欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (7): 1017-1028.doi: 10.3724/SP.J.1006.2019.84142

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

异源表达棉花S-腺苷甲硫氨酸脱羧酶(GhSAMDC1)基因提高了拟南芥抗盐能力

田文刚1,朱雪峰1,宋雯1,程文翰2,薛飞1,朱华国1,*()   

  1. 1 石河子大学农学院 / 新疆兵团绿洲生态农业重点实验室, 新疆石河子 832003
    2 荆楚理工学院, 湖北荆门 448000
  • 收稿日期:2018-11-05 接受日期:2019-01-19 出版日期:2019-07-12 网络出版日期:2019-03-15
  • 通讯作者: 朱华国
  • 作者简介:E-mail: 631432853@qq.com
  • 基金资助:
    本研究由国家自然科学基金项目(31301363);本研究由国家自然科学基金项目(31660427);新疆生产建设兵团现代农业科技攻关与成果转化计划项目(2015AC007);湖北省自然科学基金项目(2017CFB162)

Ectopic expression of S-adenosylmethionine decarboxylase (GhSAMDC1) in cotton enhances salt tolerance in Arabidopsis thaliana

TIAN Wen-Gang1,ZHU Xue-Feng1,SONG Wen1,CHENG Wen-Han2,XUE Fei1,ZHU Hua-Guo1,*()   

  1. 1 College of Agronomy, Shihezi University / Key Oasis Eco-Agriculture Laboratory of Production and Group, Shihezi 832003, Xinjiang, China
    2 Jingchu University of Technology, Jingmen 448000, Hubei, China
  • Received:2018-11-05 Accepted:2019-01-19 Published:2019-07-12 Published online:2019-03-15
  • Contact: Hua-Guo ZHU
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31301363);This study was supported by the National Natural Science Foundation of China(31660427);Science and Technology Development Program of Xinjiang Production and Construction Groups Project(2015AC007);the Natural Science Foundation of Hubei Province(2017CFB162)

摘要:

以转GhSAMDC1基因拟南芥研究了过量表达GhSAMDC1基因对拟南芥幼苗抗盐能力的影响, 以及内源多胺、过氧化氢(H2O2)、丙二醛(MDA)、叶绿素含量(Chl)、离子渗透率、抗氧化酶(SOD、CAT、POD)活性和表达量在盐胁迫下的变化。结果表明, 过量表达GhSAMDC1基因能够减少拟南芥内源腐胺(Put)含量, 增加亚精胺(Spd)和精胺(Spm)含量。盐胁迫下, 转基因株系亚精胺合酶(AtSPDS1AtSPDS2)和精胺合酶(AtSPMS)基因表达量明显高于野生型, Spd和Spm含量进一步增加, H2O2、MDA、Chl以及离子渗透率显著降低; 与野生型相比, 过氧化物酶(POD)活力无明显差异, 但超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活力明显增加, 其表达水平与活力变化趋势基本一致。因此, 盐胁迫下, GhSAMDC1基因通过提高Spd和Spm合成相关基因的表达, 增加了转基因株系Spd和Spm含量, Spd和Spm直接或间接提高抗氧化系统相关酶的活力, 通过清除H2O2等活性氧的方式提高拟南芥的抗盐能力。

关键词: 拟南芥, 棉花S-腺苷甲硫氨酸脱羧酶基因, 盐胁迫, 抗氧化酶

Abstract:

Transgenic Arabidopsis thaliana (GhSAMDC1) was used to study the effect of overexpression of GhSAMDC1 on salt tolerance of Arabidopsis thaliana seedlings, Contents of endogenous polyamines, hydrogen peroxide (H2O2), malondialdehyde (MDA), and chlorophyll, ion permeability, antioxidant enzymes (SOD, CAT, POD) activities and expression levels were investigated under salt stress. The overexpression of GhSAMDC1 decreased the content of endogenous putrescine (Put) and increased spermidine (Spd) and spermine (Spm) contents in Arabidopsis thaliana. Under salt stress, the expression levels of spermidine synthase (AtSPDS1, AtSPDS2) and spermine synthase (AtSPMS) in transgenic lines were significantly higher than those in wild type, the contents of Spd and Spm were further increased, and the contents of H2O2, MDA, chlorophyll, and ion permeability were obviously decreased. Compared with the wild type, Transgenic lines had no remarkable difference in peroxidase (POD) activity, but significantly higher superoxide dismutase (SOD) and catalase (CAT) activities, with the same change trend as their expression levels. Therefore, GhSAMDC1 increased the contents of Spd and Spm of transgenic plants by increasing the expression of genes related to Spd and Spm synthesis under salt stress, Spd and Spm directly or indirectly increased the activity of enzymes related to antioxidant system, and enhanced the salt tolerance of Arabidopsis thaliana by scavenging H2O2 and other reactive oxygen species.

