欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (3): 448-461.doi: 10.3724/SP.J.1006.2020.91031

• 耕作栽培·生理生化 • 上一篇    下一篇

大麦种质资源成株期抗旱性鉴定及抗旱指标筛选

徐银萍,潘永东(),刘强德,姚元虎,贾延春,任诚,火克仓,陈文庆,赵锋,包奇军,张华瑜   

  1. 甘肃省农业科学院经济作物与啤酒原料研究所, 甘肃兰州 730070
  • 收稿日期:2019-04-17 接受日期:2019-08-09 出版日期:2020-03-12 网络出版日期:2020-03-01
  • 通讯作者: 潘永东
  • 作者简介:E-mail: xuyinping7810@163.com
  • 基金资助:
    本研究由甘肃省国际科技合作项目(17YF1WA156);甘肃省农业科学院农业科技创新专项科技支撑计划项目(2018GAAS02);甘肃省农业科学院科技自主创新专项现代生物育种项目(2019GAAS08);甘肃省农业科学院科研条件建设及成果转化中青年基金项目(2017GAAS74);国家现代农业产业技术体系建设专项资助(CARS-05)

Drought resistance identification and drought resistance indexes screening of barley resources at mature period

Yin-Ping XU,Yong-Dong PAN(),Qiang-De LIU,Yuan-Hu YAO,Yan-Chun JIA,Cheng REN,Ke-Cang HUO,Wen-Qing CHEN,Feng ZHAO,Qi-Jun BAO,Hua-Yu ZHANG   

  1. Institute of Industrial Crops and Malting Barley, Gansu Academy of Agricultural Sciences, Lanzhou 730070, Gansu, China
  • Received:2019-04-17 Accepted:2019-08-09 Published:2020-03-12 Published online:2020-03-01
  • Contact: Yong-Dong PAN
  • Supported by:
    This study was supported by Gansu International Science and Technology Cooperation Project of China(17YF1WA156);Gansu Academy of Agricultural Sciences Agricultural Science and Technology Support Program of China(2018GAAS02);Gansu Academy of Agricultural Sciences Modern Biological Breeding Project of China(2019GAAS08);Gansu Academy of Agricultural Young and Middle-aged Fund Project of China(2017GAAS74);China Agriculture Research System(CARS-05)

摘要:

干旱是影响大麦生产的主要因素之一。在鉴定大麦种质资源成株期抗旱性的基础上, 筛选抗旱指标, 可为培育抗旱品种提供依据。本研究在2016和2017年在大麦生长主要需水期平均降雨量不足40 mm的甘肃省武威市进行田间试验, 以30份大麦种质资源为研究对象, 设置正常灌水和干旱胁迫处理, 测定大麦株高、穗长、分蘖数、单株粒数、单株粒重、穗粒数、千粒重和产量, 采用抗旱性度量值(D)、综合抗旱系数(CDC)、加权抗旱系数(WDC)、相关分析、频次分析、主成分分析、灰色关联度分析、隶属函数分析、聚类分析和逐步回归分析相结合的办法, 对其进行抗旱性鉴定及抗旱指标的筛选。干旱胁迫对测定的各指标均有极显著影响。频次分析表明, 各指标对干旱胁迫反应的敏感程度依次为产量、株高、单株粒重、穗长、单株粒数、分蘖数、穗粒数和千粒重。相关分析表明, 产量与株高、穗长、分蘖数、单株粒数和单株粒重呈极显著正相关, 与穗粒数呈显著正相关、与千粒重呈不显著正相关。主成分分析表明, 5个主成分可以代表大麦抗旱性86.39%的原始数据信息量。基于D值、CDC值和WDC值的大麦种质资源抗旱性排序基本一致。灰色关联度分析表明, 各指标单项抗旱系数值与D值间的关联度依次为产量、单株粒重、单株粒数、穗长、株高、分蘖、穗粒数和千粒重, 各指标DC值与WDC值间的关联大小依次为单株粒重、产量、单株粒数、分蘖、穗长、穗粒数、株高和千粒重。根据D值进行聚类分析, 将供试大麦种质资源依据抗旱性从强到弱分为5个抗旱等级, 其中1级5份、2级1份、3级11份、4级10份、5级3份。除分蘖和千粒重外, 其余指标的隶属函数值、CDC值、D值和WDC值均随着抗旱级别的升高而增大。回归分析表明, 5个测定指标均与D值密切相关。干旱胁迫对大麦种质资源成株期各指标均有极显著影响。确定了D值为适宜的抗旱鉴定指标。筛选出成株期抗旱性强的大麦种质资源甘啤7号、Z06-278-9、MERIT、NEVADA和西藏25, 可为大麦抗旱育种、抗旱机制以及干旱调控缓解机制的研究提供技术支持。穗长、单株粒数、单株粒重、穗粒数、产量可作为大麦种质资源成株期简单、直观的抗旱评价指标。

关键词: 大麦(Hordeum vulgare L.), 成株期, 抗旱性, 抗旱指标

Abstract:

