, and TraesCS1B02G426300 may play important roles in plants resistance to biotic and abiotic stress. TraesCS5B02G010800 and TraesCS7D02G436800 may be related to the hormones synthesis and response in plants. TraesCS2A02G092200 may enhance the cell wall formation of plants. TraesCS5A02G438800 may be involved in chloroplast development. The function of the other seven candidate genes is unknown.

Key words: wheat, agronomic trait, linkage disequilibrium, genome-wide association study, candidate gene

表1

供试小麦材料"

类别Type 品种(系) Variety (line)
国家黄淮南片区域试验
Regional trail of wheat varieties in the south of Yellow and Huai Valley
中麦170 Zhongmai 170, 周麦32 Zhoumai 32, 新麦32 Xinmai 32, 锦绣21 Jinxiu 21, 商麦167 Shangmai167, 许科168 Xuke168, 中新16 Zhongxin 16, 洛麦26 Luomai 26, 豫丰11 Yufeng 11, 中金13 Zhongjin 13, 郑育麦16 Zhengyumai 16, 郑麦618 Zhengmai 618, 龙科1221 Longke 1221, 淮核12013 Huaihe 12013, 涡麦66 Womai 66, 郑麦369 Zhengmai 369, 俊达109 Junda109, 众麦7号 Zhongmai 7, 新科麦169 Xinkemai 169, 周麦36 Zhoumai 36, 中育1211 Zhongyu 1211, 先麦12 Xianmai 12, 濮麦6311 Pumai 6311, 瑞华1426 Ruihua 1426, 高麦6号 Gaomai 6, 皖科06725 Wanke 06725, 光泰68 Guangtai 68, 轮选66 Lunxuan 66, 西农511 Xinong 511, 濉1216 Sui 1216, 豫农186 Yunong 186, 华成863 Huacheng 863, 鑫农518 Xinnong 518, 藁优5766 Gaoyou 5766, 瑞华055 Ruihua 055
河南省区域试验
Regional trial of wheat varieties in Henan
Province
藁麦5218 Gaomai 5218, 辉麦5号 Huimai 5, 西农364 Xinong 364, 中麦255 Zhongmai 255, 漯麦163 Luomai 163, 怀川11 Huaichuan 11, 创星8号 Chuangxing 8, 郑麦158 Zhengmai 158, 中麦578 Zhongmai 578, 丰德存21 Fengdecun 21, 周麦18 Zhoumai 18, 豫农804 Yunong 804
小麦联合体品种比较
试验
Comparative trail of wheat varieties in Henan
Province
华冠001 Huaguan 001, 河科大163 Hekeda 163, 华冠002 Huaguan 002, 平麦19 Pingmai 19, 华冠003 Huaguan 003, 平麦20 Pingmai 20, 华冠004 Huaguan 004, 豫农216 Yunong 216, 华冠005 Huaguan 005, 许优958 Xuyou 958, 滑昌麦68 Huachangmai 68, 滑昌麦66 Huachangmai 66, 滑昌麦26 Huachangmai 26, 豫农605 Yunong 605, 岭育麦216 Lingyumai 216, 豫农606 Yunong 606, 尚农4号 Shangnong 4, 豫农607 Yunong 607, 许麦8号 Xumai 8, 豫农805 Yunong 805, 许麦9号Xumai 9, 豫农806 Yunong 806, 许麦168 Xumai 168, 许麦169 Xumai 169, 农科668 Nongke 668, 豫农519 Yunong 519, 尚农3号 Shangnong 3, 河科大LYZB Hekeda LYZB, 河科大522 Hekeda 522, 豫农517 Yunong 517
高代品系
Breeding lines
豫农225 Yunong 225, 豫农243 Yunong 243, 豫农7847 Yunong 7847, 豫农8981 Yunong 8981, 豫农227 Yunong 227, 豫农246 Yunong 246, 豫农955 Yunong 955, 豫农9005 Yunong 9005, 豫农231, Yunong 231, 豫农248 Yunong 248, 豫农7961 Yunong 7961, 豫农9053 Yunong 9053, 豫农233 Yunong 233, 豫农256 Yunong 256, 豫农8819 Yunong 8819, 豫农9068 Yunong 9068, 豫农235 Yunong 235, 豫农268 Yunong 268, 豫农8858 Yunong 8858, 豫农9071 Yunong 9071, 豫农236 Yunong 236, 豫农282 Yunong 282, 豫农8861 Yunong 8861, 豫农9092 Yunong 9092, 豫农238 Yunong 238, 豫农285 Yunong 285, 豫农8909 Yunong 8909, 豫农9107 Yunong 9107, 豫农240 Yunong 240, 豫农7838 Yunong 7838, 豫农8954 Yunong 8954, 豫农9110 Yunong 9110, 豫农9305 Yunong 9305, 豫农8051 Yunong 8051, 豫农8138 Yunong 8138, 豫农8636 Yunong 8636, 豫农9308 Yunong 9308, 豫农8054 Yunong 8054, 豫农8141 Yunong 8141, 豫农8639 Yunong 8639, 豫农9311 Yunong 9311, 豫农8057 Yunong 8057, 豫农8339 Yunong 8339, 豫农8681 Yunong 8681, 豫农9334 Yunong 9334, 豫农8069 Yunong 8069, 豫农8552 Yunong 8552, 豫农8684 Yunong 8684, 豫农9338 Yunong 9338, 豫农8072 Yunong 8072, 豫农8570 Yunong 8570, 豫农8774 Yunong 8774, 豫农8042 Yunong 8042, 豫农8075 Yunong 8075, 豫农8588 Yunong 8588, 豫农8792 Yunong 8792, 豫农8045 Yunong 8045, 豫农8129 Yunong 8129, 豫农8600 Yunong 8600, 豫农8804 Yunong 8804, 豫农8048 Yunong 8048, 豫农8135 Yunong 8135, 豫农8621 Yunong 8621, 豫农8813 Yunong 8813, 豫农9113 Yunong 9113, 豫农9119 Yunong 9119, 豫农9125 Yunong 9125, 豫农9116, Yunong 9116, 豫农9122 Yunong 9112, 豫农9132 Yunong 9132, 豫农223 Yunong 223, 豫农9266 Yunong 9266, 豫农9269 Yunong 9269