Key words: Arabidopsis thaliana, cotton S-adenosylmethionine decarboxylase gene, salt stress, antioxidant enzyme

图1

陆地棉GhSAMDC1和其他物种同源蛋白进化树分析及转基因鉴定 A: 陆地棉GhSAMDC1和其他物种同源蛋白进化树分析; B: GhSDAMC1表达载体; C: 转GhSAMDC1基因拟南芥DNA鉴定及表达分析, M、1、2、3、4、5分别为marker、转基因株系1-4、转基因株系1-12、转基因株系1-14、阳性对照、阴性对照, 目的基因片段大小为1035 bp; D: 转GhSAMDC1基因拟南芥表达分析。"

图2

过量表达GhSAMDC1基因对拟南芥内源多胺含量的影响 A~D: 野生型和转基因株系内源的多胺总量、Put、Spd和Spm含量。选取正常培养30 d的拟南芥叶片, 利用高效液相色谱法检测内源多胺含量, 数据采用Duncan’s法进行差异显著性检验(* P < 0.05, ** P < 0.01), 结果用平均值±标准差表示, 以上实验均使用3次生物学重复, 每次实验3次技术重复。"

附图1

300 mmol L-1 NaCl处理下棉花GhSAMDC1基因表达分析 0、1、3、6、12、24、48、72分别代表棉花幼苗(YZ-1)用300 mmol L-1 NaCl处理0、1、3、6、12、24、48和72 h。培养30 d的棉花幼苗用300 mmol L-1 NaCl处理, 分别在0、1、3、6、12、24、48和72 h取样, 检测不同处理时间段GhSAMDC1基因相对表达量。以上实验均使用3次生物学重复, 每次实验3次技术重复。"

图3

过量表达GhSAMDC1基因对拟南芥抗盐能力的影响 A: 种子分布示意图; B~C: 正常和盐胁迫下培养15 d后野生型及转基因拟南芥表型; D~E: 正常培养15 d后野生型和转基因拟南芥叶片数及鲜重; F~H: 100 mmol L-1 NaCl处理15 d后野生型和转基因拟南芥成活率、鲜重及叶片数。野生型和转基因拟南芥在正常培养和100 mmol L-1 NaCl处理15 d后统计鲜重、叶片数和成活率。数据采用Duncan法进行差异显著性检验(* P < 0.05, ** P < 0.01), 结果用平均值±标准误表示, 以上实验均使用3次生物学重复, 每次实验3次技术重复。"

图4

盐胁迫下过量表达GhSAMDC1基因对拟南芥叶绿素含量影响 A~C: 盐胁迫下野生型和转基因株系叶绿素含量。选取100 mmol L-1 NaCl处理15 d的拟南芥叶片, 检测叶绿素a和叶绿素b含量。数据采用Duncan法进行差异显著性检验(* P < 0.05, ** P < 0.01), 结果用平均值±标准差表示, 以上实验均使用3次生物学重复, 每次实验3次技术重复。"

图5

盐胁迫下过量表达GhSAMDC1基因对拟南芥内源多胺含量的影响 A~D: 正常和盐胁迫下野生型及转基因株系内源的多胺总量、Put、Spd和Spm含量对比。选取正常培养和100 mmol L-1 NaCl处理15 d的拟南芥叶片, 利用高效液相色谱法检测内源多胺含量。数据采用Duncan法进行差异显著性检验(* P < 0.05, ** P < 0.01), 结果用平均值±标准差表示, 以上实验均使用3次生物学重复, 每次实验3次技术重复。"

图6

盐胁迫下过量表达GhSAMDC1基因对拟南芥内源基因表达的影响 A~C: 野生型和转基因拟南芥AtSPDS1、AtSPDS2和AtSPMS相对表达量。选取100 mmol L-1 NaCl处理15 d的拟南芥叶片, 利用高效液相色谱法检测内源多胺含量, 数据采用Duncan法进行差异显著性检验(* P < 0.05, ** P < 0.01), 结果用平均值±标准差表示, 以上实验均使用3次生物学重复, 每次实验3次技术重复。"