Drought is one of the major factors affecting barley production. Identification of drought resistance of barley resource at maturity stage, could provide and their associating indexes a basis for breeding drought-resistant cultivars. Field experiments were carried out in Wuwei city, Gansu province, in 2016 and 2017, where the average rainfall during the main water requirement period is less than 40 mm. thirty barley resource under measured normal irrigation and drought stress were used to measured plant height, spike length, tiller number, grain number per plant, grain weight per plant, grain number per spike, 1000-grain weight and yield of barley. Drought resistance comprehensive evaluation value (D-value), comprehensive drought resistance coefficient (CDC-value), weight drought resistance coefficient (WDC-value), correlation analysis, frequency analysis, principal component analysis, grey relational analysis, subordinate function analysis, clustering analysis, and stepwise regression analysis were combined to identify the drought resistance and to screen drought resistance indexes of tested resource at mature period. Drought stress had significant effects on all measured indexes. Frequency analysis showed that the sensitivity of each index to drought stress was yield, plant height, grain weight per plant, spike length, grain number per plant, tiller number, grain number per spike and 1000-grain weight. The yield was very significantly and positively correlated with plant height, spike length, tiller number, grain number per plant and grain weight per plant, and significantly and positively correlated with grain number per spike, but not correlated with 1000-grain weight. Principal component analysis showed that five principal components could represent 86.39% of the original data information of barley drought resistance. The ranks of drought resistance based on the D-value, CDC-value, and WDC-value were similar. Grey relational analysis showed that the correlation degree between DC-value of all indexes and D-value in turn for yield, grain weight per plant, grain number per plant, spike length, plant height, tiller number, grain number per spike and 1000-grain weight, the correlation degree between DC-value of all indexes and WDC-value in turn for grain weight per plant, yield, grain number per plant, tiller number, spike length, grain number per spike, plant height and1000-grain weight, According to D-value clustering analysis, tested barley materials were divided into five drought resistance grades, in which five were in grade 1, one was in grade 2, eleven were in grade 3, ten were in grade 4, and three were in grade 5. Except for tiller number and 1000-grain weight, the subordinate function values, CDC-values, D-values, and WDC-values of other indicators were increased with increase of drought resistance grades. Stepwise regression analysis showed that plant height, Spike length, tiller number, grain number per plant, grain weight per plant, grain number per spike, 1000-grain weight and yield were closely related to the D-value. Drought stress had significant effects on all indexes of barley resources at mature period. D-value was determined as an appropriate index for drought resistance identification. Ganpi 7, Z06-278-9, MERIT, NEVADA, and Xizang 25 were identified as drought resistant barley materials at mature period, which could provide basic materials for the researches on cultivar breeding, drought resistant mechanism, and regulation and alleviation mechanism of drought resistance in barley. The spike length, grain number per plant, grain weight per plant, grain number per spike and yield could be used as the simple and intuitive identification indexes of drought resistance in barley resources at mature period.

Key words: barley (Hordeum vulgare L.), mature period, drought resistance, drought resistance indexes

表1

30份大麦种质的来源"

编号Number 名称
Name
来源
Origin
01 Z06-278-9 美国 USA
02 Z06-266-10 美国 USA
03 MERIT 美国 USA
04 Z06-291-1 美国 USA
05 BARI188 美国 USA
06 BARI160 美国 USA
07 BARI187 美国 USA
08 BARI165 美国 USA
09 西藏10 Xizang 10 中国西藏 Tibet, China
10 西藏12 Xizang 12 中国西藏 Tibet, China
11 西藏23 Xizang 23 中国西藏 Tibet, China
12 西藏25 Xizang 25 中国西藏 Tibet, China
13 NEVADA 美国 USA
14 甘啤6号 Ganpi 6 中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
15 甘饲1号 Gansi 1 中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
16 0420-7 (甘啤4号杂交后代) Derived from Ganpi 4 中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
17 0521-6 (甘啤7号杂交后代) Derived from Ganpi 7 中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
18 2153122 (甘啤7号杂交后代) Derived from Ganpi 7 中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
19 0821-2 (MERIT杂交后代) Derived from MERIT 中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
20 0835-3 (MERIT杂交后代) Derived from MERIT 中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
21 0844-1 (MERIT杂交后代) Derived from MERIT 中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
22 0903-2 (法瓦维特杂交后代) Derived from Favorit 中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
23 中黄1号 Zhonghuang 1 中国甘肃甘南州 Gannan, Gansu, China
24 0902-1 (法瓦维特杂交后代) Derived from Favorit 中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
25 陇青1号 Longqing 1 中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
26 甘啤4号 Ganpi 4 中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
27 甘啤7号 Ganpi 7 中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
28 甘啤8号 Ganpi 8 中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
29 甘啤9号 Ganpi 9 中国甘肃省农业科学院 Gansu Academy of Agricultural Sciences, China
30 Aspen 美国 USA

表2

干旱胁迫和正常灌水条件下供试大麦种质各测定指标平均值差异分析"

项目
Item
株高
PH (cm)
穗长
SL (cm)
分蘖数
TN
单株粒数
GNPP
单株粒重GWPP (g) 穗粒数
KNPS
千粒重
TGW (g)
产量
Y (kg hm-2)
CK T CK T CK T CK T CK T CK T CK T CK T
平均值 Ave. 79.41 58.59 7.61 6.31 2.66 2.29 62.77 52.11 3.01 2.31 23.67 21.04 48.84 43.42 3.07 1.45
变异系数 CV 0.086 0.105 0.084 0.136 0.078 0.150 0.101 0.128 0.146 0.185 0.098 0.121 0.070 0.074 0.083 0.412
标准误 SE 6.623 0.666 0.261 7.352 0.325 1.808 3.077 2.428
tt-value 17.218 10.746 7.794 7.946 10.919 7.985 9.655 5.855
PP-value 0.0001** 0.0001** 0.0001** 0.0001** 0.0001** 0.0001** 0.0001** 0.0001**
相关系数 r 0.499 0.652 0.665 0.382 0.681 0.737 0.587 0.352

表3

供试大麦种质各指标的抗旱系数"

