欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (5): 661-667.doi: 10.3724/SP.J.1006.2020.94119

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用RIL群体创制低山嵛酸花生新种质

郭建斌,黄莉,刘念,罗怀勇,周小静,陈伟刚,吴贝,淮东欣,任小平,姜慧芳()   

  1. 中国农业科学院油料作物研究所 / 农业农村部油料作物生物学与遗传育种重点实验室, 湖北武汉 430062
  • 收稿日期:2019-08-14 接受日期:2019-12-26 出版日期:2020-05-12 网络出版日期:2020-01-16
  • 通讯作者: 姜慧芳
  • 作者简介:E-mail:guojianbin1990@163.com
  • 基金资助:
    本研究由国家自然科学基金项目(31571713);本研究由国家自然科学基金项目(31761143005);本研究由国家自然科学基金项目(31801403);本研究由国家自然科学基金项目(31871666);农作物种质资源保护项目(2017NWB033);国家农作物种质资源共享服务平台(NICGR2017-36);国家现代农业产业技术体系建设专项(CARS-13-花生种质资源评价)资助

Novel peanut genotype with low behenic acid developed from recombinant inbred lines

Jian-Bin GUO,Li HUANG,Nian LIU,Huai-Yong LUO,Xiao-Jing ZHOU,Wei-Gang CHEN,Bei WU,Dong-Xin HUAI,Xiao-Ping REN,Hui-Fang JIANG()   

  1. Oil Crops Research Institute, China Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, the Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
  • Received:2019-08-14 Accepted:2019-12-26 Published:2020-05-12 Published online:2020-01-16
  • Contact: Hui-Fang JIANG
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31571713);This study was supported by the National Natural Science Foundation of China(31761143005);This study was supported by the National Natural Science Foundation of China(31801403);This study was supported by the National Natural Science Foundation of China(31871666);the Crop Germplasm Resources Protection Project(2017NWB033);the Plant Germplasm Resources Sharing Platform(NICGR2017-36);the China Agricultural Research System (CARS-13-Germplasm Resource Evaluation for Peanut)

摘要:

花生是我国食用植物油的重要来源, 改善花生油脂品质是我国花生育种的重要目标。利用不同遗传背景的亲本(中花10号×ICG12625)杂交构建含有140个家系的重组自交系群体(RIL), 对超长链饱和脂肪酸(花生酸、山嵛酸和二十四碳烷酸)含量测定表明, RIL家系超长链饱和脂肪酸含量的变异范围为4.27%~7.05%, 均值为5.54%, 最低值分别比父本和母本低1.46和1.63个百分点, 降低率达25.27%和27.62%; 山嵛酸含量的变异范围为1.86%~3.37%, 均值为2.53%, 3份家系的山嵛酸含量稳定低于2% (QT0002、QT0075和QT0120), 比低值亲本中花10号分别低0.57、0.51和0.51个百分点, 降低率分别为23.45%、20.98%和20.98%。利用前期构建的遗传图谱, 通过WinQTLcart软件检测到一个与山嵛酸相关的稳定的QTL, 位于B04染色体13.31~16.34 M内, 该区间内含有131个预测基因。本结果为高油酸花生品种的山嵛酸遗传改良奠定了基础。

关键词: 花生, 重组自交系, 脂肪酸, 山嵛酸

Abstract:

Peanut is an important source of edible vegetable oil in China, and improving the quality of peanut oil is an important goal in peanut breeding. In this study, the contents of very long-chain saturated fatty acids (arachidic acid, behenic acid, and tetracosanoic acid) were determined by using RIL population containing 140 lines derived from the cross between Zhonghua 10 and ICG12625 with different genetic backgrounds. The content of very long- chain saturated fatty acid in the RILs was 4.27%-7.05%, with an average of 5.54%, the minimum value was 1.46 and 1.63 percentage points lower than that of male and female parents, with reduction rates of 25.27% and 27.62%, respectively. The behenic acid content ranged from 1.86% to 3.37%, with an average of 2.53%. Three lines of QT0002, QT0075, and QT0120 had behenic acid content lower than 2%, which was 0.57, 0.51, and 0.51 percentage points lower than that of Zhonghua10 with the reduction rate of 23.45%, 20.98%, and 20.98%, respectively. A stable QTL located in 13.31-16.34 M of B04 was detected using a linkage map and WinQTLcart software. In this region of 13.31-16.34 M contained 131 prediction genes. The results lay a foundation for the genetic improvement of low behenic acid and high-oleic peanut varieties.

