欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (4): 557-570.doi: 10.3724/SP.J.1006.2020.94045

• 耕作栽培·生理生化 • 上一篇    下一篇

基于高光谱数据的滴灌甜菜叶片全氮含量估算

李宗飞1,苏继霞1,费聪1,李阳阳1,刘宁宁1,戴宇祥1,张开祥1,王开勇1,樊华1,*(),陈兵2,*()   

  1. 1 石河子大学农学院, 新疆石河子 832003
    2 新疆农垦科学院棉花研究所, 新疆石河子 832003
  • 收稿日期:2019-03-20 接受日期:2019-12-26 出版日期:2020-04-12 网络出版日期:2020-01-17
  • 通讯作者: 樊华,陈兵
  • 作者简介:E-mail: shzulizongfei@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(31660360);本研究由国家自然科学基金项目(31771720);自治区研究生科研创新项目(XJGRI2016039);石河子大学国际科技合作推进计划资助(GJHZ201706)

Estimation of total nitrogen content in sugarbeet leaves under drip irrigation based on hyperspectral characteristic parameters and vegetation index

LI Zong-Fei1,SU Ji-Xia1,FEI Cong1,LI Yang-Yang1,LIU Ning-Ning1,DAI Yu-Xiang1,ZHANG Kai-Xiang1,WANG Kai-Yong1,FAN Hua1,*(),CHEN Bing2,*()   

  1. 1 Agronomy College, Shihezi University, Shihezi 832003, Xinjiang, China
    2 Cotton Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832003, Xinjiang, China
  • Received:2019-03-20 Accepted:2019-12-26 Published:2020-04-12 Published online:2020-01-17
  • Contact: Hua FAN,Bing CHEN
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31660360);This study was supported by the National Natural Science Foundation of China(31771720);the Research and Innovation Projects of Postgraduates in Autonomous Region(XJGRI2016039);the International Science and Technology Cooperation Promotion Plan of Shihezi University(GJHZ201706)

摘要:

本文旨在明确甜菜叶片全氮含量与高光谱地面植被遥感的定量关系, 建立干旱区甜菜叶片全氮含量精确估测模型, 及时监测甜菜生长状况。本研究选取新疆滴灌甜菜(Beta356)为材料, 利用ASD野外高光谱仪在甜菜叶丛快速生长期、块根膨大期与糖分积累期采集各处理反射光谱, 并同时测定全氮含量, 分析原始光谱反射率及一阶微分光谱反射率与全氮含量的相关性, 并进一步建立光谱特征参数与敏感波段植被指数全氮含量估算模型。结果表明, 光谱特征参数Dr762幂函数下估算模型具有较好估算甜菜叶片全氮含量的能力, 其决定系数R 2 = 0.747, 验证相对误差RE(%)为21.635, 验证均方根误差RMSE为4.914; 通过植被指数与叶片全氮含量建立多种函数估测模型, 其中差值植被指数Dr762-Dr496下一元线性函数具有较好估算甜菜叶片全氮含量的能力, 其决定系数R 2 = 0.794, 验证相对误差RE(%)为23.008, 验证均方根误差为5.372。

关键词: 全氮, 高光谱, 特征参数, 植被指数, 估算模型

Abstract:

The purpose of this paper is to clarify the quantitative relationship between total nitrogen content of sugar beet and high-resolution vegetation remote sensing, to explore the establishment of an optimal estimation model for total nitrogen content of sugar beet, and to monitor the growth of sugar beet. Xinjiang drip-irrigated sugar beet (Beta356) was selected to collect the reflectance spectra of leaf cluster during the leaves rapid growth period, root expansion period and sugar accumulation period by the ASD field hyperspectral apparatus. The total nitrogen content was also measured and the relationship between original spectral reflectance and total nitrogen content was analyzed. According to the correlation between the first-order differential spectral reflectance and total nitrogen content, a total nitrogen content estimation model was established. The model with spectral characteristic parameter Dr762 power function had a good ability to estimate total nitrogen content in leaves of beet, with the determination coefficient, relative error, and root mean square error of 0.747, 21.635, and 4.914, respectively. Various function estimation models were established based on vegetation index and leaf total nitrogen content. The linear function under vegetation index Dr762-Dr496 had better ability to estimate leaf total nitrogen content. Its determinant coefficient, relative error, and root mean square error were 0.794, 23.008, and 5.372, respectively.