编号
Number
株高
PH
穗长
EL
分蘖数
TN
单株粒数
GNPP
单株粒重
GWPP
穗粒数
KNPS
千粒重
TGW
产量
Y
01 0.845 0.889 0.962 0.968 0.850 0.936 0.875 0.815
02 0.683 0.901 0.867 0.772 0.884 0.775 0.934 0.462
03 0.815 0.917 0.981 0.937 0.862 0.925 0.902 0.823
04 0.662 0.853 0.913 0.825 0.905 0.785 0.990 0.370
05 0.774 0.909 0.926 0.878 0.810 0.887 0.936 0.384
06 0.707 0.794 0.759 0.783 0.704 0.723 0.806 0.369
07 0.778 0.815 0.767 0.759 0.736 0.793 0.824 0.393
08 0.722 0.797 0.750 0.790 0.690 0.820 0.830 0.403
09 0.763 0.875 0.857 0.824 0.815 0.891 0.955 0.442
10 0.752 0.964 0.926 0.867 0.757 0.939 0.884 0.728
11 0.709 0.840 0.988 0.885 0.905 0.974 0.841 0.442
12 0.837 0.779 0.739 0.966 0.913 0.944 0.982 0.744
13 0.879 0.904 0.964 0.960 0.859 0.956 0.910 0.806
14 0.736 0.921 0.929 0.898 0.814 0.976 0.807 0.424
15 0.640 0.766 0.852 0.789 0.798 0.828 0.822 0.361
16 0.715 0.725 0.690 0.753 0.596 0.721 0.815 0.293
17 0.722 0.821 0.788 0.924 0.794 0.897 0.856 0.377
18 0.749 0.970 0.929 0.792 0.854 0.954 0.990 0.493
19 0.566 0.766 0.962 0.781 0.679 0.973 0.944 0.499
20 0.813 0.749 0.907 0.792 0.750 0.871 0.871 0.503
21 0.637 0.789 0.875 0.715 0.741 0.881 0.935 0.466
22 0.788 0.759 0.739 0.749 0.663 0.882 0.904 0.329
23 0.750 0.654 0.706 0.591 0.671 0.828 0.906 0.231
24 0.773 0.757 0.857 0.775 0.701 0.942 0.954 0.329
25 0.782 0.787 0.740 0.980 0.657 0.978 0.937 0.385
26 0.687 0.786 0.963 0.865 0.808 0.949 0.867 0.441
27 0.834 0.944 0.966 0.982 0.985 0.953 0.953 0.839
28 0.683 0.782 0.815 0.889 0.707 0.902 0.855 0.274
29 0.718 0.991 0.964 0.929 0.670 0.938 0.839 0.385
30 0.670 0.636 0.687 0.588 0.475 0.853 0.794 0.273
平均值Ave. 0.740 0.828 0.859 0.834 0.768 0.889 0.891 0.469
变异系数CV 0.093 0.106 0.113 0.122 0.140 0.083 0.066 0.373

表4

供试大麦种质各指标抗旱系数在不同区间的分布"

指标
Index
0<DC<0.2 0.2<DC<0.4 0.4<DC<0.6 0.6<DC<0.8 0.8<DC<1.0
次数
Times
频率
Freq.(%)
次数
Times
频率
Freq.(%)
次数
Times
频率
Freq.(%)
次数
Times
频率
Freq.(%)
次数
Times
频率
Freq.(%)
株高 PH 0 0 0 0 1 3 23 77 6 20
穗长 EL 0 0 0 0 0 0 14 47 16 53
分蘖数 TN 0 0 0 0 0 0 10 33 20 67
单株粒数GNPP 0 0 0 0 2 6.7 12 40 16 53.3
单株粒GWPP 0 0 0 0 1 3 15 50 14 47
穗粒数 KNPS 0 0 0 0 0 0 5 17 25 83
千粒重 TGW 0 0 0 0 0 0 1 3 29 97
产量 Y 0 0 14 46.7 10 33.3 2 6.7 4 13.3

表5

供试大麦种质各指标抗旱系数的相关性"

指标
Index
株高
PH
穗长
EL
分蘖数
TN
单株粒数
GNPP
单株粒重
GWPP
穗粒数
KNPS
千粒重
TGW
产量
Y
株高 PH
穗长 EL 0.298
分蘖数 TN 0.069 0.705**
单株粒数 GNPP 0.478** 0.641** 0.507**
单株粒重 GWPP 0.339* 0.620** 0.622** 0.599**
穗粒数 KNPS 0.270 0.370* 0.558** 0.562** 0.288
千粒重 TGW 0.194 0.250 0.254 0.187 0.471** 0.313
产量 Y 0.571** 0.555** 0.553** 0.626** 0.629** 0.451* 0.319

表6

供试大麦种质各指标主成分的特征向量及贡献率"

指标
Index
因子载荷 Factor loading
F1 F2 F3 F4 F5
株高 PH 0.423 -0.631 0.728 -0.076 0.240
穗长 EL -1.420 0.407 -0.032 0.026 -0.731
分蘖数 TN 0.580 -0.020 -0.234 -0.424 -0.120
单株粒数 GNPP 0.214 -0.252 0.272 -0.284 0.661
单株粒重 GWPP 0.259 0.049 -0.513 0.917 0.324
穗粒数 KNPS -0.246 -0.055 0.821 0.192 -0.097
千粒重 TGW -0.205 -0.049 0.153 0.555 -0.066
产量 Y -0.202 0.662 -0.116 -0.190 1.392
特征根 Characteristic root 3.107 1.267 0.963 0.802 0.697
贡献率 Contribution rate (%) 39.46 15.68 11.96 9.94 8.38
累计贡献率 Cumulative contribution (%) 39.46 55.27 65.33 77.21 86.39
因子权重 Factor weight 0.453 0.189 0.135 0.109 0.103

表7

供试大麦种质抗旱性评价的CDC值、WDC值和D值"

