欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (4): 601-612.doi: 10.3724/SP.J.1006.2019.82029

• 耕作栽培·生理生化 • 上一篇    下一篇

谷子苗期耐低磷种质筛选及其根系保护酶系统对低磷胁迫的响应

苑乂川1,*,陈小雨1,*,李明明1,李萍1,贾亚涛1,韩渊怀1,2,3,邢国芳1,2,3,*()   

  1. 1 山西农业大学农学院, 山西太谷 030801
    2 山西农业大学农业生物工程研究所, 山西太谷 030801
    3 杂粮种质资源发掘与遗传改良山西省重点实验室, 山西太谷 030801
  • 收稿日期:2018-07-25 接受日期:2018-12-24 出版日期:2019-04-12 网络出版日期:2019-01-04
  • 通讯作者: 苑乂川,陈小雨,邢国芳
  • 作者简介:sxtyyyc@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(31200914);本研究由国家自然科学基金项目(31501323);山西省高等学校科技创新项目(2015145);山西省重点研发计划项目(201803D221008-4);山西省主要农作物种质创新与分子育种重点科技创新平台(201605D151002)

Screening of germplasm tolerant to low phosphorus of seedling stage and response of root protective enzymes to low phosphorus in foxtail millet

YUAN Yi-Chuan1,*,CHEN Xiao-Yu1,*,LI Ming-Ming1,LI Ping1,JIA Ya-Tao1,HAN Yuan-Huai1,2,3,XING Guo-Fang1,2,3,*()   

  1. 1 College of Agronomy, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2 Institute of Agricultural Bioengineering, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    3 Shanxi Key Laboratory of Genetic Resources and Genetic Improvement of Minor Crop, Taigu 030801, Shanxi, China
  • Received:2018-07-25 Accepted:2018-12-24 Published:2019-04-12 Published online:2019-01-04
  • Contact: Yi-Chuan YUAN,Xiao-Yu CHEN,Guo-Fang XING
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31200914);This study was supported by the National Natural Science Foundation of China(31501323);Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2015145);Key R&D Program of Shanxi Province(201803D221008-4);Key Scientific and Technological Innovation and Molecular Breeding Platform of Major Crop Germplasm in Shanxi Province(201605D151002)

摘要:

本研究旨在探讨不同基因型谷子苗期耐低磷特性, 建立其筛选的评价体系, 筛选出苗期耐低磷谷子种质材料。对160份核心谷子种质资源的苗期株高、根长、地上鲜重、地下鲜重、叶长、叶宽、茎粗、地上磷含量、地下磷含量、地上干重和地下干重11个指标的耐低磷系数进行变异分析、相关性分析、主成分分析和聚类分析, 采用隶属函数法综合评价不同谷子耐低磷相关指标和耐低磷特性; 针对筛选出的低磷敏感和耐低磷品种, 在生理水平上分析其根系超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)的活性。结果表明, 9份材料属于低磷敏感品种, 66份材料属于低磷较敏感品种, 70份材料属于较耐低磷品种, 15份材料属于耐低磷品种; 低磷胁迫促使谷子根系SOD、POD、CAT活性增加。总之, 以综合指标对谷子耐低磷特性的鉴定更为客观; 根系保护酶系统对谷子在低磷胁迫下的适应性具有重要作用。

关键词: 谷子, 低磷胁迫, 种质资源, 综合评价, 根系保护酶

Abstract:

The purpose of this paper was to explore the characteristics of low-phosphate tolerance in different genotypes of foxtail millet and establish an evaluation system for screening and breeding new cultivars with low-phosphate tolerance. Correlation analysis, principal component analysis, membership function and cluster analysis were carried out on 11 indicators of 160 core foxtail millet varieties, including plant heights, root lengths, fresh weights of aerial part and underground part, leaf lengths and widths, stem thicknesses, phosphorus contents of aerial part and underground part, dry weights of aerial part and underground part, to comprehensively evaluate indicators and characters related to low-phosphorous tolerance. Furthermore, a hydroponic experiment was conducted to cultivate selected varieties with low-phosphorus sensitivity and low-phosphorus tolerance under low phosphorus (LP) and normal phosphorus (NP) conditions, and superoxide dismutase (SOD) activity, peroxidase (POD) activity, and catalase (CAT) activity in roots were analyzed. There were nine varieties with low-phosphorus sensitivity, 66 and 70 varieties with medium low-phosphate tolerance and 15 varieties with low-phosphorus tolerance. The activities of SOD, POD, and CAT were increased under low phosphorus condition. It was concluded that the comprehensive index is more objective to evaluate the low-phosphorus tolerance of 160 foxtail millet variation at the seedling stage, and the root protective enzymes are important for the adaptability of foxtail millet to low-phosphorus stress.