Key words: total nitrogen, hyperspectral, characteristic parameters, vegetation index, estimation model

表1

高光谱特征参数及植被指数定义"

光谱特征参数与植被指数
Spectral characteristic parameter and Spectral index
定义
Definition
红边斜率
Red edge slope (Dr)
680-760 nm内最大一阶微分光谱值
Maximum first order differential spectrum in 680-760 nm
红边位置
Red edge position (λr)
680-760 nm内最大的一阶微分光谱值对应的波长
The wavelength corresponding to the largest first-order differential spectrum in 680-760 nm
红边面积
Red edge area (SDr)
680-760 nm内一阶微分光谱值的总和
The sum of the first-order differential spectral values in 680-760 nm
黄边斜率
Yellow edge slope (Dy)
560-640 nm内最大一阶微分光谱值
Maximum first order differential spectrum in 560-640 nm
黄边位置
Yellow edge position (Λy)
560-640 nm内最大一阶微分光谱值对应的波长
The wavelength corresponding to the largest first-order differential spectrum in 560-640 nm
黄边面积
Yellow edge area (SDy)
560-640 nm内一阶微分光谱值的总和
The sum of the first-order differential spectral values in 560-640 nm
蓝边斜率
Blue edge slope (Db)
490-530 nm内最大一阶微分光谱值
Maximum first order differential spectrum in 490-530 nm
蓝边位置
Blue edge position (λb)
490-530 nm内最大一阶微分光谱值对应的波长
The wavelength corresponding to the largest first-order differential spectrum in 490-530 nm
蓝边面积
Blue edge area (SDb)
490-530 nm内一阶微分光谱值的总和
The sum of the first-order differential spectral values in 490-530 nm
比值植被指数
Ratio vegetation index (RVI)
Rλ1/Rλ2
差值植被指数
Difference vegetation index (DVI)
Rλ1- Rλ2
归一化比值植被指数
Normalized ratio vegetation index (NDVI)
(RNIR-Rred)/(RNIR+Rred)
红边归一化差异指数
Red edge normalized difference index (NDI)
(DRλ1-DRλ2)/(DRλ1+DRλ2)

图1

不同氮素水平下高光谱反射率与红边 N0: 施氮0 kg hm-2; N75: 施氮75 kg hm-2; N150: 施氮150 kg hm-2; N225: 施氮225 kg hm-2。"

图2

甜菜冠层原始光谱反射率与全氮含量相关性 F0.05: 显著相关(P < 0.05); F0.01: 极显著相关(P < 0.01)。"

图3

甜菜冠层一阶导数光谱与全氮含量相关性 F0.05: 显著相关(P < 0.05); F0.01: 极显著相关(P < 0.01)。"

表2

光谱特征参数及敏感波段植被指数与全氮含量相关性"

光谱特征参数
Spectral characteristic parameter
相关关系
Correlation
植被指数
Vegetation index
相关性Correlation
Dr 0.590** 原始光谱比值植被指数Ratio vegetation index R1104/R767 0.358**
λr 0.497** 原始光谱差值植被指数Difference vegetation index R1104-R767 0.280**
SDr 0.601** 原始光谱归一化植被指数Normalized ratio vegetation index (R1104-R767)/(R1104+R767) 0.364**
Dy 0.074 原始光谱比值植被指数Ratio vegetation index R767/R604 0.652**
Λy 0.089 原始光谱差值植被指数Difference vegetation index R767-R604 0.433**
SDy -0.086 一阶微分比值植被指数Ratio vegetation index Dr1138/Dr762 -0.169
Db 0.072 一阶微分差值植被指数Difference vegetation index Dr1138-Dr762 -0.744**
λb 0.506** 一阶微分归一化植被指Normalized ratio vegetation index (Dr1138-Dr762)/(Dr1138+Dr762) 0.500**
SDb -0.216 一阶微分比值植被指数Ratio vegetation index Dr762/Dr496 0.586**
R604 -0.267** 一阶微分差值植被指数Difference vegetation index Dr762-Dr496 0.721**
R1104 0.680** 红边比值植被指数Red edge ratio vegetation index Dr747/Dr687 0.431**
Dr1138 -0.715** 红边差值植被指数Red edge difference vegetation index Dr747-Dr687 0.589**
Dr762 0.703** 红边归一化差异指数Red edge normalized difference index (Dr747-Dr687)/( Dr747+Dr687) 0.545**