编号
Number
隶属函数Subordinate function value CDC值
CDC-value
排序
Rank
D
D-value
排序
Rank
WDC值
WDC-value
排序
Rank
μ1 μ2 μ3 μ4 μ5
01 0.879 0.741 0.893 0.852 0.891 0.893 4 0.852 3 0.891 4
02 0.534 0.270 0.776 0.094 0.745 0.785 15 0.481 17 0.778 15
03 0.888 0.632 0.487 0.859 0.536 0.895 3 0.837 4 0.894 3
04 0.536 0.142 0.641 0.737 0.804 0.788 14 0.457 18 0.779 14
05 0.606 0.343 0.630 0.378 0.805 0.813 10 0.554 10 0.804 10
06 0.289 0.538 0.535 0.860 0.625 0.706 27 0.338 27 0.699 27
07 0.363 0.633 0.575 0.288 0.379 0.733 23 0.417 20 0.726 23
08 0.342 0.573 0.653 0.165 0.796 0.725 26 0.388 22 0.718 25
09 0.571 0.443 0.647 0.769 0.806 0.803 11 0.545 11 0.794 12
10 0.751 0.485 0.478 0.553 0.858 0.852 6 0.698 6 0.848 6
11 0.660 0.177 0.563 0.497 0.327 0.823 8 0.564 8 0.815 8
12 0.764 1.000 0.404 0.553 0.615 0.863 5 0.811 5 0.859 5
13 0.908 0.775 0.512 0.423 0.549 0.905 2 0.882 2 0.902 2
14 0.628 0.280 0.550 0.473 0.771 0.813 9 0.559 9 0.805 9
15 0.375 0.239 1.000 0.530 0.735 0.732 24 0.348 26 0.724 24
16 0.143 0.646 0.754 0.833 0.463 0.664 29 0.243 28 0.655 28
17 0.491 0.491 0.654 0.222 0.902 0.772 18 0.491 16 0.764 18
18 0.692 0.257 0.397 0.056 0.816 0.841 7 0.605 7 0.832 7
19 0.486 0.000 0.579 0.562 0.540 0.771 19 0.389 21 0.761 19
20 0.510 0.609 0.907 0.838 0.757 0.782 13 0.529 13 0.775 16
21 0.430 0.213 0.536 0.437 0.666 0.755 21 0.387 23 0.746 21
22 0.318 0.657 0.507 0.467 1.000 0.727 25 0.386 24 0.715 22
23 0.123 0.579 0.591 1.000 0.649 0.667 28 0.214 29 0.654 29
24 0.422 0.452 0.880 0.554 0.545 0.761 20 0.428 19 0.749 20
25 0.492 0.716 0.509 0.000 0.310 0.781 12 0.537 12 0.770 17
26 0.568 0.212 0.364 0.571 0.781 0.796 13 0.497 15 0.787 13
27 1.000 0.657 0.566 0.515 0.848 0.932 1 0.931 1 0.930 1
28 0.379 0.341 0.781 0.528 0.615 0.738 22 0.372 25 0.728 22
29 0.597 0.183 0.540 0.725 0.675 0.804 11 0.514 14 0.796 11
30 0.000 0.531 0.077 0.496 0.417 0.622 30 0.106 30 0.610 30
平均值 Average 0.785 0.512 0.777
变异系数 CV 0.085 0.361 0.088

表8

供试大麦种质各指标DC值与D值和WDC值的关联度及各指标权重"

指标
Index
关联度
Correlation degree
排序
Rank
权重系数
Weight
关联度
Correlation degree
排序
Rank
株高 PH 0.71289 5 0.124 0.64220 7
穗长 EL 0.73817 4 0.128 0.71687 5
分蘖数 TN 0.70595 6 0.122 0.72575 4
单株粒数 GNPP 0.74729 3 0.130 0.74033 3
单株粒重 GWPP 0.74891 2 0.130 0.75094 1
穗粒数 KNPS 0.65768 7 0.114 0.65098 6
千粒重 TGW 0.63599 8 0.110 0.59725 8
产量 Y 0.81646 1 0.142 0.74723 2

图1

基于D值的供试大麦材料抗旱性系统聚类图 1、2、3、4、5表示不同抗旱级别。"

表9

供试大麦种质抗旱性评价指标的分级"

指标
Index
隶属函数 Subordinate function value
1 2 3 4 5
株高 PH 0.883 0.593 0.555 0.415 0.466
穗长 EL 0.923 0.705 0.653 0.427 0.100
分蘖数 TN 0.781 0.793 0.695 0.471 0.024
单株粒数 GNPP 0.951 0.709 0.707 0.501 0.141
单株粒重 GWPP 0.821 0.630 0.552 0.504 0.208
穗粒数 KNPS 0.865 0.848 0.764 0.513 0.310
千粒重 TGW 0.664 0.457 0.509 0.471 0.226
产量 Y 0.945 0.818 0.328 0.243 0.057
CDC值 CDC-value 0.898 0.852 0.801 0.744 0.651
DD-value 0.863 0.698 0.534 0.391 0.188
WDC值 WDC-value 0.895 0.848 0.793 0.734 0.640

表10

供试大麦种质抗旱性模型预测"

因变量
Dependent variable
回归方程
Regression equation
决定系数R2 F
F-value
P
P-value
相关系数 r
CDC值
CDC-
value
WDC值
WDC-
value
产量
Y
CDC值 CDC-value y = 0.144+0.179x2+0.095x4+0.193x5+0.215x6+0.157x8 0.985 314.79 <0.001 0.885** 0.999** 0.869**
DD-value y = -0.888+0.290x2+0.514x4+0.560x5+0.455x6-0.194x8 0.991 517.65 <0.001 0.900** 0.562**
WDC值 WDC-value y = 0.122+0.191x2+0.104x4+0.207x5+0.224x6+0.139x8 0.987 362.79 <0.001 0.854**

附表1

干旱胁迫和正常灌水条件下供试大麦种质各指标测定值"

