作物学报 ›› 2020, Vol. 46 ›› Issue (5): 645-660.doi: 10.3724/SP.J.1006.2020.94133
• 作物遗传育种·种质资源·分子遗传学 • 下一篇
王晓阳1,王丽媛1,潘兆娥1,何守朴1,王骁1,龚文芳1,3,*(),杜雄明1,2,*()
Xiao-Yang WANG1,Li-Yuan WANG1,Zhao-E PAN1,Shou-Pu HE1,Xiao WANG1,Wen-Fang GONG1,3,*(),Xiong-Ming DU1,2,*()
摘要:
棉花纤维是重要的天然纺织材料, 是最长的单细胞, 是研究纤维发育的良好材料。本研究以亚洲棉短绒突变体(FZ)及其野生型(fz)为材料, 结合扫描电镜、石蜡切片、RNA-seq技术, 解析棉花短绒起始的可能机制。与野生型(fz)的0DPA时期胚珠相比, 突变体的胚珠在该时期仅有少量的纤维起始。在+3DPA时, 突变体没有短绒细胞起始, 仅有长纤维细胞, 而野生型有大量的短纤维细胞和长纤维细胞。对这2个材料的0DPA、+3DPA、+5DPA和+8DPA胚珠差异基因分析结果显示, 在短绒突变体(FZ)和野生型(fz)的4个纤维发育时期共挖掘出3780个差异表达基因, 其中0DPA时差异基因数目最少, 随着胚珠发育时间的延长, 差异基因的数目逐渐增加。KEGG分析发现这些基因主要参与蜡质、角质生物合成, 以及苯丙烷代谢和植物信号传导过程。共表达趋势分析显示, 在突变体+3DPA上调的差异基因中, 参与离子结合、MAPK级联反应、氧化还原活性和转录调控的基因表达受到正影响(表达水平提高), 造成突变体短绒纤维不能正常起始。这些结果描述了二倍体亚洲棉短绒起始的动态变化, 可为进一步研究棉纤维发育提供参考。
[1] |
Lee J J, Woodward A W, Chen Z J . Gene expression changes and early events in cotton fibre development. Ann Bot, 2007,100:1391-1401.
doi: 10.1093/aob/mcm232 pmid: 17905721 |
[2] |
Kim H J, Triplett B A . Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol, 2001,127:1361-1366.
pmid: 11743074 |
[3] |
Turley R B, Kloth R H . Identification of a third fuzzless seed locus in upland cotton ( Gossypium hirsutum L.). J Heredity, 2002,93:359-364.
doi: 10.1093/jhered/93.5.359 |
[4] |
Arpat A B, Waugh M, Sullivan J P, Gonzales M, Frisch D, Main D, Wood T, Leslie A, Wing R A, Wilkins T A . Functional genomics of cell elongation in developing cotton fibers. Plant Mol Biol, 2004,54:911-929.
doi: 10.1007/s11103-004-0392-y |
[5] |
Shi Y H, Zhu S W, Mao X Z, Feng J X, Qin Y M, Zhang L, Cheng J, Wei L P . Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell, 2006,18:651-664.
doi: 10.1105/tpc.105.040303 pmid: 16461577 |
[6] |
Yang S S, Cheung F, Lee J J, Ha M, Wei N E, Sze S H, Stelly D M, Thaxton P, Triplett B, Town C D . Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J, 2006,47:761-775.
doi: 10.1111/j.1365-313X.2006.02829.x pmid: 16889650 |
[7] |
Wang M J, Tu L L, Yuan D J, Zhu D, Shen C, Li J Y, Liu F Y, Pei L L, Wang P C, Zhao G N, Ye Z X, Huang H, Yan F L, Ma Y Z, Zhang L, Liu M, You J Q, Yang Y C, Liu Z P, Huang F, Li B Q, Qiu P, Zhang Q H, Zhu L F, Jin S X, Yang X Y, Min L, Li G L, Chen L L, Zheng H K, Lindsey K, Lin Z X, Udall J A, Zhang X L . Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet, 2018,51:224-229.
doi: 10.1038/s41588-018-0282-x pmid: 30510239 |
[8] |
Du X, Huang G, He S, Yang Z, Sun G, Ma X, Li N, Zhang X, Sun J, Liu M, Jia Y, Pan Z, Gong W, Liu Z, Zhu H, Ma L, Liu F, Yang D, Wang F, Fan W, Gong Q, Peng Z, Wang L, Wang X, Xu S, Shang H, Lu C, Zheng H, Huang S, Lin T, Zhu Y, Li F . Resequencing of 243 diploid cotton accessions based on an updated a genome identifies the genetic basis of key agronomic traits. Nat Genet, 2018,50:796-802.
