作物学报 ›› 2019, Vol. 45 ›› Issue (7): 1017-1028.doi: 10.3724/SP.J.1006.2019.84142
田文刚1,朱雪峰1,宋雯1,程文翰2,薛飞1,朱华国1,*()
TIAN Wen-Gang1,ZHU Xue-Feng1,SONG Wen1,CHENG Wen-Han2,XUE Fei1,ZHU Hua-Guo1,*()
摘要:
以转GhSAMDC1基因拟南芥研究了过量表达GhSAMDC1基因对拟南芥幼苗抗盐能力的影响, 以及内源多胺、过氧化氢(H2O2)、丙二醛(MDA)、叶绿素含量(Chl)、离子渗透率、抗氧化酶(SOD、CAT、POD)活性和表达量在盐胁迫下的变化。结果表明, 过量表达GhSAMDC1基因能够减少拟南芥内源腐胺(Put)含量, 增加亚精胺(Spd)和精胺(Spm)含量。盐胁迫下, 转基因株系亚精胺合酶(AtSPDS1、AtSPDS2)和精胺合酶(AtSPMS)基因表达量明显高于野生型, Spd和Spm含量进一步增加, H2O2、MDA、Chl以及离子渗透率显著降低; 与野生型相比, 过氧化物酶(POD)活力无明显差异, 但超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活力明显增加, 其表达水平与活力变化趋势基本一致。因此, 盐胁迫下, GhSAMDC1基因通过提高Spd和Spm合成相关基因的表达, 增加了转基因株系Spd和Spm含量, Spd和Spm直接或间接提高抗氧化系统相关酶的活力, 通过清除H2O2等活性氧的方式提高拟南芥的抗盐能力。
[1] |
Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio A F . Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta, 2010,231:1237-1249.
doi: 10.1007/s00425-010-1130-0 |
[2] |
Kusano T, Berberich T C, Takahashi Y . Polyamines: essential factors for growth and survival. Planta, 2008,228:367-381.
doi: 10.1007/s00425-008-0772-7 |
[3] |
Slocum R D, Kaur-Sawhney R, Galston A W . The physiology and biochemistry of polyamines in plants. Arch Biochem Biophys, 1984,235:283-303.
doi: 10.1016/0003-9861(84)90201-7 |
[4] | Soo W, Soo K, Woo K, Ky P . Constitutive S-adenosylmethionine decarboxylase gene expression increases drought tolerance through inhibition of reactive oxygen species accumulation in Arabidopsis. Planta, 2014,239:979-988. |
[5] | Torrigiani P, Scaramagli S, Ziosi V, Mayer M, Biondi S . Expression of an antisense Datura stramonium S-adenosylmethionine decarboxylase cDNA in tobacco: changes in enzyme activity, putrescine-spermidine ratio, rhizogenic potential, and response to methyl jasmonate. J Plant Physiol, 2005,162:559-571. |
[6] |
Sinha R, Rajam M V . RNAi silencing of three homologues of S-adenosylmethionine decarboxylase gene in tapetal tissue of tomato results in male sterility. Plant Mol Biol, 2013,82:169-180.
doi: 10.1007/s11103-013-0051-2 |
[7] |
路玉兰, 孙艳香, 冯雪, 赵学良 . 百脉根S-腺苷甲硫氨酸脱羧酶基因克隆与表达分析. 华北农学报, 2013,28(2):78-85.
doi: 10.3969/j.issn.1000-7091.2013.02.015 |
Lu Y L, Sun Y X, Feng X, Zhao X L . Cloning and expression analysis of S-adenosylmethionine decarboxylase gene from Lotus corniculatus L. Acta Agric Boreali-Sin, 2013,28(2):78-85 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-7091.2013.02.015 |
|
[8] | Peng X J, Zhang L X, Zhang L X, Liu Z J, Cheng L Q, Yang Y, Shen S H, Chen S Y, Liu G S . The transcriptional factor LcDREB2 cooperates with LcSAMDC2 to contribute to salt tolerance in Leymus chinensis. Plant Cell Tissue Organ Culture, 2013,113:245-256. |
[9] | 王凡龙, 朱华国, 程文翰, 刘永昌, 成新琪, 孙杰 . 棉花S-腺苷蛋氨酸脱羧酶基因(GhSAMDC2/3/4)的克隆及其诱导表达分析. 棉花学报, 2015,27:176-183. |
Wang F L, Zhu H G, Cheng W H, Liu Y C, Cheng X Q, Sun J . Cloning and induced expression analysis ofGhSAMDC2/3/4 in cotton(Gossypium hirsutum L.). Cotton Sci, 2015,27:176-183 (in Chinese with English abstract). | |
[10] |
张梅, 王然, 马春晖, 段艳欣, 李鼎立 . 杜梨S-腺苷甲硫氨酸脱羧酶基因的克隆与生物信息学分析. 华北农学报, 2013,28(1):82-87.