编号
Number
株高
PH (cm)
穗长
SL (cm)
分蘖数
TN
单株粒数GNPP 单株粒重GWPP (g) 穗粒数
KNPS
千粒重
TGW
产量
Y (kg hm-2)
CK T CK T CK T CK T CK T CK T CK T CK T
01 78.92 66.70 8.04 7.15 2.63 2.53 60.97 59.03 3.20 2.72 23.95 22.42 52.60 46.03 3.39 2.76
02 89.78 61.33 7.77 7.00 2.77 2.40 69.80 53.90 3.28 2.90 26.20 20.30 47.49 44.36 2.73 1.26
03 88.67 72.30 8.21 7.52 2.60 2.55 71.53 67.03 3.14 2.70 27.96 25.87 44.79 40.39 3.17 2.61
04 93.49 61.92 7.92 6.76 2.67 2.43 60.93 50.30 2.88 2.61 24.95 19.60 48.40 47.90 3.32 1.23
05 79.78 61.73 7.48 6.80 2.81 2.60 57.77 50.70 2.59 2.10 20.51 18.20 45.01 42.11 3.18 1.22
06 83.33 58.94 6.93 5.50 2.90 2.20 58.87 46.10 2.84 2.00 21.58 15.60 48.26 38.92 3.27 1.21
07 77.96 60.64 7.49 6.10 2.87 2.20 63.80 48.40 3.17 2.33 21.94 17.40 49.62 40.90 3.16 1.24
08 75.82 54.76 7.90 6.30 2.80 2.10 59.23 46.80 2.90 2.00 22.21 18.20 49.06 40.70 3.05 1.23
09 87.84 67.03 7.20 6.30 2.80 2.40 52.70 43.40 2.70 2.20 19.30 17.20 50.35 48.10 3.11 1.37
10 86.56 65.06 7.89 7.61 2.70 2.50 66.23 57.40 3.37 2.55 24.53 23.03 50.43 44.56 3.35 2.44
11 73.49 52.13 7.26 6.10 2.83 2.80 66.30 58.70 3.01 2.72 23.40 22.80 48.88 41.11 3.22 1.42
12 73.83 61.83 6.80 5.30 2.30 1.70 52.20 50.40 2.30 2.10 23.40 22.10 43.90 43.10 2.73 2.03
13 74.67 65.60 7.43 6.71 2.80 2.70 60.20 57.80 2.96 2.55 22.59 21.60 51.32 46.70 3.36 2.71
14 74.02 54.44 7.31 6.73 2.80 2.60 65.63 58.97 3.68 3.00 23.73 23.16 56.14 45.31 2.90 1.23
15 82.87 53.05 8.88 6.80 2.70 2.30 64.67 51.00 3.51 2.80 24.27 20.10 54.39 44.70 3.22 1.16
16 80.50 57.55 8.00 5.80 2.90 2.00 57.40 43.20 3.35 2.00 22.60 16.30 49.30 40.20 3.31 0.97
17 78.54 56.68 6.70 5.50 2.67 2.10 61.80 57.10 3.15 2.50 23.20 20.80 54.98 47.04 3.00 1.13
18 69.54 52.05 6.70 6.50 2.80 2.60 62.10 49.20 3.04 2.60 22.46 21.42 49.21 48.72 2.90 1.43
19 90.42 51.20 7.31 5.60 2.60 2.50 59.30 46.30 2.80 1.90 22.00 21.40 44.40 41.90 2.55 1.27
20 77.14 62.72 8.41 6.30 2.50 2.27 62.87 49.80 2.80 2.10 25.70 22.38 54.40 47.40 2.62 1.32
21 89.86 57.26 7.60 6.00 2.40 2.10 74.27 53.10 2.70 2.00 26.23 23.11 45.64 42.69 2.59 1.21
22 74.05 58.34 7.90 6.00 2.30 1.70 67.20 50.30 3.02 2.00 23.70 20.90 44.89 40.60 3.19 1.05
23 74.07 55.54 6.88 4.50 2.27 1.60 84.10 49.70 4.77 3.20 31.89 26.40 51.83 46.93 2.82 0.65
24 73.61 56.91 7.53 5.70 2.10 1.80 62.33 48.30 2.71 1.90 22.86 21.52 43.48 41.47 2.96 0.97
25 82.25 64.30 8.90 7.00 2.43 1.80 60.10 58.90 2.74 1.80 25.25 24.68 46.37 43.44 2.75 1.06
26 79.46 54.57 7.76 6.10 2.70 2.60 61.60 53.30 3.01 2.43 23.68 22.47 48.77 42.27 3.07 1.35
27 80.48 67.10 8.90 8.40 2.90 2.80 66.10 64.90 2.68 2.64 23.40 22.30 51.30 48.90 3.41 2.86
28 74.49 50.91 7.80 6.10 2.70 2.20 56.37 50.10 2.55 1.80 22.57 20.36 45.03 38.50 3.34 0.92
29 70.80 50.81 6.86 6.80 2.80 2.70 59.90 55.63 2.84 1.90 21.77 20.42 47.44 39.81 3.03 1.17
30 66.08 44.30 6.60 4.20 2.77 1.90 56.93 33.50 2.74 1.30 22.40 19.10 47.53 37.74 3.33 0.91
[1] Ellis R P, Forster B P, Robinson D . Wild barley: a source of genes for crop improvement in the 21st century. J Exp Bot, 2000,51:9-17.
[2] George T S, Brown L K, Ramsay L . Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). New Phytol, 2014,203:195-205.
[3] 成福云 . 干旱灾害对二十一世纪初我国农业发展的影响探讨. 水利发展研究, 2002,2(10):31-33.
Cheng F Y . Discuss on drought disaster for influence on the agricultural development of our country at 21st century. Water Resour Develop Res, 2002,2(10):31-33 (in Chinese with English abstract).
[4] 张木清, 陈如凯 . 作物抗旱分子生理与遗传改良. 北京: 科学出版社, 2005. pp 22-23.
Zhang M Q, Chen R K. Molecular Physiological and Genetic Improvement of Crop Drought Tolerance. Beijing: Science Press, 2005. pp 22-23(in Chinese).
[5] 孟庆立, 关周博, 冯佰利, 柴岩, 胡银岗 . 谷子抗旱相关性状的主成分与模糊聚类分析. 中国农业科学, 2009,42:2667-2675.
Meng Q L, Guan Z B, Feng B L, Chai Y, Hu Y G . Principal component analysis and fuzzy clustering on drought-tolerance related traits of foxtail millet. Sci Agric Sin, 2009,42:2667-2675 (in Chinese with English abstract).
[6] 秦岭, 杨延兵, 管延安, 张华文, 王海莲, 刘宾, 陈二影 . 不同生态区主要育成谷子品种芽期耐旱性鉴定. 植物遗传资源学报, 2013,14:146-151.