表3

已知高光谱植被指数与全氮含量的相关性"

植被指数
Vegetation index
计算公式
Calculation formula
相关关系Correlation 文献来源
Source of literature
RSI R990/R720 0.528** [23]
NDSI (R860-R720)/(R860+R720) 0.582** [23]
NDVI (R790-R670)/(R790+R670) 0.332** [24]
FD-NDVI (R730-R525)/(R730+R525) 0.451** [25]
RENDVI (R750-R705/( R750+ R705) 0.367** [26]
mND705 (R750-R705)/(R750+2R445) 0.360** [27]
GNDVI (R790-R550)/(R790+R550) 0.464** [28]
SAVI 1.5(R870-R680)/(R870+R680+0.5) 0.692** [29]
OSAVI (1+0.16)(R810-R680)/(R810-R680+0.16) 0.633** [30]
MSAVI 0.5{2R800+1-[(2R800+1)2-8(R800-R670)]0.5} 0.623** [31]
DCNI (R720-R700/(R700-R670)/(R720-R670+0.03) 0.460** [32]
CIgreen [(R840-R870)/R550]-1 -0.493** [33]
NINI [lg(1/R1510)-lg(1/R1680)]/[lg(1/R1510)+lg(1/R1680)] 0.553** [34]
TVI 0.5[120(R750-R550)-200(R670-R550)] 0.538** [35]
DSI R800-R680 0.510** [36]

表4

不同光谱特征参数与全氮含量回归关系模型及验证"

高光谱特征参数
Characteristic parameter
拟合模型 Fitting model 验证模型 Performance model
拟合方程 Equation R2 RE(%) RMSE
R1104 y = 63.88x-8.167 0.516 21.429 4.762
y = -30.27x2+96.39-16.64 0.519 22.299 4.829
y = 58.24x1.296 0.513 20.898 4.766
y = 7.555e2.277x 0.493 22.904 4.898
Dr1138 y = 64.73x-1.144 0.643 19.893 4.874
y = -47.08x2+104.7x-9.162 0.648 20.625 4.945
y = 63.68x1.031 0.643 19.909 4.881
y = 9.629e2.313x 0.615 23.265 5.010
Dr762 y = 157.8x-147 0.770 20.877 5.038
y = -192.3x2+578.8x-377.1 0.772 21.518 5.137
y = 13.96x6.461 0.747 21.635 4.914
y = 0.04302e5.813x 0.740 22.103 4.928

图4

甜菜光谱特征参数Dr762 (一阶微分最大正相关)下全氮含量估测模型验证"

表5

不同植被指数与全氮含量回归关系模型及验证"

高光谱特征参数
Characteristic parameter
拟合模型 Fitting model 验证模型 Performance model
拟合方程 Equation R2 RE(%) RMSE
SAVI y = 114.7x-105.7 0.541 24.492 5.092
y = 104.5x2-122.1x+28.18 0.544 23.153 4.926
y = 12.39x5.208 0.539 21.878 4.830
y = 0.1489e4.474x 0.535 21.514 4.829
Dr1138-Dr762 y = 49.36x+0.4913 0.732 19.708 4.709
y = -1.864x2+51.27x+0.04145 0.732 19.777 4.721
y = 49.73x0.9814 0.732 19.746 4.715
y = 9.737e1.842x 0.714 20.934 4.656
Dr762-Dr496 y = 12.85x+5.673 0.794 23.008 5.372
y = -2.828x2+21.68x-0.3212 0.804 22.996 5.608
y = 18.64x0.755 0.799 23.025 5.447
y = 11.91e0.4736x 0.759 24.623 5.288

图5

甜菜植被指数Dr1138-Dr762下全氮含量估测模型验证"