图7

盐胁迫下过量表达GhSAMDC1基因对拟南芥叶片H2O2、MDA及离子渗透率影响 A: 盐胁迫下野生型和转基因株系DAB染色; B~D: 盐胁迫下野生型和转基因株系H2O2、MDA含量及离子渗透率; 选取100 mmol L-1 NaCl处理15 d的拟南芥叶片, 分别进行DAB染色, H2O2、MDA含量以及离子渗透率的检测, 数据采用Duncan法进行差异显著性检验(* P < 0.05, ** P < 0.01), 结果用平均值±标准差表示, 以上实验均使用3次生物学重复, 每次实验3次技术重复。"

图8

盐胁迫下过量表达GhSAMDC1基因对拟南芥抗氧化酶活力和表达的影响 A~C: 盐胁迫下野生型和转基因株系CAT、SOD、POD活力; D~F: 盐胁迫下野生型和转基因株系CAT、SOD、POD表达分析。选取100 mmol L-1 NaCl处理15 d的拟南芥叶片, 分别检测CAT、SOD和POD的活力和相对表达量。数据采用Duncan法进行差异显著性检验(* P < 0.05, ** P < 0.01), 结果用平均值±标准差表示, 以上实验均使用3次生物学重复, 每次实验3次技术重复。"

[1] Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio A F . Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta, 2010,231:1237-1249.
doi: 10.1007/s00425-010-1130-0
[2] Kusano T, Berberich T C, Takahashi Y . Polyamines: essential factors for growth and survival. Planta, 2008,228:367-381.
doi: 10.1007/s00425-008-0772-7
[3] Slocum R D, Kaur-Sawhney R, Galston A W . The physiology and biochemistry of polyamines in plants. Arch Biochem Biophys, 1984,235:283-303.
doi: 10.1016/0003-9861(84)90201-7
[4] Soo W, Soo K, Woo K, Ky P . Constitutive S-adenosylmethionine decarboxylase gene expression increases drought tolerance through inhibition of reactive oxygen species accumulation in Arabidopsis. Planta, 2014,239:979-988.
[5] Torrigiani P, Scaramagli S, Ziosi V, Mayer M, Biondi S . Expression of an antisense Datura stramonium S-adenosylmethionine decarboxylase cDNA in tobacco: changes in enzyme activity, putrescine-spermidine ratio, rhizogenic potential, and response to methyl jasmonate. J Plant Physiol, 2005,162:559-571.
[6] Sinha R, Rajam M V . RNAi silencing of three homologues of S-adenosylmethionine decarboxylase gene in tapetal tissue of tomato results in male sterility. Plant Mol Biol, 2013,82:169-180.
doi: 10.1007/s11103-013-0051-2
[7] 路玉兰, 孙艳香, 冯雪, 赵学良 . 百脉根S-腺苷甲硫氨酸脱羧酶基因克隆与表达分析. 华北农学报, 2013,28(2):78-85.
doi: 10.3969/j.issn.1000-7091.2013.02.015
Lu Y L, Sun Y X, Feng X, Zhao X L . Cloning and expression analysis of S-adenosylmethionine decarboxylase gene from Lotus corniculatus L. Acta Agric Boreali-Sin, 2013,28(2):78-85 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-7091.2013.02.015
[8] Peng X J, Zhang L X, Zhang L X, Liu Z J, Cheng L Q, Yang Y, Shen S H, Chen S Y, Liu G S . The transcriptional factor LcDREB2 cooperates with LcSAMDC2 to contribute to salt tolerance in Leymus chinensis. Plant Cell Tissue Organ Culture, 2013,113:245-256.
[9] 王凡龙, 朱华国, 程文翰, 刘永昌, 成新琪, 孙杰 . 棉花S-腺苷蛋氨酸脱羧酶基因(GhSAMDC2/3/4)的克隆及其诱导表达分析. 棉花学报, 2015,27:176-183.
Wang F L, Zhu H G, Cheng W H, Liu Y C, Cheng X Q, Sun J . Cloning and induced expression analysis ofGhSAMDC2/3/4 in cotton(Gossypium hirsutum L.). Cotton Sci, 2015,27:176-183 (in Chinese with English abstract).
[10] 张梅, 王然, 马春晖, 段艳欣, 李鼎立 . 杜梨S-腺苷甲硫氨酸脱羧酶基因的克隆与生物信息学分析. 华北农学报, 2013,28(1):82-87.
doi: 10.3969/j.issn.1000-7091.2013.01.016
Zhang M, Wang R, Ma C H, Duan Y X, Li D L . Cloning and bioinformatics analysis of S-adenosylmethionine decarboxylase gene in Pyrus betulaefolia Bge. Acta Agric Boreali-Sin, 2013,28(1):82-87 (in Chinese with English abstract).
doi: 10.3969/j.issn.1000-7091.2013.01.016
[11] 文乐, 黄诚梅, 邓智年, 曹辉庆, 魏源文, 李楠, 吴凯朝 . 甘蔗S-腺苷蛋氨酸脱羧酶基因Sc-SAMDC3的克隆和表达分析. 南方农业学报, 2015,46:1931-1936.