表2

小麦农艺性状表型变异及方差分析"

表3

SNP标记信息"

染色体
Chr.
标记数目
No. of markers
物理长度Physical
distance (Mb)
最小等位基因频率 MAF 多态性信息量 PIC 标记密度
Density of marker
(Mb marker-1)
Mean Range Mean Range
1A 450 593.3 0.2583 0.0500-0.5000 0.3404 0.0950-0.5000 1.32
1B 717 689.0 0.1852 0.0526-0.4932 0.2843 0.0997-0.4999 0.96
1D 635 495.2 0.1999 0.0504-0.5000 0.2955 0.0956-0.5000 0.78
2A 517 780.7 0.2429 0.0500-0.5000 0.3275 0.0950-0.5000 1.51
2B 635 801.2 0.2597 0.0500-0.5000 0.3450 0.0950-0.5000 1.26
2D 557 651.4 0.226 0.0507-0.5000 0.3120 0.0963-0.5000 1.17
3A 318 749.5 0.2472 0.0504-0.4966 0.3377 0.0958-0.5000 2.36
3B 565 829.3 0.2870 0.0504-0.5000 0.3729 0.0956-0.5000 1.47
3D 339 614.0 0.2583 0.0504-0.5000 0.3448 0.0956-0.5000 1.81
4A 283 744.5 0.2114 0.0537-0.4966 0.3024 0.1016-0.5000 2.63
4B 316 673.2 0.1716 0.0500-0.4966 0.2663 0.0950-0.5000 2.13
4D 132 509.3 0.1676 0.0537-0.4823 0.2590 0.1016-0.4994 3.86
5A 451 708.2 0.2338 0.0500-0.5000 0.3239 0.0950-0.5000 1.57
5B 545 712.9 0.2384 0.0500-0.5000 0.3206 0.0950-0.5000 1.31
5D 393 565.9 0.2269 0.0500-0.4966 0.3083 0.0950-0.5000 1.44
6A 310 617.7 0.2449 0.0509-0.5000 0.3340 0.0965-0.5000 1.99
6B 523 720.5 0.2265 0.0507-0.5000 0.3172 0.0963-0.5000 1.38
6D 286 473.4 0.2041 0.0504-0.4932 0.2950 0.0956-0.4999 1.66
7A 418 736.5 0.2696 0.0522-0.5000 0.3561 0.0989-0.5000 1.76
7B 407 750.1 0.2737 0.0504-0.4966 0.3616 0.0958-0.5000 1.84
7D 314 636.8 0.2649 0.0500-0.5000 0.3556 0.0950-0.5000 2.03
Unmap 441 488.8 0.2262 0.0507-0.5000 0.3133 0.0963-0.5000 1.11
A 2747 4930.4 0.2440 0.0500-0.5000 0.3317 0.0950-0.5000 1.79
B 3708 5176.2 0.2346 0.0500-0.5000 0.3240 0.0950-0.5000 1.40
D 2656 3946.0 0.2211 0.0500-0.5000 0.3100 0.0950-0.5000 1.49
Whole 9552 14541.4 0.2329 0.0500-0.5000 0.3215 0.0950-0.5000 1.70