doi: 10.3969/j.issn.1000-7091.2013.01.016 |
Zhang M, Wang R, Ma C H, Duan Y X, Li D L . Cloning and bioinformatics analysis of S-adenosylmethionine decarboxylase gene in Pyrus betulaefolia Bge. Acta Agric Boreali-Sin, 2013,28(1):82-87 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-7091.2013.01.016 |
|
[11] | 文乐, 黄诚梅, 邓智年, 曹辉庆, 魏源文, 李楠, 吴凯朝 . 甘蔗S-腺苷蛋氨酸脱羧酶基因Sc-SAMDC3的克隆和表达分析. 南方农业学报, 2015,46:1931-1936. |
Wen Y, Huang C M, Deng Z N, Cao H Q, Li N, Wu K C . Molecular cloning of sugarcane S-adenosylmethionine decarboxylase gene (Sc-SAMDC3) and its expression analysis. J Southern Agric, 2015,46:1931-1936 (in Chinese with English abstract). | |
[12] |
王小利, 刘晓霞, 王舒颖, 杨义成, 吴佳海 . 高羊茅腺苷甲硫氨酸脱羧酶基因FaSAMDC的克隆与差异表达分析. 草业学报, 2011,20(4):169-179.
doi: 10.11686/cyxb20110421 |
Wang X L, Liu X X, Wang S Y, Yang Y C, Wu J H . Cloning and differential expression analysis of S-adenosylmethionine decarboxylase gene FaSAMDC in tall fescue. Acta Pratac Sin, 2011,20(4):169-179 (in Chinese with English abstract).
doi: 10.11686/cyxb20110421 |
|
[13] | Liu Z J, Liu P P, Qi D M, Peng X J, Liu G S . Enhancement of cold and salt tolerance of Arabidopsis by transgenic expression of the S-adenosylmethionine decarboxylase gene from Leymus chinensis. J Plant Physiol, 2017,211:90-99. |
[14] | Cheng L, Zou Y J, Ding S L, Zhang J J, Yu X L, Cao J S, Lu G . Polyamine accumulation in transgenictomato enhances the tolerance to high temperature stress. Chin Bull Bot, 2009,51:489-499. |
[15] |
Chen M, Chen J J, Fang J Y, Guo Z F, Lu S Y . Down-regulation of S-adenosylmethionine decarboxylase genes results in reduced plant length, pollen viability, and abiotic stress tolerance. Plant Cell Tissue Organ Culture, 2014,116:311-322.
doi: 10.1007/s11240-013-0405-0 |
[16] | Elsayed A I, Rafudeen M S, El-hamahmy M A M, Odero D C, Sazzad H M . Enhancing antioxidant systems by exogenous spermine and spermidine in wheat (Triticum aestivum) seedlings exposed to salt stress. Funct Plant Biol, 2018,45:745, doi: 10.1071/FP17127. |
[17] |
Wu J Q, Shu S, Li C C, Sun J, Guo S R . Spermidine-mediated hydrogen peroxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots. Plant Physiol Biochem, 2018,128:152-162.
doi: 10.1016/j.plaphy.2018.05.002 |
[18] | Zhou H, Guo S R, An Y H, Shan X, Wang Y, Shu S, Sun J . Exogenous spermidine delays chlorophyll metabolism in cucumber leaves (Cucumis sativus L.) under high temperature stress. Acta Physiol Planta, 2016,38:224. |
[19] |
Liu J, Yu B J, Liu Y L . Effects of spermidine and spermine levels on salt tolerance associated with tonoplast H +-ATPase and H +-PPase activities in barley roots . Plant Growth Regul, 2006,49:119-126.
doi: 10.1007/s10725-006-9001-1 |
[20] | Duan J J, Guo S R, Fan H F, Wang S P, Kang Y Y . Effects of salt stress on proline and polyamine metabolisms in the roots of cucumber seedlings. Acta Bot Boreali-Occident Sin, 2006,26:2486-2492. |
[21] |
Halliwell B . Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol, 2006,141:312-322.