Wen Y, Huang C M, Deng Z N, Cao H Q, Li N, Wu K C . Molecular cloning of sugarcane S-adenosylmethionine decarboxylase gene (Sc-SAMDC3) and its expression analysis. J Southern Agric, 2015,46:1931-1936 (in Chinese with English abstract).
[12] 王小利, 刘晓霞, 王舒颖, 杨义成, 吴佳海 . 高羊茅腺苷甲硫氨酸脱羧酶基因FaSAMDC的克隆与差异表达分析. 草业学报, 2011,20(4):169-179.
doi: 10.11686/cyxb20110421
Wang X L, Liu X X, Wang S Y, Yang Y C, Wu J H . Cloning and differential expression analysis of S-adenosylmethionine decarboxylase gene FaSAMDC in tall fescue. Acta Pratac Sin, 2011,20(4):169-179 (in Chinese with English abstract).
doi: 10.11686/cyxb20110421
[13] Liu Z J, Liu P P, Qi D M, Peng X J, Liu G S . Enhancement of cold and salt tolerance of Arabidopsis by transgenic expression of the S-adenosylmethionine decarboxylase gene from Leymus chinensis. J Plant Physiol, 2017,211:90-99.
[14] Cheng L, Zou Y J, Ding S L, Zhang J J, Yu X L, Cao J S, Lu G . Polyamine accumulation in transgenictomato enhances the tolerance to high temperature stress. Chin Bull Bot, 2009,51:489-499.
[15] Chen M, Chen J J, Fang J Y, Guo Z F, Lu S Y . Down-regulation of S-adenosylmethionine decarboxylase genes results in reduced plant length, pollen viability, and abiotic stress tolerance. Plant Cell Tissue Organ Culture, 2014,116:311-322.
doi: 10.1007/s11240-013-0405-0
[16] Elsayed A I, Rafudeen M S, El-hamahmy M A M, Odero D C, Sazzad H M . Enhancing antioxidant systems by exogenous spermine and spermidine in wheat (Triticum aestivum) seedlings exposed to salt stress. Funct Plant Biol, 2018,45:745, doi: 10.1071/FP17127.
[17] Wu J Q, Shu S, Li C C, Sun J, Guo S R . Spermidine-mediated hydrogen peroxide signaling enhances the antioxidant capacity of salt-stressed cucumber roots. Plant Physiol Biochem, 2018,128:152-162.
doi: 10.1016/j.plaphy.2018.05.002
[18] Zhou H, Guo S R, An Y H, Shan X, Wang Y, Shu S, Sun J . Exogenous spermidine delays chlorophyll metabolism in cucumber leaves (Cucumis sativus L.) under high temperature stress. Acta Physiol Planta, 2016,38:224.
[19] Liu J, Yu B J, Liu Y L . Effects of spermidine and spermine levels on salt tolerance associated with tonoplast H +-ATPase and H +-PPase activities in barley roots . Plant Growth Regul, 2006,49:119-126.
doi: 10.1007/s10725-006-9001-1
[20] Duan J J, Guo S R, Fan H F, Wang S P, Kang Y Y . Effects of salt stress on proline and polyamine metabolisms in the roots of cucumber seedlings. Acta Bot Boreali-Occident Sin, 2006,26:2486-2492.
[21] Halliwell B . Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol, 2006,141:312-322.
doi: 10.1104/pp.106.077073
[22] Ma C Q, Wang Y G, Gu D, Nan J D, Chen S X, Li H Y . Overexpression of S-adenosyl-l-methionine synthetase 2 from sugar beet M14 increased Arabidopsis tolerance to salt and oxidative stress. Int J Mol Sci, 2017,18:e847.
[23] Li J M, Hu L P, Zhang L, Pan X B, Hu X H . Exogenous spermidine is enhancing tomato tolerance to salinity-alkalinity stress by regulating chloroplast antioxidant system and chlorophyll metabolism. BMC Plant Biol, 2015,15:303, doi: 10.1186/s12870- 015-0699-7.
doi: 10.1186/s12870-015-0699-7
[24] Asada K . THE WATER-WATER CYCLE IN CHLOROPLASTS: Scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol, 1999,50:601-639.