Key words: foxtail millet, low-phosphorus stress, germplasm resources, comprehensive evaluation, root protecting enzyme

表1

谷子部分性状耐低磷系数(LP/NP)的变化范围及变异系数"

性状
Trait
变化范围
Variation range (%)
平均值
Average (%)
变异系数
Coefficient of variance (%)
株高Plant height 56.15-93.05 71.16 11.00
根长Root length 51.92-140.88 105.48 15.61
地下鲜重Underground fresh weight 92.47-151.40 149.02 18.42
地上鲜重Aboveground fresh weight 35.04-90.63 67.13 14.19
叶长Leaf length 37.90-59.86 46.69 26.69
叶宽Leaf width 50.00-122.73 81.84 12.93
茎粗Diameter of main stem 44.96-106.20 74.26 11.39
地上磷含量Aboveground phosphorus content 36.00-95.00 72.09 15.80
地下磷含量Subsurface phosphorus content 24.00-89.00 58.85 20.69
地上干重Aboveground dry weight 36.00-91.00 66.89 14.98
地下干重Underground dry weight 41.00-124.00 75.74 17.34

表2

谷子各性状耐低磷系数(LP/NP)的相关性分析"

性状
Trait
株高
PH
根长
RL
地上部
鲜重
AFW
地下部
鲜重
UFW
叶长
LL
叶宽
LW
茎粗
DMS
地上部
磷含量
APC
地下部
磷含量
SPC
地上部
干重
ADW
地下部
干重
UDW
PH 1
RL 0.036 1
AFW 0.442** 0.172* 1
UFW -0.531** 0.821** -0.103 1
LL 0.648** -0.542** 0.603** -0.808** 1
LW 0.343** -0.200* 0.066 -0.361** 0.334** 1
DMS 0.249** -0.044 0.357** -0.179* 0.300** 0.109 1
APC 0.268** -0.121 0.190* -0.233** 0.303** 0.225** 0.011 1
SPC 0.019 0.104 0.269** 0.075 0.066 -0.153 -0.024 0.573** 1
ADW 0.187* 0.054 0.494** -0.069 0.290** 0.0177 0.128 0.477** 0.557** 1
UDW 0.222** -0.073 0.100 -0.179* 0.196* 0.318** -0.084 0.365** 0.115 0.352** 1

表3

各综合指标特征值及贡献率"

主成分
Principal component
特征值
Eigenvalue
贡献率
Contributive ratio (%)
累积贡献率
Cumulative contributive ratio (%)
1 4.657 42.334 42.334
2 2.287 20.793 63.127
3 1.233 11.206 74.333
4 0.959 8.716 83.049

表4

各因子载荷矩阵"

耐低磷指标
Low-P tolerant index
主成分 Principal component
1 2 3 4
株高PH 0.814 -0.180 0.319 0.007
根长RL 0.421 0.827 0.260 -0.019
地上部鲜重AFW 0.810 0.005 0.156 -0.412
地下部鲜重UFW 0.164 0.957 0.114 0.031
叶长LL 0.580 -0.744 0.074 -0.233
叶宽LW 0.647 -0.172 0.336 0.479
茎粗DMS 0.673 0.027 0.408 -0.234
地上部磷含量APC 0.748 -0.043 -0.432 0.193
地下部磷含量SPC 0.584 0.236 0.649 -0.202
地上部干重ADW 0.793 0.106 -0.344 -0.113
地下部干重UDW 0.529 -0.044 -0.119 0.599

表5

各品种的综合性状指标值、权重、μ(X)及综合评价值(D)"