Key words: peanut, recombined inbreed lines (RILs), fatty acid, behenic acid

图1

亲本在超长链饱和脂肪酸上的差异"

图2

超长链饱和脂肪酸相关性分析"

表1

亲本及RIL群体中山嵛酸表型统计分析"

年份
Year
亲本 Parent (%) RIL群体 RIL population (%)
中花10号
Zhonghua 10
ICG12625 最小值
Min
最大值
Max
均值
Mean
标准差
SD
变异系数
CV
偏度
Skewness
峰度
Kurtosis
2015 2.17 2.70 1.80 3.51 2.53 0.31 12.39 0.44 0.34
2016 2.58 3.23 1.90 3.69 2.66 0.37 13.96 0.48 0
2017 2.52 2.81 1.68 3.21 2.40 0.29 11.99 0.08 -0.12

表2

3份低山嵛酸家系其他脂肪酸表现"

家系
Line
山嵛酸
Behenic acid
棕榈酸
Palmitic acid
硬脂酸
Stearic acid
油酸
Oleic acid
亚油酸
Linoleic acid
花生酸
Arachidic acid
花生烯酸
Arachidonic acid
二十四碳烷酸
Tetracosanoic acid
超长链饱和脂肪酸
Very long-chain
saturated fatty acid
QT0002 1.86 11.86 2.93 48.49 31.67 1.32 0.88 1.09 4.27
QT0075 1.92 12.73 3.51 42.92 35.78 1.41 0.66 1.13 4.46
QT0120 1.92 11.83 3.69 50.47 28.76 1.54 0.69 1.20 4.65
Zhonghua 10 2.43 10.45 5.30 48.54 29.29 2.09 0.65 1.39 5.90
ICG12625 2.91 13.48 2.48 40.02 37.29 1.32 1.13 1.49 5.73

图3

RIL群体山嵛酸性状在3年中的分布"

表3

标记GM2246-2和AGGS1236在RIL群体中山嵛酸含量的表型效应"

标记
Marker
基因型
Genotype
山嵛酸含量Content of behenic acid (%)
2015 2016 2017 均值 Mean
GM2246-2 AA 2.43±0.25 2.57±0.34 2.30±0.25 2.44±0.23
aa 2.67±0.35 2.81±0.39 2.52±0.31 2.66±0.31
aa-AA 0.24** 0.24** 0.22** 0.22**
AGGS1236 AA 2.42±0.28 2.58±0.67 2.31±0.45 2.45±0.25
aa 2.70±0.32 2.78±0.75 2.52±0.31 2.66±0.29
aa-AA 0.28** 0.20** 0.21** 0.21**

图4

标记在RIL群体中超长链饱和脂肪酸的表型效应"

图5

GO富集分析"