doi: 10.1104/pp.106.077073 |
[22] | Ma C Q, Wang Y G, Gu D, Nan J D, Chen S X, Li H Y . Overexpression of S-adenosyl-l-methionine synthetase 2 from sugar beet M14 increased Arabidopsis tolerance to salt and oxidative stress. Int J Mol Sci, 2017,18:e847. |
[23] |
Li J M, Hu L P, Zhang L, Pan X B, Hu X H . Exogenous spermidine is enhancing tomato tolerance to salinity-alkalinity stress by regulating chloroplast antioxidant system and chlorophyll metabolism. BMC Plant Biol, 2015,15:303, doi: 10.1186/s12870- 015-0699-7.
doi: 10.1186/s12870-015-0699-7 |
[24] |
Asada K . THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol, 1999,50:601-639.
doi: 10.1146/annurev.arplant.50.1.601 |
[25] |
Williamson G B, Richardson D . Bioassays for allelopathy: Measuring treatment responses with independent controls. J Chem Ecol, 1988,14:181-187.
doi: 10.1007/BF01022540 |
[26] |
Zhao F Y, Guo S L, Zhang H, Zhao Y X . Expression of yeast SOD2, in transgenic rice results in increased salt tolerance. Plant Sci, 2006,170:216-224.
doi: 10.1016/j.plantsci.2005.08.017 |
[27] | Puyang X H, An M Y, Han L B, Zhang X Z . Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotoxicol Environ Saf, 2015,117:96-106. |
[28] | Li S, Han J, Qiang Z . The effect of exogenous spermidine concentration on polyamine metabolism and salt tolerance in Zoysiagrass (Zoysia japonica Steud) subjected to short-term salinity stress. Front Plant Sci, 2016,7:1221, doi: 10.3389/fpls. 2016.01221. |
[29] |
Radhakrishnan R . Ameliorative effects of spermine against osmotic stress through antioxidants and abscisic acid changes in soybean pods and seeds. Acta Physiol Planta, 2013,35:263-269.
doi: 10.1007/s11738-012-1072-1 |
[30] |
Zrig A, Tounelti T, Vadel A M, Mohamed H B, Valero D, Serrano M, Chtara C, Khemira H . Possible involvement of polyphenols and polyamines in salt tolerance of almond rootstocks. Plant Physiol Biochem, 2011,49:1313-1322.
doi: 10.1016/j.plaphy.2011.08.009 |
[31] | 程文翰, 朱华国, 李鹏飞, 王凡龙, 朱守鸿, 赵兰杰, 郭丽雪, 孙杰 . 棉花多胺HPLC的测定方法优化及其在体细胞胚胎发生过程中的变化规律. 棉花学报, 2014,26:138-144. |
Cheng W H, Zhu H G, Li P F, Wang F L, Zhu S H, Zhao L J, Guo L X, Sun J . Method optimization of polyamine content by high-performance liquid chromatography and its changes in the process of somatic embryogenesis in cotton. Cotton Sci, 2014,26:138-144 (in Chinese with English abstract). | |
[32] | Cheng W H, Wang F H, Cheng X Q, Zhu Q H, Sun Y Q, Zhu H G, Sun J . Polyamine and its metabolite H2O2 play a key role in the conversion of embryogenic callus into somatic embryos in upland cotton (Gossypium hirsutum L.). Front Plant Sci, 2015,6:1063, doi: 10.3389/fpls.2015.01063. |
[33] | Li C, Zhang Y N, Zhang K, Guo D L, Cui B M, Wang X Y, Huang X Z . Promoting flowering, lateral shoot outgrowth, leaf development, and flower abscission in tobacco plants overexpressing cotton FLOWERING LOCUS T (FT)-like gene GhFT1. Front Plant Sci, 2015,6:454, doi: 10.3389/fpls.2015.00454. |
[34] |
Crumbliss A L, Perine S C, Stonehuerner J, Tubergen K R, Zhao J, Henkens R W, Q’Daly J P . Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnol Bioeng, 1992,40:483-490.