图6

甜菜植被指数Dr762-Dr496下全氮含量估测模型验证"

[1] Lee Y J, Yang C M, Chang K W, Shen Y . A simple spectral index using reflectance of 735 nm to assess nitrogen status of rice canopy. Agron J, 2008,100:205-212.
[2] 苏继霞, 王开勇, 费聪, 李阳阳, 樊华 . 氮肥运筹对滴灌甜菜产量、氮素吸收和氮素平衡的影响. 土壤通报, 2016,47:1404-1407.
Su J X, Wang K Y, Fei C, Li Y Y, Fan H . Effects of nitrogen management on sugar beet yield, Nitrogen uptake and soil nitrogen balance under drip irrigation. Chin J Soil Sci, 2016,47:1404-1407 (in Chinese with English abstract).
[3] 费聪, 王维成, 李阳阳, 樊华 . 氮素运筹对滴灌甜菜叶片光合特性的影响. 江苏农业科学, 2016,44(12):227-229.
Fei C, Wang W C, Li Y Y, Fan H . Effects of nitrogen management on photosynthetic characteristics of sugarbeet leaves under drip irrigation. Jiangsu Agric Sci, 2016,44(12):227-229 (in Chinese).
[4] 高雨茜 . 夏玉米叶绿素、叶面积指数高光谱估测研究. 西北农林科技大学硕士学位论文, 陕西杨凌, 2016.
Gao Y Q . Chlorophyll and Leaf Area Indexstimation Based on Hyperspectrum of Summer Corn. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2016 (in Chinese with English abstract).
[5] 刘冰峰 . 夏玉米不同生育时期生理生态参数的高光谱遥感监测模型. 西北农林科技大学博士学位论文, 陕西杨凌, 2016.
Liu B F . Monitoring Models of Physiological and Ecological Parameters of Summer Maize Based on Hyperspectral Remote Sensing at Different Growth Stages. PhD Dissertation of Northwest A&F University, Yangling, Shaanxi, China, 2016 (in Chinese with English abstract).
[6] Shibayama M, Akiyama T . Seasonal visible, near-infra-red and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry biomass. Remote Sense Environ, 1989,27:119-127.
[7] Smith M L, Ollinger S V, Martin M E, Aber J D, Hallett R A, Goodale C L . Direct estimation of aboveground forest productivity through hyperspectral remote sensing of canopy nitrogen. Ecol Appl, 2002,12:1286-1302.
[8] Stone M L, Soile J B, Raun R . Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Trans ASAE, 1996,39:1623-1631.
[9] Thomas J R, Oerther G F . Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agron J, 1972,64:11-13.
[10] Tian Y C, Yao X, Yang J, Cao W X, Hannaway D B, Zhu Y . Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground and spacebased hyperspectral reflectance. Field Crops Res, 2011,120:299-310.
[11] Wang W, Yao X, Yao X F, Tian Y C, Liu X J, Ni J, Cao W X, Zhu Y . Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat. Field Crops Res, 2012,129:90-98.
[12] Menesatti P, Antonucci F, Pallottino F, Roccuzzo M, Allegra M, Stagno F, Intrigliolo F . Estimation of plant nutritional status by Vis-NIR spectrophotometric analysis on orange leaves. Biosyst Eng, 2010,105:448-454.
[13] Zhang G C, Li Z, Yan X M, Cheng C G, Zhou P, Lin G L, Zhou C J, Liu N, Han X R . Rapid analysis of apple leaf nitrogen using near infrared spectroscopy and multiple linear regression. Commun Soil Sci Plant Anal, 2012,43:1768-1772.