Qin L, Yang Y B, Guan Y A, Zhang H W, Wang H L, Liu B, Chen E Y . Identification of drought tolerance at germination period of foxtail millet cultivars developed from different ecological regions. J Plant Genet Resour, 2013,14:146-151 (in Chinese with English abstract).
[7] 祁旭升, 王兴荣, 许军, 张建平, 米君 . 胡麻种质资源成株期抗旱性鉴定. 中国农业科学, 2010,43:3076-3087.
Qi X S, Wang X R, Xu J, Zhang J P, Mi J . Drought-resistance evaluation of flax germplasm at adult plant stage. Sci Agric Sin, 2010,43:3076-3087 (in Chinese with English abstract).
[8] 张彦军, 苟作旺, 王兴荣, 陈伟英, 祁旭升 . 胡麻种质萌发期抗旱性综合评价. 植物遗传资源学报, 2015,16:520-527.
Zhang Y J, Gou Z W, Wang X R, Chen W Y, Qi X S . Comprehensive valuation of drought resistance of flax germplasm in germination. J Plant Genet Resour, 2015,16:520-527 (in Chinese with English abstract).
[9] 罗俊杰, 欧巧明, 叶春雷, 王方, 王镛臻, 陈玉梁 . 重要胡麻栽培品种的抗旱性综合评价及指标筛选. 作物学报, 2014,40:1259-1273.
Luo J J, Ou Q M, Ye C L, Wang F, Wang Y Z, Chen Y L . Comprehensive valuation of drought resistance and screening of indexes of important flax cultivars. Acta Agron Sin, 2014,40:1259-1273 (in Chinese with English abstract).
[10] 王利彬, 刘丽君, 裴宇峰, 董守坤, 孙聪姝, 祖伟, 阮英慧 . 大豆种质资源芽期抗旱性鉴定. 东北农业大学学报, 2012,43(1):36-42.
Wang L B, Liu L J, Pei Y F, Dong S K, Sun C S, Zu W, Ruan Y H . Drought resistance identification of soybean germplasm resources at bud stage. J Northeast Agricl Univ, 2012,43(1):36-42.
[11] 祁旭升, 刘章雄, 关荣霞, 王兴荣, 苟作旺, 常汝镇, 邱丽娟 . 大豆成株期抗旱性鉴定评价方法研究. 作物学报, 2012,38:665-674.
Qi X S, Liu Z X, Guan R X, Wang X R, Gou Z W, Chang R Z, Qiu L J . Comparison of evaluation methods for drought-resistance at soybean adult stage. Acta Agron Sin, 2012,38:665-674 (in Chinese with English abstract).
[12] 朱宗河, 郑文寅, 张学坤 . 甘蓝型油菜耐旱相关性状的主成分分析. 中国农业科学, 2011,44:1775-1787.
Zhu Z H, Zheng W Y, Zhang X K . Principal component analysis and comprehensive evaluation on morphological and agronomic traits of drought tolerance in rapeseed. Sci Agric Sin, 2011,44:1775-1787 (in Chinese with English abstract).
[13] 谢小玉, 张霞, 张兵 . 油菜苗期抗旱性评价及抗旱相关指标变化分析. 中国农业科学, 2013,46:476-485.
Xie X Y, Zhang X, Zhang B . Evaluation of drought resistance and analysis of variation of relevant parameters at seedling stage of rapeseed. Sci Agric Sin, 2013,46:476-485 (in Chinese with English abstract).
[14] 陈玉梁, 石有太, 罗俊杰, 王蒂, 厚毅清, 李忠旺, 张秉贤 . 甘肃彩色棉抗旱性农艺性状指标的筛选鉴定. 作物学报, 2012,38:1680-1687.
Chen Y L, Shi Y T, Luo J J, Wang D, Hou Y Q, Li Z W, Zhang B X . Screening of drought tolerant agronomic trait indexes of colored cotton varieties (lines) in Gansu province Acta Agron Sin, 2012,38:1680-1687 (in Chinese with English abstract).
[15] 王艺陶, 周宇飞, 李丰先, 依兵, 白薇, 闫彤, 许文娟, 高明超, 黄瑞冬 . 基于主成分和 SOM 聚类分析的高粱品种萌发期抗旱性鉴定与分类. 作物学报, 2014,40:110-121.
Wang Y T, Zhou Y F, Li F X, Yi B, Bai W, Yan T, Xu W J, Gao M C, Huang R D . Identification and classification of sorghum cultivars for drought resistance during germination stage based on principal components analysis and self organizing map cluster analysis. Acta Agron Sin, 2014,40:110-121 (in Chinese with English abstract).
[16] 吴奇, 周宇飞, 高悦, 张娇, 陈冰汝, 许文娟, 黄瑞冬 . 不同高粱品种萌发期抗旱性筛选与鉴定. 作物学报, 2016,42:1233-1246.
Wu Q, Zhou Y F, Gao Y, Zhang J, Chen B R, Xu W J, Huang R D . Screening and identification for drought resistance during germination in sorghum cultivars. Acta Agron Sin, 2016,42:1233-1246 (in Chinese with English abstract).
[17] 汪灿, 周棱波, 张国兵, 徐燕, 张立异, 高旭, 高杰, 姜讷, 邵明波 . 酒用糯高粱资源成株期抗旱性鉴定及抗旱指标筛选. 中国农业科学, 2017,50:1388-1402.
Wang C, Zhou L B, Zhang G B, Xu Y, Zhang L Y, Gao X, Gao J, Jiang N, Shao M B . Drought resistance identification and drought resistance indexes screening of liquor-making waxy sorghum resources at adult plant stage. Sci Agric Sin, 2017,50:1388-1402 (in Chinese with English abstract).
[18] 王兰芬, 武晶, 景蕊莲, 程须珍, 王述民 . 绿豆种质资源芽期抗旱性鉴定. 植物遗传资源学报, 2014,15:498-503.
Wang L F, Wu J, Jing R L, Cheng X Z, Wang S M . Drought resistance identification of mungbean germplasm resources at bud stage. J Plant Genet Resour, 2014,15:498-503 (in Chinese with English abstract).