品种
Variety
Z1 Z2 Z3 Z4 μ(X1) μ(X2) μ(X3) μ(X4) 综合评价值
Comprehensive assessment value (D)
排名
Order
V1 -1.6323 0.3830 1.7162 -0.3955 0.2264 0.6479 0.7765 0.3123 0.4152 27
V2 -1.4500 -2.1682 1.3999 -0.5085 0.2539 0.3513 0.7244 0.2908 0.3456 7
V3 -1.2102 -0.6284 -0.2063 1.0063 0.2901 0.5303 0.4597 0.5793 0.4035 20
V4 1.6335 0.7376 -2.4004 1.1895 0.7197 0.6891 0.0981 0.6142 0.6171 134
V5 2.1822 -0.2511 -2.4419 0.4781 0.8026 0.5742 0.0913 0.4787 0.6154 132
V6 0.0319 0.6162 0.2194 -0.2165 0.4778 0.6750 0.5298 0.3464 0.5204 79
V7 -0.0242 -1.3712 -0.1959 0.1746 0.4693 0.4440 0.4614 0.4209 0.4568 49
V8 0.1818 0.6668 -0.6091 -1.6641 0.5004 0.6809 0.3933 0.0707 0.4860 67
V9 3.0438 -2.0966 1.9004 0.6023 0.9327 0.3596 0.8069 0.5024 0.7270 158
V10 0.3314 1.3360 -1.2708 0.1252 0.5230 0.7587 0.2842 0.4115 0.5381 95
V11 -1.3979 -0.0456 0.3979 -0.1125 0.2618 0.5981 0.5593 0.3662 0.3971 17
V12 -1.1021 1.0375 0.4391 0.0901 0.3065 0.7240 0.5660 0.4048 0.4564 47
V13 0.7983 1.0699 -1.3880 -0.9506 0.5935 0.7278 0.2649 0.2066 0.5422 97
V14 -1.6737 2.0691 -0.2322 1.2051 0.2201 0.8439 0.4554 0.6172 0.4498 42
V15 1.0917 -0.5273 -1.6633 0.7557 0.6378 0.5421 0.2196 0.5316 0.5463 99
V16 -0.5638 -0.1478 0.0901 -1.2853 0.3878 0.5862 0.5085 0.1428 0.4280 30
V17 -1.8131 -0.7841 -0.2550 1.8789 0.1991 0.5122 0.4517 0.7455 0.3689 12
V18 -2.9829 -0.8147 0.6199 -0.8614 0.0224 0.5087 0.5958 0.2236 0.2426 1
V19 0.0209 2.1536 -2.9956 1.1885 0.4761 0.8537 0.0000 0.6140 0.5209 81
V20 -1.7178 0.1697 -1.5586 0.5914 0.2135 0.6231 0.2368 0.5003 0.3493 9
V21 0.2587 0.1713 0.1004 1.0974 0.5120 0.6233 0.5102 0.5967 0.5485 102
V22 -0.3407 -1.1073 1.5481 -0.6580 0.4215 0.4747 0.7488 0.2623 0.4622 52
V23 -2.7587 3.3932 -0.1598 1.4613 0.0563 0.9979 0.4673 0.6660 0.4115 24
V24 2.3725 0.2468 -1.4864 0.5768 0.8313 0.6321 0.2487 0.4975 0.6678 149
V25 2.8794 0.2426 -1.2286 1.4558 0.9079 0.6316 0.2912 0.6649 0.7300 159
V26 1.9496 0.0191 -2.3027 0.9441 0.7674 0.6056 0.1142 0.5675 0.6178 135
品种
Variety
Z1 Z2 Z3 Z4 μ(X1) μ(X2) μ(X3) μ(X4) 综合评价值
Comprehensive assessment value (D)
排名
Order
V27 -0.0735 1.0066 -0.2675 0.0285 0.4618 0.7204 0.4496 0.3931 0.5177 76
V28 -1.4796 -2.7691 -1.5485 0.4326 0.2495 0.2815 0.2385 0.4700 0.2791 2
V29 -0.3805 -1.4994 0.0644 -0.8302 0.4155 0.4291 0.5043 0.2295 0.4113 23
V30 -2.3010 0.5568 0.8604 -0.4532 0.1254 0.6681 0.6355 0.3013 0.3486 8
V31 -0.3831 -0.6384 0.3210 -0.2612 0.4151 0.5292 0.5466 0.3379 0.4533 45
V32 -0.3526 -0.8341 0.2491 0.3958 0.4197 0.5064 0.5347 0.4630 0.4615 51
V33 -1.2572 2.0635 0.1175 -0.6559 0.2830 0.8433 0.5130 0.2627 0.4522 44
V34 -2.0066 -0.0741 1.2416 -0.0945 0.1699 0.5948 0.6983 0.3696 0.3685 11
V35 -2.9688 1.9081 3.0723 0.2469 0.0245 0.8252 1.0000 0.4347 0.3997 18
V36 -1.1128 2.6623 1.4580 0.2940 0.3049 0.9129 0.7340 0.4436 0.5296 89
V37 -1.0320 0.6961 -0.0191 0.7611 0.3171 0.6843 0.4905 0.5326 0.4551 46
V38 2.3586 -0.0702 -0.7951 -0.5512 0.8292 0.5952 0.3626 0.2827 0.6503 146
V39 1.3125 -0.1426 0.7184 0.8312 0.6712 0.5868 0.6121 0.5459 0.6289 142