[14] 张潇元, 张立福, 张霞, 王树东, 田静国, 翟涌光 . 不同光谱植被指数反演冬小麦叶氮含量的敏感性研究. 中国农业科学, 2017,50:474-485.
Zhang X Y, Zhang L F, Zhang X, Wang S D, Tian J G, Zhai Y G . Sensitivity of different spectral vegetation index for estimating winter wheat leaf nitrogen. Sci Agric Sin, 2017,50:474-485 (in Chinese with English abstract).
[15] 王仁红, 宋晓宇, 李振海, 杨贵军, 郭文善, 谭昌伟, 陈立平 . 基于高光谱冬小麦氮素营养指数估测. 农业工程学报, 2014,30(19):191-198.
Wang R H, Song X Y, Li Z H, Yang G J, Guo W S, Tan C W, Chen L P . Estimation of winter wheat nitrogen nutrition index using hyperspectral remote sensing. Trans CSAE, 2014,30(19):191-198 (in Chinese with English abstract).
[16] 田永超, 杨杰, 姚霞, 朱艳, 曹卫星 . 利用红边面积形状参数估测水稻叶层氮浓度. 植物生态学报, 2009,33:791-801.
Tian Y C, Yang J, Yao X, Zhu Y, Cao W X . Estimation of leaf canopy nitrogen concentration with red edge area shape parameter in rice. Chin J Plant Ecol, 2009,33:791-801 (in Chinese with English abstract).
[17] 顾清, 邓劲松, 陆超, 石媛媛, 王珂, 沈掌门 . 基于光谱和形状特征的水稻扫描叶片氮素营养诊断. 农业机械学报, 2012,43(8):170-174.
Gu Q, Deng J X, Lu C, Shi Y Y, Wang K, Shen Z M . Diagnosis of rice nitrogen nutrition based on spectral and shape characteristics of scanning leaves. Trans CSAM, 2012,43(8):170-174 (in Chinese with English abstract).
[18] 黄春燕, 王登伟, 闫杰, 张煜星, 曹连莆, 程诚 . 棉花叶绿素密度和叶片氮积累量的高光谱监测研究. 作物学报, 2007,33:931-936.
Huang C Y, Wang D W, Yan J, Zhang Y X, Cao L P, Cheng C . Monitoring of cotton canopy chlorophyll density and leaf nitrogen accumulation status by using hyperspectral data. Acta Agron Sin, 2007,33:931-936 (in Chinese with English abstract).
[19] 吴华兵, 朱艳, 田永超, 姚霞, 刘晓军, 周治国, 曹卫星 . 棉花冠层高光谱参数与叶片氮含量的定量关系. 植物生态学报, 2007,31:903-909.
Wu H B, Zhu Y, Tian Y C, Yao X, Liu X J, Zhou Z G, Cao W X . Relationship between canopy hyperspectra parameter and leaf nitrogen concentration in cotton. Chin J Plant Ecol, 2007,31:903-909 (in Chinese with English abstract).
[20] 赵春江, 黄文江, 王纪华, 杨敏华, 薛绪掌 . 不同品种、肥水条件下冬小麦光谱红边参数研究. 中国农业科学, 2002,35:980-987.
Zhao C J, Huang W J, Wang J H, Yang M H, Xue X Z . Studies on the red edge parameters of spectrum in winter wheat under different varieties, Fertilizer and water treatments. Sci Agric Sin, 2002,35:980-987 (in Chinese with English abstract).
[21] 王树文, 赵越, 王丽凤, 王润涛, 宋玉柱, 张长利, 苏中滨 . 基于高光谱的寒地水稻叶片氮素含量预测. 农业工程学报, 2016,32(20):187-194.
Wang S W, Zhao Y, Wang L F, Wang R T, Song Y Z, Zhang C L, Su Z B . Prediction for nitrogen content of rice leaves in cold region based on hyperspectrum. Trans CSAE, 2016,32(20):187-194 (in Chinese with English abstract).
[22] 陈兵, 王方永, 韩焕勇, 刘政, 邓福军, 林海, 余渝, 李少昆, 王克如, 肖春华 . 基于光谱红边参数的棉花黄萎病叶片氮素含量诊断研究. 棉花学报, 2013,25:254-261.