图1

群体结构、主成分分析和亚群表型 1-A: ΔK折线图; 1-B: 群体结构; 1-C: PCA分析; 1-D: 亚群表型; 各性状详细名称见表2。"

图2

连锁不平衡衰减图"

图3

各性状的曼哈顿图和Q-Q图(部分列出) 各性状详细名称见表 2; 在2个或2个以上环境中被重复检测到的SNP用绿色高亮显示。"

表4

小麦农艺性状稳定关联的位点信息"

性状
Trait
标记
SNP
染色体
Chr.
物理位置
Position
P-value R2 (%)
E1 E2 E3 E4 E1 E2 E3 E4
LFI AX-95108722 2D 441569084 7.84E-04 9.49E-04 7.94 7.68
AX-94532508 6A 99932394 8.44E-04 1.35E-04 3.40E-04 7.92 10.51 9.24
性状
Trait
标记
SNP
染色体
Chr.
物理位置
Position
P-value R2 (%)
E1 E2 E3 E4 E1 E2 E3 E4
AX-94976370 6B 157777682 4.85E-04 8.44E-04 7.02E-04 8.60 7.86 8.09
AX-94918690 6B 157777813 4.85E-04 8.44E-04 7.02E-04 8.60 7.86 8.09
KNPS AX-94385515 5B 10444933 2.53E-04 3.75E-04 9.58 9.18
AX-94459753 5B 10449146 2.55E-04 3.59E-04 9.55 9.08
AX-94799632 5B 418015877 2.39E-04 9.94E-04 9.64 7.67
AX-94547362 7D 81887538 1.78E-04 9.38E-05 10.06 10.97
TKW AX-95152265 7D 556123927 3.73E-04 1.08E-04 3.39E-04 9.17 10.84 9.16
PH AX-95094324 1A 519471561 8.88E-05 5.87E-05 8.53E-04 11.92 12.41 8.18
SL AX-95108722 2D 441569084 7.79E-06 2.18E-05 14.27 12.94
AX-94542697 3A 11350680 1.54E-04 6.10E-04 11.55 9.89
NFS AX-94385515 5B 10444933 5.60E-05 9.30E-04 7.39E-05 11.50 7.70 11.13
AX-94459753 5B 10449146 5.38E-05 9.13E-04 7.46E-05 11.35 7.69 11.11
HD AX-95197628 1B 652298582 3.34E-05 3.43E-04 12.40 9.13
AX-95073002 1B 652457758 4.36E-05 5.32E-04 12.13 8.62
AX-94748775 1B 652468844 7.50E-04 3.77E-04 3.06E-04 8.40 9.19 9.50
AX-94629503 1B 652575175 7.24E-04 3.65E-04 3.01E-04 8.07 9.01 9.31
AX-94446915 2A 44094660 5.03E-05 1.15E-04 5.01E-07 11.82 10.63 18.79
AX-94430515 2A 45085276 3.41E-04 3.00E-05 9.10 12.61
AX-94639471 2A 52130032 5.61E-04 1.92E-04 5.13E-04 8.65 10.03 8.69
AX-94690816 5A 620175970 9.08E-04 2.02E-05 9.33 17.06
AX-94402434 7D 415430669 6.40E-04 1.38E-04 9.38 10.82
AX-95629896 Unknown Unknown 9.19E-04 5.79E-04 8.35 8.74

表5

稳定关联的SNP及其等位变异的表型效应"