V40 1.7558 -1.0203 -1.9245 1.5502 0.7382 0.4848 0.1765 0.6829 0.5931 123
V41 -0.4456 -0.3004 0.9464 -0.0120 0.4056 0.5685 0.6496 0.3853 0.4772 63
V42 -1.8962 -2.1770 0.8829 0.1763 0.1865 0.3503 0.6392 0.4212 0.3132 4
V43 -0.8274 0.2928 -1.8849 -0.7725 0.3480 0.6374 0.1830 0.2405 0.3869 14
V44 -1.3986 0.4234 -0.7386 -1.0700 0.2617 0.6526 0.3720 0.1838 0.3663 10
V45 0.0631 -0.2475 0.0927 -0.7990 0.4825 0.5746 0.5090 0.2355 0.4832 64
V46 -0.0955 1.4289 -0.2399 0.3159 0.4585 0.7695 0.4541 0.4478 0.5347 91
V47 1.7838 1.5395 -2.2310 1.2522 0.7424 0.7824 0.1260 0.6261 0.6570 147
V48 0.3831 1.5463 -1.2741 -0.8337 0.5308 0.7831 0.2837 0.2288 0.5290 88
V49 -0.5436 0.5557 1.0839 1.1437 0.3908 0.6680 0.6723 0.6055 0.5207 80
V50 -1.3887 0.8153 1.0506 0.8640 0.2632 0.6982 0.6668 0.5522 0.4569 50
V51 2.1270 -1.1928 -0.1009 -0.0165 0.7942 0.4647 0.4771 0.3845 0.6259 140
V52 0.3242 0.7315 -0.8191 -0.0001 0.5219 0.6884 0.3587 0.3876 0.5275 87
V53 0.2900 -0.6707 -1.9185 -1.2474 0.5168 0.5254 0.1775 0.1500 0.4347 32
V54 -0.6756 0.2877 -0.4629 -0.1039 0.3709 0.6368 0.4174 0.3678 0.4434 37
V55 3.0862 -0.8419 0.2682 0.2587 0.9391 0.5055 0.5379 0.4369 0.7237 156
V56 -0.1720 1.2193 -1.3032 -0.0738 0.4470 0.7451 0.2789 0.3736 0.4913 68
V57 -0.6719 0.9067 -1.0655 -0.6782 0.3715 0.7088 0.3181 0.2585 0.4369 33
V58 2.8844 0.6624 -0.2868 1.0581 0.9086 0.6804 0.4464 0.5892 0.7556 160
V59 1.3463 2.2963 0.1229 0.2876 0.6763 0.8703 0.5139 0.4424 0.6784 151
V60 -1.5799 2.0050 0.9341 -0.0246 0.2343 0.8365 0.6476 0.3829 0.4565 48
V61 -1.2737 1.9840 -0.6119 1.3180 0.2806 0.8340 0.3928 0.6387 0.4719 60
V62 -1.9948 2.2161 0.1507 0.5801 0.1716 0.8610 0.5185 0.4981 0.4253 29
V63 0.7281 1.9543 0.0045 0.4504 0.5829 0.8306 0.4944 0.4734 0.6215 137
V64 -1.9503 -0.9239 -0.0778 -0.5369 0.1784 0.4960 0.4809 0.2854 0.3099 3
V65 -0.4570 1.5584 1.3589 0.4630 0.4039 0.7846 0.7176 0.4758 0.5491 103
V66 -0.1959 -0.8819 -0.1243 0.5303 0.4434 0.5009 0.4732 0.4886 0.4665 55
V67 -1.4532 -1.5355 1.5459 1.4533 0.2534 0.4249 0.7484 0.6644 0.4063 22
V68 -0.0935 1.1747 -1.0937 0.9499 0.4588 0.7399 0.3134 0.5686 0.5211 82
V69 -3.1311 0.7949 -1.4602 3.2151 0.0000 0.6958 0.2530 1.0000 0.3134 5
V70 -0.8250 -0.4004 -0.0584 -0.2687 0.3483 0.5568 0.4841 0.3365 0.4176 28
品种
Variety
Z1 Z2 Z3 Z4 μ(X1) μ(X2) μ(X3) μ(X4) 综合评价值
Comprehensive assessment value (D)
排名
Order
V71 -1.4984 2.0480 1.6374 -0.5784 0.2466 0.8415 0.7635 0.2775 0.4685 57
V72 0.3822 3.4116 0.4863 -0.6490 0.5307 1.0000 0.5738 0.2640 0.6260 141
V73 -1.3044 1.9319 1.5631 -0.2074 0.2759 0.8280 0.7513 0.3481 0.4859 66
V74 0.3536 0.6448 -0.2815 -1.0117 0.5264 0.6783 0.4473 0.1949 0.5189 77
V75 -0.4450 1.4046 -0.1209 -0.5443 0.4057 0.7667 0.4738 0.2840 0.4925 69
V76 -1.4930 1.5681 0.4010 -0.4236 0.2474 0.7857 0.5598 0.3070 0.4306 31
V77 0.2232 -1.9715 -0.2916 0.9274 0.5067 0.3742 0.4456 0.5643 0.4713 59
V78 -0.9094 1.0281 0.1685 0.0851 0.3356 0.7229 0.5214 0.4038 0.4648 53
V79 -0.0005 0.7317 1.1602 -0.9947 0.4729 0.6884 0.6849 0.1982 0.5266 86
V80 0.8224 2.6255 -0.6271 -0.7117 0.5972 0.9086 0.3903 0.2521 0.6110 130