Chen B, Wang F Y, Han H Y, Liu Z, Deng F J, Lin H, Yu Y, Li S K, Wang K R, Xiao C H . Monitoring nitrogen contents in leaves of cotton under verticillium wilt stress based on spectra red-edge parameters. Cotton Sci, 2013,25:254-261 (in Chinese with English abstract).
[23] Yao X, Zhu Y, Tian Y C, Cao W X . Exploring hyperspectral bands and estimation indices for leaf nitrogen accumulation in wheat. Int J Appl Earth Obs, 2010,12:89-100.
[24] Rouse J W, Haas R H, Schell J A, Deering D W . Monitoring vegetation systems in the Great Plains with ERTS. NASA SP, 1974,351:309.
[25] 梁亮, 杨敏华, 邓凯东, 张连蓬, 林卉, 刘志霄 . 一种估测小麦冠层氮含量的新高光谱指数. 生态学报, 2011,31:6594-6605.
Liang L, Yang M H, Deng K D, Zhang L P, Lin H, Liu Z X . A new hyperspectral index for the estimation of nitrogen contents of wheat canopy. Acta Ecol Sin, 2011,31:6594-6605 (in Chinese with English abstract).
[26] Gitelson A A, Merzlyak M N . Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J Plant Physiol, 1994,143:286-292.
[27] Daniel A S, John A G . Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sense Environ, 2008,81:337-354.
[28] Gitelson A A, Merzlyak M N . Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll. J Plant Physiol, 1996,148:494-500.
[29] Huete A R . A soil-adjusted vegetation index (SAVI). Remote Sense Environ, 1988,25:295-309.
[30] Rondeaux G, Steven M, Baret F . Optimization of soil-adjusted vegetation indices. Remote Sense Environ, 1996,55:95-107.
[31] Haboudane D, Miller J R, Pattey E, Zarco P J, Strachan I B . Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopy: monitoring and validation in the context of precision agriculture. Remote Sense Environ, 2004,90:337-352.
[32] Chen P F, Haboudane D, Trembley N, Wang J H, Vigneault P, Li B G . New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat, Remote Sense Environ, 2010,114:1987-1997.
[33] Gitelson A A, Vina A, Ciganda V, Rundquist D C, Arkebauer T J . Remote estimation of canopy chlorophyll content in crops. Geophys Res Lett, 2005,32:1-4.
[34] Serrano L, Penuelas J, Ustin S L . Remote sensing of nitrogen and lignin in Mediterranean vegetation decomposing biochemical from structural signals. Remote Sense Environ, 2002,81:355-364.
[35] Broge N H, Leblanc E . Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sense Environ, 2001,76:156-172.
[36] 谌俊旭, 黄山, 范元芳, 王锐, 刘沁林, 杨文钰, 杨峰 . 单作套作大豆叶片氮素积累与光谱特征. 作物学报, 2017,43:1835-1844.
Chen J X, Huang S, Fan Y F, Wang R, Liu Q L, Yang W Y, Yang F . Remote detection of canopy leaf nitrogen status in soybean by hyperspectral data under monoculture and intercropping systems. Acta Agron Sin, 2017,43:1835-1844 (in Chinese with English abstract).
[37] 杨福芹, 冯海宽, 李振海, 杨贵军, 戴华阳 . 基于可见光-近红外光谱特征参数的苹果叶片氮含量预测. 农业机械学报, 2017,48(9):143-151.