性状
Trait
标记
SNP
染色体
Chr.
物理位置
Position
等位变异
Allele
表型差值Difference 材料数
No. of varieties
LFI AX-95108722 2D 441569084 T 1.94 36
G 0 113
AX-94532508 6A 99932394 C 2.79 133
T 0 13
AX-94976370 6B 157777682 C 2.58 133
T 0 16
AX-94918690 6B 157777813 G 2.58 133
A 0 16
KNPS AX-94385515 5B 10444933 C 4.78 138
T 0 10
AX-94459753 5B 10449146 C 4.78 139
T 0 10
AX-94799632 5B 418015877 C 3.22 17
T 0 132
AX-94547362 7D 81887538 A 5 139
G 0 10
TKW AX-95152265 7D 556123927 C 4.91 12
A 0 135
PH AX-95094324 1A 519471561 A 3.42 96
C 0 46
SL AX-95108722 2D 441569084 T 0.63 36
G 0 113
AX-94542697 3A 11350680 C 0.69 17
G 0 104
NFS AX-94385515 5B 10444933 C 1.25 138
T 0 10
AX-94459753 5B 10449146 C 1.25 139
T 0 10
HD AX-95197628 1B 652298582 T 3.69 139
C 0 10
AX-95073002 1B 652457758 A 3.71 136
G 0 9
AX-94748775 1B 652468844 G 2.64 131
A 0 17
AX-94629503 1B 652575175 C 2.65 131
A 0 18
AX-94446915 2A 44094660 A 3.34 139
G 0 10
AX-94430515 2A 45085276 A 1.88 37
C 0 111
AX-94639471 2A 52130032 G 3.19 136
A 0 9
AX-94690816 5A 620175970 A 3.95 7
G 0 110
性状
Trait
标记
SNP
染色体
Chr.
物理位置
Position
等位变异
Allele
表型差值Difference 材料数
No. of varieties
AX-94402434 7D 415430669 G 2.22 129
A 0 15
AX-95629896 Unknown Unknown G 2.88 135
A 0 9

表6

小麦农艺性状候选基因及其功能注释"