doi: 10.1002/(ISSN)1097-0290 |
[35] | 朱珍 . 赤霉素调控采后番茄果实抗冷机制研究. 中国农业科学院硕士学位论文, 北京, 2016. |
Zhu Z . The Mechanism of Gibberellins in Regulation of Chilling Tolerance of Postharvest Tomato Fruit. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2016 (in Chinese with English abstract). | |
[36] |
Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 |
[37] |
Hao Y J, Zhang Z L, Kitashiba H, Honda C, Ubi B, Kita M, Moriguchi T . Molecular cloning and functional characterization of two apple S-adenosylmethionine decarboxylase genes and their different expression in fruit development, cell growth and stress responses. Gene, 2005,350:41-50.
doi: 10.1016/j.gene.2005.01.004 |
[38] |
Roy M, Wu R . Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci, 2002,163:987-992.
doi: 10.1016/S0168-9452(02)00272-8 |
[39] | Waie B, Rajam M V . Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci, 2003,164:722-734. |
[40] | Sanchez D H, Cuevas J C, Chiesa M A, Ruiz O A . Free spermidine and spermine content in Lotus glaber under long-term salt stress. Plant Sci, 2005,168:541-546. |
[41] |
Zapata P J, Serrano M, Pretel M T, Amoros A, Botella M A . Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci, 2004,167:781-788.
doi: 10.1016/j.plantsci.2004.05.014 |
[42] |
Liu H P, Dong B H, Zhang Y Y, Liu Z P, Liu Y L . Relationship between osmotic stress and the levels of free, conjugated and bound polyamines in leaves of wheat seedlings. Plant Sci, 2004,166:1261-1267.
doi: 10.1016/j.plantsci.2003.12.039 |
[43] | Wi S J, Kim W T, Park K Y . Overexpression of camation S-adenosylmethionine decarboxylase gene generate a broad- spectrum tolerance to abiotic stresses in transgenenic tobacco plants. Plant Cell Rep, 2006,25:1111-1121. |
[44] | Liu H P, Zhu Z X, Liu Y L . Response of bound polyamines in the thylakoid membrane of wheat seedling to osmotic stress. Seed, 2007,26:58-60. |
[45] |
Ha H C, Sirisoma N S, Kuppusamy P, Zweier J L, Woster P M, Casero R A . The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci USA, 1998,95:11140-11145.
doi: 10.1073/pnas.95.19.11140 |
[46] |
Tiburcio A F, Besford R T, Capell T, Borrell A, Testillano P S, Risueno M C . Mechanisms of polyamine action during senescence responses induced by osmotic stress. J Exp Bot, 1994,45:1789-1800.
doi: 10.1093/jxb/45.12.1789 |
[1] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[2] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[3] | 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75. |
[4] | 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592. |
[5] | 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042. |
[6] | 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439. |
[7] | 韦还和, 张徐彬, 葛佳琳, 陈熙, 孟天瑶, 杨洋, 熊飞, 陈英龙, 戴其根. 盐胁迫对水稻颖花形成及籽粒充实的影响[J]. 作物学报, 2021, 47(12): 2471-2480. |
[8] | 辛正琦, 代欢欢, 辛余凤, 何潇, 谢海艳, 吴能表. 盐胁迫下外源2,4-表油菜素内酯对颠茄氮代谢及TAs代谢的影响[J]. 作物学报, 2021, 47(10): 2001-2011. |
[9] | 韦还和,葛佳琳,张徐彬,孟天瑶,陆钰,李心月,陶源,丁恩浩,陈英龙,戴其根. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系[J]. 作物学报, 2020, 46(8): 1238-1247. |
[10] | 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻海藻糖生物合成关键酶基因HcTPPJ的克隆及响应逆境的表达分析[J]. 作物学报, 2020, 46(12): 1914-1922. |
[11] | 李润枝, 靳晴, 李召虎, 王晔, 彭真, 段留生. 水杨酸提高甘草种子萌发和幼苗生长对盐胁迫耐性的效应[J]. 作物学报, 2020, 46(11): 1810-1816. |
[12] | 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484. |
[13] | 陈晓晶,刘景辉,杨彦明,赵洲,徐忠山,海霞,韩宇婷. 盐胁迫对燕麦叶片生理指标和差异蛋白组学的影响[J]. 作物学报, 2019, 45(9): 1431-1439. |
[14] | 李旭凯,李任建,张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络[J]. 作物学报, 2019, 45(9): 1349-1364. |
[15] | 何宁,王雪扬,曹良子,曹大为,洛育,姜连子,孟英,冷春旭,唐晓东,李一丹,万书明,卢环,程须珍. 光温处理对小豆苗期生理性状及叶绿素合成前体的影响[J]. 作物学报, 2019, 45(3): 460-468. |
|