V81 1.2214 -2.9115 -0.8400 -2.0352 0.6574 0.2649 0.3552 0.0000 0.4493 40
V82 0.8209 0.5664 -0.5639 -0.7469 0.5969 0.6692 0.4007 0.2454 0.5517 107
V83 -0.4357 -1.2831 0.8076 1.5209 0.4071 0.4542 0.6268 0.6773 0.4769 62
V84 -0.5671 -0.8329 0.4943 -0.1860 0.3873 0.5066 0.5751 0.3522 0.4388 34
V85 1.2493 1.3814 0.0058 -0.8098 0.6617 0.7640 0.4946 0.2334 0.6198 136
V86 0.3429 1.1338 -0.7069 -1.0188 0.5247 0.7352 0.3772 0.1936 0.5228 83
V87 0.1775 0.9740 -0.4391 0.4596 0.4998 0.7166 0.4213 0.4752 0.5409 96
V88 0.8198 -0.3046 -0.1972 0.4407 0.5968 0.5680 0.4612 0.4716 0.5581 109
V89 -1.2621 0.1656 0.4366 -1.3000 0.2823 0.6226 0.5656 0.1400 0.3908 16
V90 0.3801 -0.0729 1.1570 -0.2461 0.5304 0.5949 0.6844 0.3408 0.5474 100
V91 0.7566 1.3846 0.2228 -0.2748 0.5872 0.7643 0.5304 0.3353 0.5975 125
V92 0.9868 0.3051 0.5359 -0.3856 0.6220 0.6389 0.5820 0.3142 0.5885 119
V93 -0.6307 0.0425 1.6762 -1.1183 0.3777 0.6083 0.7699 0.1746 0.4670 56
V94 1.7287 -0.0029 -0.6032 -0.9731 0.7341 0.6030 0.3943 0.2023 0.5996 128
V95 0.7446 1.2538 -0.3449 -0.7549 0.5854 0.7491 0.4368 0.2439 0.5705 115
V96 0.8910 -0.6957 -1.4774 -0.7926 0.6075 0.5225 0.2502 0.2367 0.4991 71
V97 1.0161 1.5727 -0.8139 -0.4504 0.6264 0.7862 0.3595 0.3018 0.5964 124
V98 -2.4021 1.1652 1.6025 0.2695 0.1101 0.7388 0.7578 0.4390 0.3894 15
V99 0.8537 0.3506 -0.3481 0.1239 0.6019 0.6441 0.4363 0.4112 0.5701 114
V100 0.2219 1.2902 -1.8862 1.0882 0.5065 0.7534 0.1828 0.5949 0.5339 90
V101 2.1516 -0.8218 0.6916 1.4801 0.7979 0.5078 0.6077 0.6695 0.6861 153
V102 0.2359 0.3941 1.0508 1.9153 0.5086 0.6492 0.6669 0.7524 0.5907 121
V103 1.5819 -1.5365 -0.2466 1.0536 0.7119 0.4248 0.4530 0.5883 0.5921 122
V104 -0.9350 -0.7984 1.6214 1.7402 0.3317 0.5106 0.7609 0.7191 0.4751 61
V105 -0.9468 -0.8273 0.4000 -0.4906 0.3299 0.5072 0.5596 0.2942 0.4016 19
V106 1.2936 -0.4993 1.2425 0.8576 0.6683 0.5453 0.6984 0.5510 0.6293 143
V107 0.8802 -3.0949 0.1413 1.0083 0.6059 0.2436 0.5170 0.5797 0.5004 72
V108 1.7261 2.4421 -0.6870 -1.1093 0.7337 0.8873 0.3805 0.1764 0.6660 148
V109 0.0716 -0.8917 1.1465 -1.0074 0.4838 0.4997 0.6826 0.1958 0.4843 65
V110 1.1676 -0.6450 0.4010 -1.4996 0.6493 0.5284 0.5598 0.1020 0.5495 105
V111 2.2048 -2.3144 0.4298 0.5973 0.8060 0.3343 0.5645 0.5014 0.6233 138
V112 1.6566 0.4933 -0.7047 -1.3796 0.7232 0.6607 0.3775 0.1249 0.5981 126
V113 1.0447 -1.7958 -1.3696 -1.3406 0.6307 0.3946 0.2680 0.1323 0.4703 58
V114 2.5698 -1.6432 -0.9985 -1.3906 0.8611 0.4123 0.3291 0.1228 0.5995 127
品种
Variety
Z1 Z2 Z3 Z4 μ(X1) μ(X2) μ(X3) μ(X4) 综合评价值
Comprehensive assessment value (D)
排名
Order
V115 0.7084 -0.2833 -0.6263 1.3865 0.5799 0.5704 0.3905 0.6517 0.5595 111
V116 0.2016 -0.9832 -0.6574 -1.4154 0.5034 0.4891 0.3853 0.1181 0.4434 38
V117 0.3319 0.5234 1.0628 -0.7934 0.5231 0.6642 0.6688 0.2365 0.5480 101
V118 -0.0904 1.9288 -0.2509 -1.7092 0.4593 0.8276 0.4523 0.0621 0.5089 74
V119 -0.6536 -0.4628 1.4120 -1.3866 0.3742 0.5496 0.7264 0.1235 0.4393 35