性状
Trait
候选位点
Candidate locus
标记
SNP
物理位置
Chr. | Position
基因
Gene
基因注释或编码蛋白
Gene annotation or coding protein
KNPS 5B|4444933..16449146 AX-94385515 5B|10444933 TraesCS5B02G010800 Calcium-dependent channel, 7TM region, putative phosphate
AX-94459753 5B|10449146 TraesCS5B02G010800 Calcium-dependent channel, 7TM region, putative phosphate
5B|412015877..424015877 AX-94799632 5B|418015877 TraesCS5B02G237200 NB-ARC domain
7D|75887538..87887538 AX-94547362 7D|81887538 TraesCS7D02G129700 MATE_eukaryotic
TKW 7D|550123927..562123927 AX-95152265 7D|556123927 TraesCS7D02G436800 Auxin response factor
SL 3A|5350680..17350680 AX-94542697 3A|11350680 TraesCS3A02G017800 Unknown
KNPS/NFS 5B|4444933..16449146 AX-94385515 5B|10444933 TraesCS5B02G010800 Calcium-dependent channel, 7TM region, putative phosphate
AX-94459753 5B|10449146 TraesCS5B02G010800 Calcium-dependent channel, 7TM region, putative phosphate
HD 1B|646298582..658575175 AX-95197628 1B|652298582 TraesCS1B02G426000 Unknown
AX-95073002 1B|652457758 TraesCS1B02G426300 Rab GTPase family 11 (Rab11)-like includes Rab11a, Rab11b, and Rab25
AX-94748775 1B|652468844 TraesCS1B02G426600 Unknown
AX-94629503 1B|652575175 TraesCS1B02G427100 Unknown
2A|38094660..51085276 AX-94446915 2A|44094660 TraesCS2A02G091700 Unknown
AX-94430515 2A|45085276 TraesCS2A02G092200 Wound-induced protein WI12
2A|46130032..58130032 AX-94639471 2A|52130032 TraesCS2A02G099200 Unknown
5A|614175970..626175970 AX-94690816 5A|620175970 TraesCS5A02G438800 Glutamine amidotransferases class-II (GATase).
7D|409430669..421430669 AX-94402434 7D|415430669 TraesCS7D02G325100 Unknown
[1] Deng S, Wu X, Wu Y, Zhou R, Wang H, Jia J, Liu S . Characterization and precise mapping of a QTL increasing spike number with pleiotropic effects in wheat. Theor Appl Genet, 2011,122:281-289.
[2] Zhang H, Chen J, Li R, Deng Z, Zhang K, Liu B, Tian J . Conditional QTL mapping of three yield components in common wheat ( Triticum aestivum L.). Crop J, 2016,4:220-228.
[3] 丁安明, 崔法, 李君, 赵春华, 王秀芹, 王洪刚 . 小麦单株产量与株高的QTL分析. 中国农业科学, 2011,44:2857-2867.
Ding A M, Cui F, Li J, Zhao C H, Wang X Q, Wang H G . QTL analysis on grain yield per plant and plant height in wheat. Sci Agric Sin, 2011,44:2857-2867 (in Chinese with English abstract).
[4] 金立桥 . 冬小麦麦穗光合生理特性及其对籽粒灌浆的影响. 山东农业大学博士学位论文, 山东泰安, 2017.
Jin L Q . Photosynthetic Characteristics of Ear and Contribution of Ear Photosynthesis to Grain Filling in Winter Wheat. PhD Dissertation of Shandong Agricultural University, Tai ,an, Shandong, China, 2017 ( in Chinese with English abstract)
[5] Gan Y, Stobbe E H . Seedling vigor and grain yield of ‘Roblin’ wheat affected by seed size. Agron J, 1996,88.
[6] Rodrigues O, Teixeira M C C, Costenaro E R, Damo R . Influence of vernalization and photoperiod on the duration of stem elongation and spikelet fertility in wheat. Agric Sci, 2014,05:1547-1557.
[7] Dubcovsky J, Dvorak J . Genome plasticity a key factor in the success of polyploid wheat under domestication. Science, 2007,316:1862-1866
[8] Holland J B . Genetic architecture of complex traits in plants. Curr Opin Plant Biol, 2007,10:156-161.
[9] Collard B C Y, Mackill D J . Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond, 2008,363:557-572.
[10] Coleman R K, Gill G S, Rebetzke G J . Identification of quantitative trait loci for traits conferring weed competitiveness in wheat ( Triticum aestivum L.). Aust J Agric Res, 2001,52:1235-1246.
[11] Nelson J C, Andreescu C, Breseghello F, Finney P L, Gualberto D G, Bergman C, Peña R J, Perretant M R, Leroy P, Qualset C O, Sorrells M E . Quantitative trait locus analysis of wheat quality traits. Euphytica, 2006,149:145-159.
[12] Ramya P, Chaubal A, Kulkarni K, Gupta L, Kadoo N, Dhaliwal H S, Chhuneja P, Lagu M, Gupt V . QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat ( Triticum aestivum L.). J Appl Genet, 2010,51:421-429.
[13] Ren Y, Huang L, Shao M, Sun L, Zhao K, Wang J, Xu X, Feng W, Wang J, Yan L, Wang S, Wang L . QTL mapping for plant height of wheat under different irrigation modes. Agric Biotechnol, 2017: 15-19.
[14] 张坤普, 徐宪斌, 田纪春 . 小麦籽粒产量及穗部相关性状的QTL定位. 作物学报, 2009,35:270-278.
Zhang K P, Xu X B, Tian J C . QTL mapping for grain yield and spike related traits in common wheat. Acta Agron Sin, 2009,35:270-278 (in Chinese with English abstract).
[15] Zegeye H, Rasheed A, Makdis F, Badebo A, Ogbonnaya F C . Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic hexaploid wheat. PLoS One, 2014,9:e105593.