[19] 王兰芬, 武晶, 景蕊莲, 程须珍, 王述民 . 绿豆种质资源苗期抗旱性鉴定. 作物学报, 2015,41:145-153.
Wang L F, Wu J, Jing R L, Cheng X Z, Wang S M . Drought resistance identification of mungbean germplasm resources at seedling stage. Acta Agron Sin, 2015,41:145-153 (in Chinese with English abstract).
[20] 王兰芬, 武晶, 景蕊莲, 程须珍, 王述民 . 绿豆种质资源成株期抗旱性鉴定. 作物学报, 2015,41:1287-1294.
Wang L F, Wu J, Jing R L, Cheng X Z, Wang S M . Identification of mungbean germplasm resources resistance to drought at adult stage. Acta Agron Sin, 2015,41:1287-1294 (in Chinese with English abstract).
[21] 汪灿, 周棱波, 张国兵, 张立异, 徐燕, 高旭, 姜讷, 邵明波 . 薏苡种质资源苗期抗旱性鉴定及抗旱指标筛选. 中国农业科学, 2017,50:2872-2887.
Wang C, Zhou L B, Zhang G B, Zhang L Y, Xu Y, Gao X, Jiang N, Shao M B . Drought resistance identification and drought resistance indexes screening of Job’s Tears ( Coxi lacryma-jobi L.) germplasm resources at seedling stage. Sci Agric Sin, 2017,50:2872-2887 (in Chinese with English abstract).
[22] 汪灿, 周棱波, 张国兵, 张立异, 徐燕, 高旭, 姜讷, 邵明波 . 薏苡种质资源成株期抗旱性鉴定及抗旱指标筛选. 作物学报, 2017,43:1381-1394.
Wang C, Zhou L B, Zhang G B, Zhang L Y, Xu Y, Gao X, Jiang N, Shao M B . Identification and indexes screening of drought resistance at adult plant stage in job’s tears germplasm resources. Acta Agron Sin, 2017,43:1381-1394 (in Chinese with English abstract).
[23] 赵东宾, 张海禄, 王仙, 齐军仓, 惠宏杉, 林立昊, 王凤, 郑许光 . 大麦叶片表皮蜡质组分和含量及其与抗旱性的关系. 新疆农业科学, 2017,54(1):43-50.
Zhao D B, Zhang H L, Wang X, Qi J C, Hui H B, Lin L H, Wang F, Zheng X G . Relationship between epicuticular wax components and its content and drought resistance in barley leaf. Xinjiang Agric Sci, 2017,54(1):43-50 (in Chinese with English abstract).
[24] 张海禄, 齐军仓 . 大麦叶片表皮蜡质含量与抗旱性的关系研究. 新疆农业科学, 2012,49(1):22-27.
Zhang H L, Qi J C . Study on the relationship between epicuticular wax content of barley leaves and drought resistance. Xinjiang Agric Sci, 2012,49(1):22-27 (in Chinese with English abstract).
[25] 谢蕾蕾 . 蜡质对大麦缺失突变体MB-1-5抗旱性影响及蜡质基因初步定位. 甘肃农业大学硕士学位论文, 甘肃兰州, 2017.
Xie L L . Effect of Wax on Drought Resistance of Mutant MB-1-5 and Primary of Waxy Gene in Barley. MS Thesis of Gansu Agricultural University, Lanzhou, Gansu, China, 2017 (in Chinese with English abstract).
[26] 鞠乐, 齐军仓, 贺雪, 王丹, 侯忠庆, 付强, 熊显鹏 . 大麦种子萌发期对渗透胁迫的响应及抗旱性鉴定指标的筛选. 干旱地区农业研究, 2013,31(1):172-176.
Ju L, Qi J C, He X, Wang D, Hou Z Q, Fu Q, Xiong X P . The response of barley to osmotic stress during germination stage and the screening of drought resistance indicators. Agric Res Arid Areas, 2013,31(1):172-176 (in Chinese with English abstract).
[27] 鞠乐, 齐军仓, 成禄艳, 赵佳, 廖永兵 . 大麦种子萌发期对干旱胁迫的生理响应及其抗旱性评价. 西南农业学报, 2013,26(1):93-98.
Ju L, Qi J C, Cheng L Y, Zhao J, Liao Y B . Physiological response of barley to drought stress during seed germination period and drought resistance evaluation. Southwest China J Agric Sci, 2013,26(1):93-98 (in Chinese with English abstract).
[28] 鞠乐, 齐军仓, 贺雪, 王丹 . 大麦种子萌发期抗旱性鉴定指标的筛选及抗旱性评价. 新疆农业科学, 2016,53:2008-2014.
Ju L, Qi J C, He X, Wang D . Screening drought resistance identification index and drought resistance evaluation in barley during seed germination period. Xinjiang Agric Sci, 2016,53:2008-2014 (in Chinese with English abstract).
[29] 马小英, 贾方兴, 赵颖岚, 赵杰才 . 干旱和盐胁迫中大麦实时定量PCR内参基因的筛选. 分子植物育种, 2016,11:3093-3101.
Ma X Y, Jia F X, Zhao Y L, Zhao J C . Reference genes screening for quantitative real-time PCR in barley under drought and salt stress. Mol Plant Breed, 2016,11:3093-3101 (in Chinese with English abstract).
[30] 汪军成, 孟亚雄, 徐先良, 王晋, 赖勇, 李葆春, 马小乐, 王化俊 . 大麦苗期抗旱性鉴定及评价. 干旱地区农业研究, 2013,31(4):135-143.
Wang J C, Meng Y X, Xu X L, Wang J, Lai Y, Li B C, Ma X L, Wang H J . Identification and assessment on drought-resistance of Hordeum vulgare L. at seedling stage. Agric Res Arid Areas, 2013,31(4):135-143 (in Chinese with English abstract).
[31] 蒋花 . 大麦生长初期的抗旱生理特性研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2012.