doi: 10.1146/annurev.arplant.50.1.601
[25] Williamson G B, Richardson D . Bioassays for allelopathy: Measuring treatment responses with independent controls. J Chem Ecol, 1988,14:181-187.
doi: 10.1007/BF01022540
[26] Zhao F Y, Guo S L, Zhang H, Zhao Y X . Expression of yeast SOD2, in transgenic rice results in increased salt tolerance. Plant Sci, 2006,170:216-224.
doi: 10.1016/j.plantsci.2005.08.017
[27] Puyang X H, An M Y, Han L B, Zhang X Z . Protective effect of spermidine on salt stress induced oxidative damage in two Kentucky bluegrass (Poa pratensis L.) cultivars. Ecotoxicol Environ Saf, 2015,117:96-106.
[28] Li S, Han J, Qiang Z . The effect of exogenous spermidine concentration on polyamine metabolism and salt tolerance in Zoysiagrass (Zoysia japonica Steud) subjected to short-term salinity stress. Front Plant Sci, 2016,7:1221, doi: 10.3389/fpls. 2016.01221.
[29] Radhakrishnan R . Ameliorative effects of spermine against osmotic stress through antioxidants and abscisic acid changes in soybean pods and seeds. Acta Physiol Planta, 2013,35:263-269.
doi: 10.1007/s11738-012-1072-1
[30] Zrig A, Tounelti T, Vadel A M, Mohamed H B, Valero D, Serrano M, Chtara C, Khemira H . Possible involvement of polyphenols and polyamines in salt tolerance of almond rootstocks. Plant Physiol Biochem, 2011,49:1313-1322.
doi: 10.1016/j.plaphy.2011.08.009
[31] 程文翰, 朱华国, 李鹏飞, 王凡龙, 朱守鸿, 赵兰杰, 郭丽雪, 孙杰 . 棉花多胺HPLC的测定方法优化及其在体细胞胚胎发生过程中的变化规律. 棉花学报, 2014,26:138-144.
Cheng W H, Zhu H G, Li P F, Wang F L, Zhu S H, Zhao L J, Guo L X, Sun J . Method optimization of polyamine content by high-performance liquid chromatography and its changes in the process of somatic embryogenesis in cotton. Cotton Sci, 2014,26:138-144 (in Chinese with English abstract).
[32] Cheng W H, Wang F H, Cheng X Q, Zhu Q H, Sun Y Q, Zhu H G, Sun J . Polyamine and its metabolite H2O2 play a key role in the conversion of embryogenic callus into somatic embryos in upland cotton (Gossypium hirsutum L.). Front Plant Sci, 2015,6:1063, doi: 10.3389/fpls.2015.01063.
[33] Li C, Zhang Y N, Zhang K, Guo D L, Cui B M, Wang X Y, Huang X Z . Promoting flowering, lateral shoot outgrowth, leaf development, and flower abscission in tobacco plants overexpressing cotton FLOWERING LOCUS T (FT)-like gene GhFT1. Front Plant Sci, 2015,6:454, doi: 10.3389/fpls.2015.00454.
[34] Crumbliss A L, Perine S C, Stonehuerner J, Tubergen K R, Zhao J, Henkens R W, Q’Daly J P . Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition. Biotechnol Bioeng, 1992,40:483-490.
doi: 10.1002/(ISSN)1097-0290
[35] 朱珍 . 赤霉素调控采后番茄果实抗冷机制研究. 中国农业科学院硕士学位论文, 北京, 2016.
Zhu Z . The Mechanism of Gibberellins in Regulation of Chilling Tolerance of Postharvest Tomato Fruit. MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2016 (in Chinese with English abstract).
[36] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCT method . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262
[37] Hao Y J, Zhang Z L, Kitashiba H, Honda C, Ubi B, Kita M, Moriguchi T . Molecular cloning and functional characterization of two apple S-adenosylmethionine decarboxylase genes and their different expression in fruit development, cell growth and stress responses. Gene, 2005,350:41-50.