[16] Ding J, Ali F, Chen G, Chen G, Li H, Mahuku G, Yang N, Narro L, Magorokosho C, Makumbi D, Yan J . Genome-wide association mapping reveals novel sources of resistance to northern corn leaf blight in maize. BMC Plant Biol, 2015,15:206.
[17] Hwang E Y, Song Q, Jia G, Specht J E, Hyten D L, Costa J, Cregan P B . A genome-wide association study of seed protein and oil content in soybean. BMC Genomics, 2014,15:1.
[18] Zhang X, Zhang J, He X, Wang Y, Ma X, Yin D . Genome-wide association study of major agronomic traits related to domestication in peanut. Front Plant Sci, 2017,8:1611.
[19] Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, Jing Y, Li W, Lin Z, Buckler E S, Qian Q, Zhang Q, Li J, Han B . Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet, 2010,42:961.
[20] Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds M P . Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor Appl Genet, 2015,128:353-363.
[21] Turuspekov Y, Baibulatova A, Yermekbayev K, Tokhetova L, Chudinov V, Sereda G, Ganal M, Griffiths S, Abugalieva S . GWAS for plant growth stages and yield components in spring wheat ( Triticum aestivum L.) harvested in three regions of Kazakhstan. BMC Plant Biol, 2017,17:51-61.
[22] 朱玉磊, 王升星, 赵良侠, 张德新, 胡建帮, 曹雪连, 杨亚杰, 常成, 马传喜, 张海萍 . 以关联分析发掘小麦整穗发芽抗性基因分子标记. 作物学报, 2014,40:1725-1732.
Zhu Y L, Wang S X, Zhao L X, Zhang D X, Hu J B, Cao X L, Yang Y J, Chang C, Ma C X, Zhang H P . Exploring molecular markers of preharvest sprouting resistance gene using wheat intact spikes by association analysis. Acta Agron Sin, 2014,40:1725-1732 (in Chinese with English abstract).
[23] Wang S X, Zhu Y L, Zhang D X, Shao H, Liu P, Hu J B, Zhang H, Zhang H P, Chang C, Lu J, Xia X C, Sun G L, Ma C X . Genome-wide association study for grain yield and related traits in elite wheat varieties and advanced lines using SNP markers. PLoS One, 2017,12:e0188662.
[24] Mwadzingeni L, Shimelis H, Rees D J G, Tsilo T J . Genome-wide association analysis of agronomic traits in wheat under drought-stressed and non-stressed conditions. PLoS One, 2017,12:e0171692.
[25] Liu Y, Lin Y, Gao S, Li Z, Ma J, Deng M, Chen G, Wei Y, Zheng Y . A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. Plant J, 2017,91:861.
[26] Würschum T, Langer S M, Longin C F, Korzun V, Akhunov E, Ebmeyer E, Schachschneider R, Schacht J, Kazman E, Reif J C . Population structure, genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theor Appl Genet, 2013,126:1477-1486.
[27] Meng L, Li H, Zhang L, Wang J . QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J, 2015,3:269-283.
[28] 陈昆松, 李方, 徐昌杰, 张上隆, 傅承新 . 改良CTAB法用于多年生植物组织基因组DNA的大量提取. 遗传, 2004,26:529-531.
Chen K S, Li F, Xu C J, Zhang S L, Fu C X . An efficient macro-method of genomic DNA isolation from Actinidia chinensis leaves. Hereditas, 2004,26:529-531 (in Chinese with English abstract).
[29] Allen A M, Winfield M O, Burridge A J, Downie R C, Benbow H R, Barker G L, Wilkinson P A, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, Griffiths S, Bentley A R, Alda M, Jack P, Phillips A L, Edwards K J . Characterization of a wheat breeders’ array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat ( Triticum aestivum). Plant Biotechnol J, 2017,15:390-401.
[30] Botstein D, White R, Skolnick M, Davis R . Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980,32:314-331.
[31] Evanno G, Regnaut S, Goudet J . Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol, 2005,14:2611-2620.
[32] Neumann K, Kobiljski B, Denčić S, Varshney R K, Börner A . Genome-wide association mapping: a case study in bread wheat ( Triticum aestivum L.). Mol Breed, 2011,27:37-58.
[33] Kuznetsova A, Brockhoff P B, Christensen R H B . lmerTest: Tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). 2013.
[34] Sukumaran S, Xiang W, Bean S R, Pedersen J F . Association mapping for grain quality in a diverse sorghum collection. Plant Genome, 2012,5:126-135.
[35] Breseghello F, Sorrells M E . Association mapping of kernel size and milling quality in wheat ( Triticum aestivum L.) cultivars. Genetics, 2006,172:1165-1177.
[36] Yu J, Pressoir G, Briggs W H, Bi I V, Yamasaki M, Doebley J F, McMullen M D, Gaut B S, Nielsen D M, Holland J B, Kresovich S, Buckler E S . A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet, 2006,38:203-208.
[37] 要燕杰 . 我国冬小麦品种(系)遗传多样性及部分产量性状和品质性状位点的关联分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2014.