[1] 廖伯寿 . 花生(中国种植业优质高产技术丛书). 武汉: 湖北科学技术出版社, 2003. pp 5-6.
Liao B S . Peanut (China’s Planting Industry High-quality and High-yield Technology Series). Wuhan: Hubei Scientific and Technical Publishers, 2003. pp 5-6(in Chinese).
[2] 顾黎 . 花生油中脂肪酸组成的气相色谱——质谱分析. 林区教学, 2007, ( 2):124-125.
Gu L . Gas chromatography: mass spectrometry analysis of fatty acid composition in peanut oil. Teach For Region, 2007, ( 2):124-125 (in Chinese).
[3] 熊秋芳, 张效明, 文静, 李兴华, 傅廷栋, 沈金雄 . 菜籽油与不同食用植物油营养品质的比较——兼论油菜品质的遗传改良. 中国粮油学报, 2014,29(6):122-128.
Xiong Q F, Zhang X M, Wen J, Li X H, Fu T D, Shen J X . Comparison of nutritional values between rapeseed oil and several other edible vegetable oils: discussion of rapeseed quality genetic improvement. J Chin Cereal Oil Ass, 2014,29(6):122-128 (in Chinese with English abstract).
[4] 郑畅, 杨湄, 周琦, 黄凤洪, 邓乾春, 郭萍梅, 刘昌盛 . 高油酸花生油与普通油酸花生油的脂肪酸、微量成分含量和氧化稳定性. 中国油脂, 2014,39(11):40-43.
Zheng C, Yang M, Zhou Q, Huang F H, Deng Q C, Guo P M, Liu C S . Contents of fatty acid and minor component and oxidative stability of high oleic peanut oil and normal oleic peanut oil. China Oil, 2014,39(11):40-43 (in Chinese with English abstract).
[5] Braddock J C, Sims C A, O’Keefe S F . Flavor and oxidative stability of roasted high oleic acid peanuts. J Food Sci, 1995,60:489-493.
[6] Bolton G E, Sanders T H . Effect of roasting oil composition on the stability of roasted high-oleic peanuts. J Am Oil Chem Soc, 2002,79:129-132.
[7] Talcott S T, Passeretti S, Duncan C E, Gorbet D W . Polyphenolic content and sensory properties of normal and high oleic acid peanuts. Food Chem, 2005,90:379-388.
doi: 10.1016/j.foodchem.2004.04.011
[8] 苏宜香, 郭艳 . 膳食脂肪酸构成及适宜推荐比值的研究概况. 中国油脂, 2003,28(1):31-34.
Su Y X, Guo Y . A review of dietary fatty acid composition and recommended optimal ratio. China Oil, 2003,28(1):31-34 (in Chinese with English abstract).
[9] 田永全 . 脂肪酸的营养功能. 中国食物与营养, 2007, ( 8):51-52.
Tian Y Q . Nutritional function of fatty acids. Food Nutr China, 2007, ( 8):51-52 (in Chinese).
[10] 姚云游 . 花生油与橄榄油营养价值的比较. 中国油脂, 2005,30(4):66-68.
Yao Y Y . Comparison of peanut oil and olive oil in nutritional value. China Oil, 2005,30(4):66-68 (in Chinese with English abstract).
[11] Wang M L, Khera P, Pandey M K, Wang H, Qiao L, Feng S, Tonnis B, Barkley N A, Pinnow D, Holbrook C C, Clubreath A K, Varshney R K, Guo B . Genetic mapping of QTLs controlling fatty acids provided insights into the genetic control of fatty acid synthesis pathway in peanut (Arachis hypogaea L.). PLoS One, 2015,10:e0119454.
doi: 10.1371/journal.pone.0119454 pmid: 25849082
[12] 郭建斌, 吴贝, 陈伟刚, 黄莉, 陈玉宁, 周小静, 罗怀勇, 刘念, 任小平, 姜慧芳 . 花生品种主要脂肪酸含量在不同生态区的稳定性. 作物学报, 2019,45:676-682.
doi: 10.3724/SP.J.1006.2019.84132
Guo J B, Wu B, Chen W G, Huang L, Chen Y N, Zhou X J, Luo H Y, Liu N, Ren X P, Jiang H F . Stability of major fatty acids of peanut varieties grown in different ecological regions. Acta Agron Sin, 2019,45:676-682 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2019.84132
[13] 李丹阳, 刘凯歌, 卢济明, 杨鑫雷, 崔顺立, 穆国俊, 陈焕英, 刘立峰 . 花生SSR标记与品质性状的相关分析. 分子植物育种, 2017,15(7):226-232.
Li D Y, Liu K G, Lu J M, Yang X L, Cui S L, Mu G J, Chen H Y, Liu L F . Correlation analysis of SSR markers and quality traits in peanut (Arachis hypogaea L.). Mol Plant Breed, 2017,15(7):226-232 (in Chinese with English abstract).
[14] 刘芳, 王积军, 汤松 . 我国高油酸花生品种选育与推广应用. 中国农技推广, 2017,33(1):14-15.
Liu F, Wang J J, Tang S . Breeding, extension and application of high oleic peanut varieties in China. China Agric Technol Extension, 2017,33(1):14-15 (in Chinese).
[15] Worthington R E, Hammons R O, Allison J R . Varietal differences and seasonal effects on fatty acid composition and stability of oil from 82 peanut genotypes. J Agric Food Chem, 1972,20:729-730.
doi: 10.1021/jf60181a032
[16] Huang L, Ren X P, Wu B, Li X P, Chen W G, Zhou X J, Chen Y N, Pandey M K, Jiao Y Q, Luo H Y, Lei Y, Varsheny R K, Liao B S, Jiang H F . Development and deployment of a high-density linkage map identified quantitative trait loci for plant height in peanut (Arachis hypogaea L.). Sci Rep, 2016,6:39478.
doi: 10.1038/srep39478 pmid: 27995991
[17] Bertioli D J, Cannon S B, Froenicke L, Huang G, Farmer A D, Cannon E K, Liu X, Gao Y D, Clevenger J, Dash S, Ren L H, Moretzsohn M C, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth C E, Umale P, Araújo A C G, Kozik A, Kim K D, Burow M D, Varshney R K, Wang X J, Zhang X Y, Barkley N, Guimarães P M, Isobe S, Guo B Z, Liao B S, Stalker H T, Schmitz R J, Scheffler B E, Leal-Bertioli S C M, Xun X, Jackson S A, Michelmore R, Ozias-Akins P . The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet, 2016,48:438-446.
doi: 10.1038/ng.3517 pmid: 26901068
[18] 廖伯寿, 雷永, 王圣玉, 李栋, 黄家权, 姜慧芳, 任小平 . 花生重组近交系群体的遗传变异与高油种质的创新. 作物学报, 2008,34:999-1004.
doi: 10.3724/SP.J.1006.2008.00999
Liao B S, Lei Y, Wang S Y, Li D, Huang J Q, Jiang H F, Ren X P . Genetic diversity of peanut RILs and enhancement for high oil genotypes. Acta Agron Sin, 2008,34:999-1004 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2008.00999
[19] 廖伯寿, 雷永, 李栋, 王圣玉, 黄家权, 任小平, 姜慧芳, 晏立英 . 利用RIL群体创造抗黄曲霉兼抗青枯病的高油花生新种质. 作物学报, 2010,36:1296-1301.
Liao B S, Lei Y, Li D, Wang S Y, Huang J Q, Ren X P, Jiang H F, Yan L Y . Novel high oil germplasm with resistance to Aspergillus flavus and bacterial wilt developed from recombinant inbred lines. Acta Agron Sin, 2010,36:1296-1301 (in Chinese with English abstract).
[20] 郭建斌 . 花生含油量及脂肪酸组成的QTL分析. 华中农业大学硕士学位论文, 湖北武汉, 2016.
Guo J B . QTL Analysis for Oil Content and Fatty Ocid Traits in Peanut (Arachis hypogaea L.). MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2016 (in Chinese with English abstract).
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[5] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[6] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[7] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[8] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[9] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[10] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[11] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[12] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[13] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[14] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[15] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!