doi: 10.1038/s41588-018-0116-x pmid: 29736014 |
[9] |
Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B, Liu C, Wang S, Pan M, Wang Y, Wang D, Ye W, Chang L, Zhang W, Song Q, Kirkbride R C, Chen X, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X, Zhang H, Wu H, Zhou L, Mei G, Tian Y, Xiang D, Li X, Zuo Q, Tao S, Chen L, Liu Y, Li J, Lin Y, Hui Z, Cao L, Cai C, Zhu X, Jiang Z, Zhou B, Guo W, Li R, Chen Z J . Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat Biotechnol, 2015,33:531-537.
doi: 10.1038/nbt.3207 pmid: 25893781 |
[10] |
Islam M S, Fang D D, Thyssen G N, Delhom C D, Liu Y L, Kim H J . Comparative fiber property and transcriptome analyses reveal key genes potentially related to high fiber strength in cotton (Gossypium hirsutum L.) line MD52ne. BMC Plant Biol, 2016,16:1-19.
doi: 10.1186/s12870-015-0700-5 pmid: 26728271 |
[11] |
Hande A S, Katageri I S, Jadhav M P, Adiger S, Gamanagatti S, Padmalatha K V, Dhandapani G, Kanakachari M, Kumar P A, Reddy V S . Transcript profiling of genes expressed during fibre development in diploid cotton ( Gossypium arboreum L.). BMC Genomics, 2017,18:675.
doi: 10.1186/s12864-017-4066-y pmid: 28859611 |
[12] |
Trapnell C, Pachter L, Salzberg S L . TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 2009,25:1105-1111.
doi: 10.1093/bioinformatics/btp120 pmid: 19289445 |
[13] |
Cole T, Adam R, Loyal G, Geo P, Daehwan K, Kelley D R, Harold P, Salzberg S L, Rinn J L, Lior P . Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protocols, 2012,7:562-578.
doi: 10.1038/nprot.2012.016 pmid: 22383036 |
[14] |
Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M . KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res, 1999,27:29-34.
doi: 10.1093/nar/27.1.29 pmid: 9847135 |
[15] |
Minoru K, Susumu G, Yoko S, Masayuki K, Miho F, Mao T . Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res, 2014,42:199-205.
doi: 10.1093/nar/gkt1076 pmid: 24214961 |
[16] |
Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[17] |
Wan Q, Guan X Y, Yang N N, Wu H T, Pan M Q . Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development. New Phytol, 2016,210:1298-1310.
doi: 10.1111/nph.13860 pmid: 26832840 |
[18] |
Wu H T, Tian Y, Wan Q, Fang L, Guan X Y, Chen J D . Genetics and evolution of MIXTA genes regulating cotton lint fiber development. New Phytol, 2018,217:883-895.
doi: 10.1111/nph.14844 pmid: 29034968 |
[19] |
Du S J, Dong C J, Zhang B, Lai T F, Du X M, Liu J Y . Comparative proteomic analysis reveals differentially expressed proteins correlated with fuzz fiber initiation in diploid cotton (Gossypium arboreum L.). J Proteomics, 2013,82:113-129.
doi: 10.1016/j.jprot.2013.02.020 pmid: 23474080 |
[20] |
Daviere J M, Achard P . A pivotal role of DELLAs in regulating multiple hormone signals. Mol Plant, 2016,9:10-20.
doi: 10.1016/j.molp.2015.09.011 pmid: 26415696 |
[21] |
Chen Z J, Guan X Y . Auxin boost for cotton. Nat Biotechnol, 2011, 29.
doi: 10.1038/nbt.1858 pmid: 21552241 |
[22] |
Xiao G H, He P, Zhao P, Liu H, Zhang L, Pang C, Yu J . Genome-wide identification of the GhARF gene family reveals that GhARF2 and GhARF18 are involved in cotton fibre cell initiation. J Exp Bot, 2018,69:4323-4337.
doi: 10.1093/jxb/ery219 pmid: 29897556 |
[23] |
Han , X Cloning and expression analysis of novel Aux/IAA family genes in Gossypium hirsutum. Genes, 2012,503:83-91.
doi: 10.1016/j.gene.2012.03.069 pmid: 22575728 |
[24] | Gilbert M K, Bland J M, Shockey J M, Cao H, Hinchliffe D J, Fang D D, Naoumkina M . A transcript profiling approach reveals an abscisic acid-specific glycosyltransferase (UGT73C14) induced in developing fiber of ligon lintless-2 mutant of cotton ( Gossypium hirsutum L.). PLoS One, 2013,8. |
[25] |
Zhang D Y, Zhang T Z, Guo W Z . Effect of H2O2 on fiber initiation using fiber retardation initiation mutants in cotton (Gossypium hirsutum). J Plant Physiol, 2010,167:393-399.