Yao Y J . Genetic Diversity and Association Analysis of Loci for Yield and Quality Traits in Wheat. MS Thesis of Northwest A&F University, Yangling, Shaansi, China, 2014 (in Chinese with English abstract).
[38] Jaiswal V, Gahlaut V, Meher P K, Mir R R, Jaiswal J P, Rao A R, Balyan H S, Gupta P K . Genome wide single locus single trait, multi-locus and multi-trait association mapping for some important agronomic traits in common wheat ( T. aestivum L.). PLoS One, 2016,11:e0159343.
[39] Shi W, Hao C, Zhang Y, Cheng J, Zhang Z, Liu J, Yi X, Cheng X, Sun D, Xu Y, Zhang X, Cheng S, Guo P, Guo J . A combined association mapping and linkage analysis of kernel number per spike in common wheat ( Triticum aestivum L.). Front Plant Sci, 2017,8:1412.
[40] Zanke C, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Neumann F, Eichhorn A, Polley A, Jaenecke C, Ganal M W, Röder M S . Analysis of main effect QTL for thousand grain weight in European winter wheat ( Triticum aestivum L.) by genome-wide association mapping. Front Plant Sci, 2015,6:644.
[41] Sukumaran S, Reynolds M P, Sansaloni C . Genome-wide association analyses identify QTL hotspots for yield and component traits in durum wheat grown under yield potential, drought, and heat stress environments. Front Plant Sci, 2018,9:81.
[42] Ain Q, Rasheed A, Anwar A, Mahmood T, Imtiaz M, Mahmood T, Xia X, He Z, Quraishi U M . Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Front Plant Sci, 2015,6:743.
[43] Zanke C, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Beier S, Ganal M W, Röder M S . Genetic architecture of main effect QTL for heading date in European winter wheat. Front Plant Sci, 2014,5:217.
[44] 靖华, 亢秀丽, 马爱平, 崔欢虎, 王娟玲, 刘建华 . 晋南旱垣春季低温对不同播种期小麦冻害的影响. 中国农学通报, 2011,27(9):76-80
Jing H, Kang X L, Ma A P, Cui H H, Wang J L, Liu J H . Effect of spring low temperature on different sowing date winter wheat frozen injury on the arid area of southern Shanxi province. Chin Agric Sci Bull, 2011,27(9):76-80 (in Chinese with English abstract).
[45] Pei Z M, Murata Y, Benning G, Thomine S, Klüsener B, Allen G J, Grill E, Schroeder J I . Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature, 2000,406:731-734.
[46] Van Ooijen G, Mayr G, Kasiem M M, Albrecht M, Cornelissen B J, Takken F . Structure-function analysis of the NB-ARC domain of plant disease resistance proteins. J Exp Bot, 2008,59:1383-1397.
[47] Hong M J, Lee Y M, Son Y S, Im C H, Yi Y B, Rim Y G, Bahk J D, Heo J B . Rice Rab11 is required for JA-mediated defense signaling. Biochem Biophys Res Commun, 2013,434:797-802.
[48] Graaf B H J D, Cheung A Y, Andreyeva T, Levasseur K, Kieliszewski M, Wu H M . Rab11 GTPase-regulated membrane trafficking is crucial for tip-focused pollen tube growth in tobacco. Plant Cell, 2005,17:2564-2579.
[49] Asaoka R, Uemura T, Ito J, Fujimoto M, Ito E, Ueda T, Nakano A . Arabidopsis RABA1 GTPases are involved in transport between the trans-Golgi network and the plasma membrane, and are required for salinity stress tolerance. Plant J, 2013,73:240-249.
[50] Keates S E, Kostman T A, Anderson J D, Bailey B A . Altered gene expression in three plant species in response to treatment with Nep1, a fungal protein that causes necrosis. Plant Physiol, 2003,132:1610-1622.
[51] 苏延萍, 路小铎, 沈颂东, 张春义 . 拟南芥GATL12基因影响叶绿体的形成. 植物学报, 2011,46:379-385.
Su Y P, Lu X D, Shen S D, Zhang C Y . GATL12 is essential for chloroplast biogenesis in Arabidopsis. Chin Bull Bot, 2011,46:379-385 (in Chinese with English abstract).
[1] 陈玲玲, 李战, 刘亭萱, 谷勇哲, 宋健, 王俊, 邱丽娟. 基于783份大豆种质资源的叶柄夹角全基因组关联分析[J]. 作物学报, 2022, 48(6): 1333-1345.
[2] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[3] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[4] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[5] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[6] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[7] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[8] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[9] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[10] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[11] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[12] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[13] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[14] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[15] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!