Yang F Q, Feng H K, Li Z H, Yang G J, Dai H Y . Prediction for nitrogen content of apple leaves using spectral features parameters from visible and near infrared lights. Trans CSAM, 2017,48(9):143-151 (in Chinese with English abstract).
[38] 徐道青, 刘小玲, 王维, 陈敏, 阚画春, 李常凤, 郑曙峰 . 淹水胁迫下棉花叶片高光谱特征及叶绿素含量估算模型. 应用生态学报, 2017,28:3289-3296.
Xu D Q, Liu X L, Wang W, Chen M, Kan H C, Li C F, Zheng S F . Hyper-spectral characteristics and estimation model of leaf chlorophyll content in cotton under waterlogging stres. Chin J Appl Ecol, 2017,28:3289-3296 (in Chinese with English abstract).
[39] Knyazikhin Y, Mitchell A, Schull, Stenberg P, Mottus M, Rautiaien M, Yang Y, Marshak A, Carmona P L, Kaufmann R K, Lewis P, Disney M I, Vanderbilt V, Davis A B, Baret F, Jacquemoud S J, Lyapustin A, Myneni R B . Hyperspectral remote sensing of foliar nitrogen content. Proc Natl Acad Sci USA, 2013,110:E185-E192.
[40] Ollinger S V, Reich P B, Frolking S, Lepine L C, Hollinger D Y, Richardson A D . Nitrogen cycling, forest canopy reflectance, and emergent properties of ecosystems. Proc Natl Acad Sci USA, 2013,110:E2437.
[41] Townsen P A, Serbin S P, Kruger E L, Gamon J A . Disentangling the contribution of biological and physical properties of leaves and canopies in imaging spectroscopy data. Proc Natl Acad Sci USA, 2013,110:E1704.
[42] Ustin S L . Remote sensing of canopy chemistry. Proc Natl Acad Sci USA, 2013,110:804-805.
[1] 李金敏, 陈秀青, 杨琦, 史良胜. 基于高光谱的水稻叶片氮含量估计的深度森林模型研究[J]. 作物学报, 2021, 47(7): 1342-1350.
[2] 李艳大, 曹中盛, 舒时富, 孙滨峰, 叶春, 黄俊宝, 朱艳, 田永超. 基于作物生长监测诊断仪的双季稻叶干重监测模型[J]. 作物学报, 2021, 47(10): 2028-2035.
[3] 吾木提·艾山江,买买提·沙吾提,陈水森,李丹. 基于GF-1/2卫星数据的冬小麦叶面积指数反演[J]. 作物学报, 2020, 46(5): 787-797.
[4] 吴亚鹏,贺利,王洋洋,刘北城,王永华,郭天财,冯伟. 冬小麦生物量及氮积累量的植被指数动态模型研究[J]. 作物学报, 2019, 45(8): 1238-1249.
[5] 李艳霞,杨卫兵,尹燕枰,郑孟静,陈金,杨东清,骆永丽,庞党伟,李勇,王振林. 小麦小穗不同粒位粒重形成的生理特性差异[J]. 作物学报, 2019, 45(11): 1715-1724.
[6] 依尔夏提•阿不来提,买买提•沙吾提,白灯莎•买买提艾力,安申群,马春玥. 基于随机森林法的棉花叶片叶绿素含量估算[J]. 作物学报, 2019, 45(1): 81-90.
[7] 王利民,杨玲波,刘佳,杨福刚,姚保民. GF-1和MODIS影像冬小麦长势监测指标NDVI的对比[J]. 作物学报, 2018, 44(7): 1043-1054.
[8] 高林,杨贵军,李长春,冯海宽,徐波,王磊,董锦绘,付奎. 基于光谱特征与PLSR结合的叶面积指数拟合方法的无人机画幅高光谱遥感应用[J]. 作物学报, 2017, 43(04): 549-557.
[9] 齐波,张宁, 赵团结,邢光南,赵晋铭*,盖钧镒. 利用高光谱技术估测大豆育种材料的叶面积指数[J]. 作物学报, 2015, 41(07): 1073-1085.
[10] 张宁, 齐波,赵晋铭,张小燕,王素阁,赵团结,盖钧镒. 应用主动传感器GreenSeeker估测大豆籽粒产量[J]. 作物学报, 2014, 40(04): 657-666.
[11] 冯伟,王晓宇,宋晓,贺利,王永华,郭天财. 基于冠层反射光谱的小麦白粉病严重度估测[J]. 作物学报, 2013, 39(08): 1469-1477.
[12] 赵姣,郑志芳,方艳茹,周顺利,廖树华,王璞. 基于动态模拟模型分析冬小麦干物质积累特征对产量的影响[J]. 作物学报, 2013, 39(02): 300-308.
[13] 吴琼,齐波,赵团结,姚鑫锋,朱艳,盖钧镒. 高光谱遥感估测大豆冠层生长和籽粒产量的探讨[J]. 作物学报, 2013, 39(02): 309-318.
[14] 陈兵,韩焕勇,王方永,刘政,邓福军,林海,余渝,李少昆,王克如,肖春华. 利用光谱红边参数监测黄萎病棉叶叶绿素和氮素含量[J]. 作物学报, 2013, 39(02): 319-329.
[15] 王磊,白由路,卢艳丽,王贺,杨俐苹. 基于GreenSeeker的冬小麦NDVI分析与产量估算[J]. 作物学报, 2012, 38(04): 747-753.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!