V120 0.2346 1.2992 -0.3514 -1.0919 0.5084 0.7544 0.4358 0.1797 0.5257 85
V121 0.1400 0.3997 -0.1264 -0.8832 0.4941 0.6498 0.4728 0.2194 0.5014 73
V122 -1.0625 1.0788 0.6917 -0.7088 0.3125 0.7288 0.6077 0.2526 0.4503 43
V123 0.2827 0.6421 -0.1297 -0.5724 0.5156 0.6780 0.4723 0.2786 0.5256 84
V124 1.3192 0.3550 2.7395 1.6487 0.6722 0.6447 0.9452 0.7017 0.7052 155
V125 1.0251 -1.4867 2.1165 -0.5607 0.6278 0.4305 0.8425 0.2808 0.5709 116
V126 -0.7859 -0.5590 -0.5303 2.7169 0.3542 0.5384 0.4063 0.9051 0.4652 54
V127 0.6901 -0.7110 -0.2695 0.5643 0.5772 0.5207 0.4493 0.4951 0.5372 93
V128 -0.1924 -2.1455 0.8792 0.0768 0.4439 0.3540 0.6386 0.4023 0.4433 36
V129 2.0218 -3.0902 0.8532 0.0116 0.7783 0.2441 0.6343 0.3898 0.5843 118
V130 2.3030 0.6975 0.1622 -0.7651 0.8208 0.6845 0.5204 0.2419 0.6854 152
V131 1.1158 1.6194 0.8286 -0.8007 0.6415 0.7916 0.6302 0.2351 0.6349 144
V132 -1.3467 0.5684 -0.7876 0.9307 0.2695 0.6695 0.3639 0.5649 0.4134 25
V133 -0.8406 -0.8182 -0.4682 0.1958 0.3460 0.5083 0.4165 0.4249 0.4044 21
V134 2.0695 -4.6858 0.4021 0.8945 0.7855 0.0586 0.5599 0.5580 0.5492 104
V135 0.6691 0.4128 0.1090 -0.2092 0.5740 0.6514 0.5116 0.3478 0.5612 112
V136 -0.3019 1.5029 1.1814 -0.1033 0.4273 0.7781 0.6884 0.3680 0.5442 98
V137 1.0540 1.4276 1.2276 1.1156 0.6322 0.7693 0.6960 0.6001 0.6718 150
V138 1.7374 0.5377 -0.0778 -1.1412 0.7354 0.6659 0.4809 0.1703 0.6243 139
V139 -0.0621 -2.0903 0.5436 -1.5520 0.4636 0.3604 0.5833 0.0920 0.4149 26
V140 1.6572 -1.9967 -0.2135 -0.3041 0.7233 0.3713 0.4585 0.3297 0.5581 110
V141 -1.2772 0.9526 1.0633 -0.1421 0.2800 0.7141 0.6689 0.3606 0.4496 41
V142 0.8626 -0.1704 -0.9908 0.6097 0.6032 0.5836 0.3304 0.5038 0.5511 106
V143 -0.4207 1.6479 -0.2193 -0.6341 0.4094 0.7950 0.4575 0.2669 0.4975 70
V144 -0.0266 -0.0241 0.5838 1.4158 0.4689 0.6006 0.5899 0.6573 0.5380 94
V145 0.0194 1.1904 -0.9115 0.1998 0.4759 0.7418 0.3435 0.4257 0.5193 78
V146 1.4047 0.5100 -0.6107 -0.9683 0.6851 0.6627 0.3930 0.2032 0.5895 120
V147 3.4893 -3.9982 -0.5485 -0.2163 1.0000 0.1386 0.4033 0.3464 0.6352 145
V148 1.2168 -0.6707 2.6366 -0.8229 0.6567 0.5254 0.9282 0.2309 0.6158 133
V149 3.4272 -1.4023 -0.4987 0.6199 0.9906 0.4404 0.4115 0.5057 0.7238 157
V150 1.2416 -0.0553 -0.4547 -1.4753 0.6605 0.5970 0.4187 0.1066 0.5538 108
V151 1.2981 -5.1901 -0.5088 0.5695 0.6690 0.0000 0.4098 0.4961 0.4484 39
V152 0.6812 -0.4861 0.0443 -1.3083 0.5758 0.5469 0.5010 0.1384 0.5126 75
V153 1.7589 -0.4240 -1.2320 -1.3231 0.7386 0.5541 0.2906 0.1356 0.5687 113
V154 1.8504 -0.3416 0.5364 -1.5895 0.7524 0.5637 0.5821 0.0849 0.6121 131
V155 -3.0664 0.5577 2.7888 1.8880 0.0098 0.6682 0.9533 0.7472 0.3794 13
V156 -2.4860 -0.5374 -0.1214 2.2582 0.0974 0.5409 0.4737 0.8177 0.3349 6
V157 2.9685 -1.3375 -0.4448 0.8433 0.9213 0.4479 0.4204 0.5483 0.6960 154
V158 2.0892 -2.2147 0.5843 0.0875 0.7885 0.3459 0.5900 0.4043 0.6106 129
V159 1.5189 -2.8861 1.9919 -0.2344 0.7024 0.2679 0.8219 0.3430 0.5720 117
V160 0.5692 -0.6643 0.8973 -0.3538 0.5589 0.5262 0.6416 0.3202 0.5368 92
Weights 0.5097 0.2504 0.1349 0.1050