doi: 10.1016/j.gene.2005.01.004
[38] Roy M, Wu R . Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci, 2002,163:987-992.
doi: 10.1016/S0168-9452(02)00272-8
[39] Waie B, Rajam M V . Effect of increased polyamine biosynthesis on stress responses in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci, 2003,164:722-734.
[40] Sanchez D H, Cuevas J C, Chiesa M A, Ruiz O A . Free spermidine and spermine content in Lotus glaber under long-term salt stress. Plant Sci, 2005,168:541-546.
[41] Zapata P J, Serrano M, Pretel M T, Amoros A, Botella M A . Polyamines and ethylene changes during germination of different plant species under salinity. Plant Sci, 2004,167:781-788.
doi: 10.1016/j.plantsci.2004.05.014
[42] Liu H P, Dong B H, Zhang Y Y, Liu Z P, Liu Y L . Relationship between osmotic stress and the levels of free, conjugated and bound polyamines in leaves of wheat seedlings. Plant Sci, 2004,166:1261-1267.
doi: 10.1016/j.plantsci.2003.12.039
[43] Wi S J, Kim W T, Park K Y . Overexpression of camation S-adenosylmethionine decarboxylase gene generate a broad- spectrum tolerance to abiotic stresses in transgenenic tobacco plants. Plant Cell Rep, 2006,25:1111-1121.
[44] Liu H P, Zhu Z X, Liu Y L . Response of bound polyamines in the thylakoid membrane of wheat seedling to osmotic stress. Seed, 2007,26:58-60.
[45] Ha H C, Sirisoma N S, Kuppusamy P, Zweier J L, Woster P M, Casero R A . The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci USA, 1998,95:11140-11145.
doi: 10.1073/pnas.95.19.11140
[46] Tiburcio A F, Besford R T, Capell T, Borrell A, Testillano P S, Risueno M C . Mechanisms of polyamine action during senescence responses induced by osmotic stress. J Exp Bot, 1994,45:1789-1800.
doi: 10.1093/jxb/45.12.1789
[1] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[2] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[3] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[4] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[5] 李增强, 丁鑫超, 卢海, 胡亚丽, 岳娇, 黄震, 莫良玉, 陈立, 陈涛, 陈鹏. 铅胁迫下红麻生理特性及DNA甲基化分析[J]. 作物学报, 2021, 47(6): 1031-1042.
[6] 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439.
[7] 韦还和, 张徐彬, 葛佳琳, 陈熙, 孟天瑶, 杨洋, 熊飞, 陈英龙, 戴其根. 盐胁迫对水稻颖花形成及籽粒充实的影响[J]. 作物学报, 2021, 47(12): 2471-2480.
[8] 辛正琦, 代欢欢, 辛余凤, 何潇, 谢海艳, 吴能表. 盐胁迫下外源2,4-表油菜素内酯对颠茄氮代谢及TAs代谢的影响[J]. 作物学报, 2021, 47(10): 2001-2011.
[9] 韦还和,葛佳琳,张徐彬,孟天瑶,陆钰,李心月,陶源,丁恩浩,陈英龙,戴其根. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系[J]. 作物学报, 2020, 46(8): 1238-1247.
[10] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻海藻糖生物合成关键酶基因HcTPPJ的克隆及响应逆境的表达分析[J]. 作物学报, 2020, 46(12): 1914-1922.
[11] 李润枝, 靳晴, 李召虎, 王晔, 彭真, 段留生. 水杨酸提高甘草种子萌发和幼苗生长对盐胁迫耐性的效应[J]. 作物学报, 2020, 46(11): 1810-1816.
[12] 鲁海琴, 陈丽, 陈磊, 张盈川, 文静, 易斌, 涂金星, 傅廷栋, 沈金雄. Bna-novel-miR311-HSC70-1模块调控甘蓝型油菜响应热胁迫的机制[J]. 作物学报, 2020, 46(10): 1474-1484.
[13] 陈晓晶,刘景辉,杨彦明,赵洲,徐忠山,海霞,韩宇婷. 盐胁迫对燕麦叶片生理指标和差异蛋白组学的影响[J]. 作物学报, 2019, 45(9): 1431-1439.
[14] 李旭凯,李任建,张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络[J]. 作物学报, 2019, 45(9): 1349-1364.
[15] 何宁,王雪扬,曹良子,曹大为,洛育,姜连子,孟英,冷春旭,唐晓东,李一丹,万书明,卢环,程须珍. 光温处理对小豆苗期生理性状及叶绿素合成前体的影响[J]. 作物学报, 2019, 45(3): 460-468.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!