doi: 10.1016/j.jplph.2009.10.005 pmid: 19931935 |
[26] |
Taliercio E W, Boykin D . Analysis of gene expression in cotton fiber initials. BMC Plant Biol, 2007,7:22.
doi: 10.1186/1471-2229-7-22 pmid: 17506877 |
[27] |
Kudla J, Batistic O, Hashimoto K . Calcium signals: the lead currency of plant information processing. Plant Cell, 2010,22:541-563.
doi: 10.1105/tpc.109.072686 pmid: 20354197 |
[28] |
Steinhorst L, Mähs A, Ischebeck T, Zhang C X, Zhang X X, Arendt S, Schültke S, Heilmann I, Kudla J . Vacuolar CBL- CIPK12 Ca 2+-sensor-kinase complexes are required for polarized pollen tube growth . Curr Biol, 2015,25:1475-1482.
doi: 10.1016/j.cub.2015.03.053 pmid: 25936548 |
[1] | 李阿立, 冯雅楠, 李萍, 张东升, 宗毓铮, 林文, 郝兴宇. 大豆叶片响应CO2浓度升高、干旱及其交互作用的转录组分析[J]. 作物学报, 2022, 48(5): 1103-1118. |
[2] | 黄文功, 姜卫东, 姚玉波, 宋喜霞, 刘岩, 陈思, 赵东升, 吴广文, 袁红梅, 任传英, 孙中义, 吴建忠, 康庆华. 亚麻响应低钾胁迫转录谱分析[J]. 作物学报, 2021, 47(6): 1070-1081. |
[3] | 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422. |
[4] | 任蒙蒙, 张红伟, 王建华, 王国英, 郑军. 玉米耐深播主效QTL qMES20-10的精细定位及差异表达基因分析[J]. 作物学报, 2020, 46(7): 1016-1024. |
[5] | 贾小霞,齐恩芳,刘石,文国宏,马胜,李建武,黄伟. AtDREB1A基因过量表达对马铃薯生长及抗非生物胁迫基因表达的影响[J]. 作物学报, 2019, 45(8): 1166-1175. |
[6] | 邢芦蔓, 吕伟增, 雷薇, 梁雨欢, 卢洋, 陈军营. 玉米种胚HSP20基因对人工老化处理的响应[J]. 作物学报, 2018, 44(11): 1733-1742. |
[7] | 杨慧菊,郭华春*. 低温胁迫下马铃薯的数字基因表达谱分析[J]. 作物学报, 2017, 43(03): 454-463. |
[8] | 陈林波,夏丽飞,田易萍,李梅,宋维希,梁名志,江昌俊. 基于数字基因表达谱分析的茶树花不育基因挖掘[J]. 作物学报, 2017, 43(02): 210-217. |
[9] | 张彦楠,蔡大润,黄先忠*. 亚洲棉bZIP蛋白家族的鉴定及GaFDs基因的组织表达分析[J]. 作物学报, 2016, 42(06): 832-843. |
[10] | 李超,张彦楠,刘焕龙,黄先忠. 亚洲棉和雷蒙德氏棉PEBP家族基因的鉴定及该家族基因在陆地棉组织中表达分析[J]. 作物学报, 2015, 41(03): 394-404. |
[11] | 葛淑娟,孙爱清,刘鹏,张杰道,董树亭. 玉米响应渗透胁迫的数字基因表达谱分析[J]. 作物学报, 2014, 40(07): 1164-1173. |
[12] | 闫贵欣,陈碧云,许鲲,高桂珍,吕培军,伍晓明,李锋,李俊. 不同施氮水平下甘蓝型油菜发育种子中基因表达谱差异分析[J]. 作物学报, 2012, 38(11): 2052-2060. |
[13] | 陈小平, 朱方何, 洪彦彬, 刘海燕, 张二华, 周桂元, 李少雄, 钟旎, 温世杰, 李杏瑜, 梁炫强. 两个南方花生主栽品种荚果与叶片基因表达谱分析[J]. 作物学报, 2011, 37(08): 1378-1388. |
[14] | 李龙云, 于霁雯, 翟红红, 黄双领, 李兴丽, 张红卫, 张金发. 利用基因芯片技术筛选棉纤维伸长相关基因[J]. 作物学报, 2011, 37(01): 95-104. |
[15] | 官梅,李栒,官春云. 利用基因芯片技术研究甘蓝型油菜油酸合成中差异表达基因[J]. 作物学报, 2010, 36(06): 968-978. |
|