图1

160个谷子品种的耐低磷性聚类图"

图2

不同供磷强度下谷子SOD、POD、CAT活性的比较 图柱上不同的字母表示5%水平下差异的显著性。"

[1] Manschadi A M, Kaul H P, Vollmann J, Eitzinger J, Wenzel W . Developing phosphorus-efficient crop varieties: an interdisciplinary research framework. Field Crops Res, 2014,162:87-98.
[2] 丁广大, 陈水森, 石磊, 蔡红梅, 叶祥盛 . 植物耐低磷胁迫的遗传调控机理研究进展. 植物营养与肥料学报, 2013,19:733-744.
Ding G D, Chen S S, Shi L, Cai H M, Ye X S . Research advances in genetic regulation mechanism of plant tolerance to low-phosphorus stress. J Plant Nutr Fert, 2013,19:733-744 (in Chinese with English abstract).
[3] Cordell D, Drangert J O, White S . The story of phosphorus: Global food security and food for thought. Global Environ Change, 2009,19:292-305.
doi: 10.1016/j.gloenvcha.2008.10.009
[4] Dawson C J, Hilton J . Fertilizer availability in a resource limited world: Production and recycling of nitrogen and phosphorus. Food Policy, 2011,36:S14-S22.
doi: 10.1016/j.foodpol.2010.11.012
[5] Lynch J P . Roots of the second green revolution. Aust J Bot, 2007,55:493-512.
doi: 10.1016/S0264-410X(02)00552-2
[6] 郭再华, 贺立源, 徐才国 . 磷水平对不同耐低磷水稻苗根系生长及氮、磷、钾吸收的影响. 应用与环境生物学报, 2006,12:449-452.
Guo Z H, He L Y, Xu C G . Effect of phosphorus level on root growth and N, P and K uptake of rice with different Pi efficiencies at seedling stage. Chin J Appl Environ Biol, 2006,12:449-452 (in Chinese with English abstract).
[7] 湛静, 陈发波 . 玉米低磷胁迫研究现状. 现代农业科技, 2014, ( 4):14-15.
Zhan J, Chen F B . Research situation of low-phosphorus stress in Zea mays. Mod Agric Sci Technol, 2014, ( 4):14-15 (in Chinese with English abstract).
[8] 刘渊, 李喜焕, 王英, 张彩英 . 大豆耐低磷指标筛选与耐低磷品种鉴定. 中国农业科技导报, 2015,17(4):30-41.
Li Y, Li X H, Wang Y, Zhang C Y . Screen indexes for soybean tolerance to phosphorus deficiency and identification of low-phosphorus tolerant soybean cultivars. J Agric Sci Technol, 2015,17(4):30-41 (in Chinese with English abstract).
[9] 刁现民 . 中国谷子产业与产业技术体系. 北京: 中国农业科学技术出版社, 2011. pp 20-30.
Diao X M. Chinese Industry and Technical System of Foxtail millet. Beijing: China Agricultural Sciences and Technology Press, 2011. pp 20-30(in Chinese).
[10] 李顺国, 刘斐, 刘猛, 赵宇, 王慧军 . 我国谷子产业现状、发展趋势及对策建议. 农业现代化研究, 2014,35:531-535.
Li S G, Liu F, Liu M, Zhao Y, Wang H J . The current industry situation, development trend and suggestions for the future of foxtail millet in China. Res Agric Modern, 2014,35:531-535 (in Chinese with English abstract).
[11] 张雪峰 . 中国谷子产业发展问题研究. 东北农业大学博士学位论文, 黑龙江哈尔滨, 2013.
Zhang X F . Study on the Issues of Millet Industry Development in China. PhD Dissertation of Northeast Agricultural University. Harbin, Heilongjiang,China, 2013 (in Chinese with English abstract).
[12] 邱双, 闫双堆, 刘利军 . 不同谷子品种耐低磷能力研究. 作物杂志, 2017, ( 2):139-144.
Qiu S, Yan S D, Liu L J . Study on the tolerance to low-phosphorus of different millet cultivars. Crops, 2017, ( 2):139-144 (in Chinese with English abstract).
[13] Zaheer A, Maqsood A G, Riazh Q . Genotypic variations of phosphor2 us utilization efficiency of crops. J Soil Sci Plant Nutr, 2001,24:1149-1171.
doi: 10.1081/PLN-100106973
[14] Vance C P , Uhde-stone C, Allan D L. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol, 2003,157:23-447.
doi: 10.1046/j.1469-8137.2003.00695.x
[15] 杨艳君, 郭平毅, 曹玉凤, 王宏富, 王玉国, 原向阳, 邢国芳, 邵东红, 祁祥, 解丽丽, 聂萌恩, 郭俊, 宁娜 . 施肥水平和种植密度对张杂谷5号产量及其构成要素的影响. 作物学报, 2012,38:2278-2285.
Yang Y J, Guo P Y, Cao Y F, Wang H F, Wang Y G, Yuan X Y, Xing G F, Shao D H, Qi X, Xie L L, Nie M E, Guo J, Ning N . Effects of fertilization and planting density on yield and its components in foxtail millet hybrid Zhangzagu 5. Acta Agron Sin, 2012,38:2278-2285 (in Chinese with English abstract).
[16] Ceasar S A, Hodge A, Baker A, Baldwin S A . Phosphate concentration and arbuscular mycorrhizal colonization influence the growth, yield and expression of twelve PHT1 family phosphate transporters in foxtail millet (Setaria italica L.). PLoS One, 2014,9:e108459.
doi: 10.1371/journal.pone.0108459 pmid: 4177549
[17] 张玉霞, 李志刚, 张玉玲, 钟鹏 . 缺磷胁迫对大豆膜脂过氧化及保护酶活性的影响. 中国农学通报, 2004,20(4):196-197.
Zhang Y X, Li Z G, Zhang Y L, Zhong P . Effects of phosphorus deficiency stress on membrane lipid peroxidation and activities of protective enzymes in soybean. Chin Agric Sci Bull, 2004,20(4):196-197 (in Chinese with English abstract).
[18] Zhang G P, Fukami M, Sekimoto H . Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Res, 2002,77:93-98.
doi: 10.1016/S0378-4290(02)00061-8
[19] 王晓英, 王小林, 张源, 李鹏, 李文胜 . 磷含量测定研究进展. 燃料与染色, 2017, ( 2):51-56.
Wang X Y, Wang X L, Zhang Y, Li P, Li W S . Progress in the determination of phosphorus content. Dyestuffs Coloration, 2017, ( 2):51-56 (in Chinese).
[20] 王学奎 . 植物生理生化实验原理和技术.北京: 高等教育出版社, 2006. pp 172-173.