Jiang H . Study on Physiologic Characteristics of Initial Growth Barley Materials Related to Drought-Resistance. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2012 (in Chinese with English abstract).
[32] 惠宏斌 . 干旱胁迫对大麦幼苗根系的影响及其与抗旱性关系的研究. 石河子大学硕士学位论文,新疆石河子, 2016.
Hui H B . Effects of Drought Stress on Barley Seedling Roots with Different Drought Resistance. MS Thesis of Shihezi University, Shihezi, Xinjiang, China, 2016 (in Chinese with English abstract).
[33] 陈健辉, 李荣, 郭培国, 夏岩石, 田长恩, 缪绅裕 . 干旱胁迫对不同耐旱性大麦品种叶片超微结构的影响. 植物学报, 2011,46(1):28-36.
Chen J H, Li R, Guo P G, Xia Y S, Tian C E, Miao S Y . Impact of drought stress on the ultrastructure of leaf cells in three barley genotypes differing in level of drought tolerance. Chin Bull Bot, 2011,46(1):28-36 (in Chinese with English abstract).
[34] 兰巨生 . 农作物综合抗旱性评价方法的研究. 西北农业学报, 1998,7(3):85-87.
Lan J S . Comparison of evaluating methods for agronomic drought resistance in crops. Acta Agric Boreali-Occident Sin, 1998,7(3):85-87 (in Chinese with English abstract).
[35] 黎冬华, 刘文萍, 张艳欣, 王林海, 危文亮, 高媛, 丁霞, 王蕾, 张秀荣 . 芝麻耐旱性的鉴定方法及关联分析. 作物学报, 2013,39:1425-1433.
Li D H, Liu W P, Zhang Y X, Wang L H, Wei W L, Gao Y, Ding X, Wang L, Zhang X R . Identification method of drought tolerance and association mapping for sesame ( Sesamum indicum L.). Acta Agron Sin, 2013,39:1425-1433 (in Chinese with English abstract).
[36] 田又升, 谢宗铭, 吴向东, 王志军, 叶春秀, 张国丽 . 水稻种质资源萌发期抗旱性综合鉴定. 干旱地区农业研究, 2015,33(4):173-180.
Tian Y S, Xie Z M, Wu X D, Wang Z J, Ye C X, Zhang G L . Identification of drought tolerance of rice germplasm during germination period. Agric Res Arid Areas, 2015,33(4):173-180 (in Chinese with English abstract).
[37] 李国瑞, 马宏亮, 胡雯媚, 汤永禄, 荣晓椒, 樊高琼 . 西南麦区小麦品种萌发期抗旱性综合鉴定. 麦类作物学报, 2015,35(4):1-9.
Li G R, Ma H L, Hu W M, Tang Y L, Rong X J, Fan G Q . Identification of wheat cultivars for drought resistance during germination in southwest area. J Triticeae Crops, 2015,35(4):1-9 (in Chinese with English abstract).
[38] 李龙, 王兰芬, 武晶, 景蕊莲, 王述民 . 普通菜豆种质资源芽期抗旱性鉴定. 植物遗传资源学报, 2013,14:600-605.
Li L, Wang L F, Wu J, Jing R L, Wang S M . Drought tolerance in common bean germplasm at bud stage. J Plant Genet Resour, 2013,14:600-605 (in Chinese with English abstract).
[39] 郑桂萍, 李金峰, 钱永德, 吕艳东, 刘丽华, 王伯伦 . 农作物综合抗旱性指标的评价分析. 中国农学通报, 2005,21(10):109-121.
Zheng G P, Li J F, Qian Y D, Lyu Y D, Liu L H, Wang B L . Evaluation on comprehensive drought resistant index of crops. Chin Agric Sci Bull, 2005,21(10):109-121 (in Chinese with English abstract).
[40] Kamoshita A, Babu R C, Boopathi N M, Fukai S . Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Res, 2008,109:1-23.
[41] Upadhyay H D . Variability for drought resistance related traits in the mini core collection of peanut. Crop Sci, 2005,45:1432-1440.
[1] 王兴荣, 李玥, 张彦军, 李永生, 汪军成, 徐银萍, 祁旭升. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2022, 48(5): 1279-1287.
[2] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[3] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[4] 张海燕,解备涛,汪宝卿,董顺旭,段文学,张立明. 不同甘薯品种抗旱性评价及耐旱指标筛选[J]. 作物学报, 2019, 45(3): 419-430.
[5] 张笑笑,潘映红,任富莉,蒲伟军,王道平,李玉斌,陆平,李桂英,朱莉. 基于多重表型分析的准确评价高粱抗旱性方法的建立[J]. 作物学报, 2019, 45(11): 1735-1745.
[6] 李龙,毛新国,王景一,昌小平,柳玉平,景蕊莲. 小麦种质资源抗旱性鉴定评价[J]. 作物学报, 2018, 44(7): 988-999.
[7] 王建伟,贺晓岚,李文旭,陈新宏. 小麦近缘属植物1-FFT基因的克隆及功能分析[J]. 作物学报, 2018, 44(6): 814-823.
[8] 吕品, 于海峰, 侯建华. 利用抗旱选择导入系定位向日葵产量性状QTL[J]. 作物学报, 2018, 44(03): 385-396.
[9] 汪灿,周棱波,张国兵,张立异,徐燕,高旭,姜讷,邵明波. 薏苡种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2017, 43(09): 1381-1394.
[10] DO Thanh-Trung,李健,张风娟,杨丽涛,李杨瑞,邢永秀. 甘蔗与抗旱性相关差异蛋白质组分析[J]. 作物学报, 2017, 43(09): 1337-1346.
[11] 徐文,申浩,郭军,余晓丛,李祥,杨彦会,马晓,赵世杰,宋健民. 旗叶蜡质含量不同小麦近等基因系的抗旱性[J]. 作物学报, 2016, 42(11): 1700-1707.
[12] 吴奇,周宇飞,高悦,张姣,陈冰嬬,许文娟,黄瑞冬. 不同高粱品种萌发期抗旱性筛选与鉴定[J]. 作物学报, 2016, 42(08): 1233-1246.
[13] 王兰芬,武晶,景蕊莲,程须珍,王述民. 绿豆种质资源成株期抗旱性鉴定[J]. 作物学报, 2015, 41(08): 1287-1294.
[14] 李龙,王兰芬,武晶,景蕊莲,王述民. 普通菜豆品种苗期抗旱性鉴定[J]. 作物学报, 2015, 41(06): 963-971.
[15] 王兰芬,武晶,景蕊莲,程须珍,王述民. 绿豆种质资源苗期抗旱性鉴定[J]. 作物学报, 2015, 41(01): 145-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!