Wang X K. Principles and Techniques of Plant Physiological and Biochemical Experiments. Beijing: Higher Education Press, 2006. pp 172-173(in Chinese).
[21] 戴海芳, 武辉 , 阿曼古丽·买买提阿力, 王立红, 麦麦提·阿皮孜, 张巨松. 不同基因型棉花苗期耐盐性分析及其鉴定指标筛选. 中国农业科学, 2014,47:1290-1300.
Dai H F, Wu H, Amanguli M, Wang L H, Maimaiti A, Zhang J S . Analysis of salt tolerance and determination of salt-tolerant evaluation indicators in cotton seedlings of different genotypes. Sci Agric Sin, 2014,47:1290-1300 (in Chinese with English abstract).
[22] 栗振义, 张绮芯, 仝宗永, 李跃, 徐洪雨, 万修福, 毕舒贻, 曹婧, 何峰, 万里强, 李向林 . 不同紫花苜蓿品种对低磷环境的形态与生理响应分析. 中国农业科学, 2017,50:3898-3907.
Li Z Y, Zhang Q X, Tong Z Y, Li Y, Xu H Y, Wan X F, Bi S Y, Cao J, He F, Wan L Q, Li X L . Analysis of morphological and physiological responses to low-phosphorus stress in different alfalfas. Sci Agric Sin, 2017,50:3898-3907 (in Chinese with English abstract).
[23] 王琪, 徐程扬 . 氮磷对植物光合作用及碳分配的影响. 山东林业科技, 2005, ( 5):59-62.
Wang Q, Xu C Y . Affects of nitrogen and phosphorus on plant leaf photosynthesis and carbon partitioning. J Shandong For Sci Technol, 2005, ( 5):59-62 (in Chinese with English abstract).
[24] Liao M, Irp F, Palta J A . Early vigorous growth is a major factor influencing nitrogen uptake in wheat. Funct Plant Biol, 2004,31:121-129.
doi: 10.1071/fp03060
[25] 王英, 李喜焕, 张彩英 . 河北大豆地方品种耐低磷种质筛选. 大豆科学, 2008,28:588-594.
Wang Y, Li X H, Zhang C Y . Screening of low-phosphorus tolerant soybean landraces from Hebei growing areas. Soybean Sci, 2008,28:588-594 (in Chinese with English abstract).
[26] Upadhyaya H D . Variability for drought resistance related traits in the mini core collection of peanut. Crop Sci, 2005,45:1432-1440.
[27] 高方远, 陆贤军, 康海岐, 孙淑霞, 刘光春, 任光俊 . 水稻耐低磷种质的苗期筛选与鉴定. 作物学报, 2006,32:1151-1155.
Gao F Y, Lu X J, Kang H Q, Sun S X, Liu G C, Ren G J . Screening and identification for rice (Oryza sativa L) tolerance to phosphorus deficiency at seedling stage. Acta Agron Sin, 2006,32:1151-1155 (in Chinese with English abstract).
[28] 宋云鹏 . 外源硅对NO3胁迫下黄瓜幼苗生长及生理生化特性的影响. 山东农业大学硕士学位论文, 山东泰安, 2011.
Song Y P . Effects of Exogenous Silicon on Growth and Physiological and Biochemical Characteristics of Cucumber Seedlings under NO3- stress. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2011 (in Chinese with English abstract).
[29] 万美亮, 邝炎华, 陈建勋 . 缺磷胁迫对甘蔗膜脂过氧化及保护酶系统活性的影响. 华南农业大学学报, 1999,20(2):1-6.
Wan M L, Kuang Y H, Chen J X . Studies on membrane lipid peroxidation and protective enzyme activity of sugercanes under phosphorus deficiency. J South China Agric Univ, 1999,20(2):1-6 (in Chinese).
[30] 李俊, 张春雷, 秦岭, 马霓, 李锋 . 不同磷效率基因型油菜对低磷胁迫的生理响应. 中国油料作物学报, 2010,32:222-228.
Li J, Zhang C L, Qin L, Ma N, Li F . Physiological response to low-phosphorus stress for different phosphorus efficiency genotype of rapeseed. Chin J Oil Crop Sci, 2010,32:222-228 (in Chinese with English abstract).
[31] 于姣妲, 李莹, 殷丹阳, 周垂帆, 马祥庆 . 杉木对低磷胁迫的响应和生理适应机制. 林业科学研究, 2017,30:566-575.
Yu J D, Li Y, Yin D Y, Zhou C F, Ma X Q . Response and physiological mechanism of Chinese fir to low-phosphorus stress. For Res, 2017,30:566-575 (in Chinese with English abstract).
[32] 冯二静 . 甜糯玉米耐低磷品种筛选及其生理机制研究. 广东海洋大学硕士学位论文, 广东湛江, 2014.
Feng E J . Screening and Physiological Mechanisms of Sweet Waxy Maize Varieties with Resistant Low-phosphorus. MS Thesis of Guangdong Ocean University, Zhanjiang, Guangdong,China, 2014 (in Chinese with English abstract).
[1] 张钰坤, 陆赢, 崔看, 夏石头, 刘忠松. 芥菜种子颜色调控基因TT8的等位变异及其地理分布分析[J]. 作物学报, 2022, 48(6): 1325-1332.
[2] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[3] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[4] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[5] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[6] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖. 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选[J]. 作物学报, 2022, 48(2): 367-379.
[7] 宋丽君, 聂晓玉, 何磊磊, 蒯婕, 杨华, 郭安国, 黄俊生, 傅廷栋, 汪波, 周广生. 饲用大豆品种耐荫性鉴定指标筛选及综合评价[J]. 作物学报, 2021, 47(9): 1741-1752.
[8] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[9] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[10] 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846.
[11] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[12] 孙志广, 王宝祥, 周振玲, 方磊, 迟铭, 李景芳, 刘金波, Bello Babatunde Kazeem, 徐大勇. 水稻萌发耐淹性种质资源筛选及QTL定位[J]. 作物学报, 2021, 47(1): 61-70.
[13] 贾小平,袁玺垒,李剑峰,王永芳,张小梅,张博,全建章,董志平. 不同光温条件谷子光温互作模式研究及SiCCT基因表达分析[J]. 作物学报, 2020, 46(7): 1052-1062.
[14] 赵孟良,王丽慧,任延靖,孙雪梅,侯志强,杨世鹏,李莉,钟启文. 257份菊芋种质资源表型性状的遗传多样性[J]. 作物学报, 2020, 46(5): 712-724.
[15] 赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽. 谷子PEPC基因的鉴定及其对非生物逆境的响应特性[J]. 作物学报, 2020, 46(5): 700-711.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!