欢迎访问作物学报,今天是

作物学报 ›› 2020, Vol. 46 ›› Issue (5): 700-711.doi: 10.3724/SP.J.1006.2020.94107

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

谷子PEPC基因的鉴定及其对非生物逆境的响应特性

赵晋锋,杜艳伟,王高鸿,李颜方,赵根有,王振华,王玉文,余爱丽()   

  1. 山西省农业科学院谷子研究所 / 特色杂粮种质资源发掘与育种山西省重点实验室, 山西长治 046011
  • 收稿日期:2019-07-24 接受日期:2020-01-15 出版日期:2020-05-12 网络出版日期:2020-02-14
  • 通讯作者: 余爱丽
  • 作者简介:赵晋锋, E-mail:zhaojfmail@126.com, Tel: 0355-2204195.
  • 基金资助:
    本研究由山西省农业科学院项目(YGJPY2009);本研究由山西省农业科学院项目(YGG17021);本研究由山西省农业科学院项目(YCX2019T05);国家现代农业产业技术体系建设专项(CARS-06-13.5-A23);国家农业环境数据中心观测检测任务项目资助(ZX03S0410)

Identification of PEPC genes from foxtail millet and its response to abiotic stress

Jin-Feng ZHAO,Yan-Wei DU,Gao-Hong WANG,Yan-Fang LI,Gen-You ZHAO,Zhen-Hua WANG,Yu-Wen WANG,Ai-Li YU()   

  1. Millet Research Institute, Shanxi Academy of Agricultural Sciences / Shanxi Key Laboratory of Genetic Resources and Breeding in Minor Crops, Changzhi 046011, Shanxi, China
  • Received:2019-07-24 Accepted:2020-01-15 Published:2020-05-12 Published online:2020-02-14
  • Contact: Ai-Li YU
  • Supported by:
    This study was supported by the Project Plan of Shanxi Academy of Agricultural Sciences(YGJPY2009);This study was supported by the Project Plan of Shanxi Academy of Agricultural Sciences(YGG17021);This study was supported by the Project Plan of Shanxi Academy of Agricultural Sciences(YCX2019T05);the China Agricultural Research System(CARS-06-13.5-A23);the National Agricultural Environmental Data Center Observation and Detection Mission(ZX03S0410)

摘要:

磷酸烯醇式丙酮酸羧化酶(phosphoenolpyruvate carboxylase, PEPC)是C4植物光合作用关键酶, 并在植物多种代谢途径及逆境信号应答过程中起重要作用。本研究通过序列比对, 从谷子基因组中筛选出6个SiPEPC候选基因。SiPEPC蛋白特征参数相似度很高, 序列非常保守, 都含有PEPC基因特征功能域PEPcase Motif。SiPEPC成员主要被定位在细胞质、细胞核和线粒体。在SiPEPC成员启动子序列中含大量有光、激素、逆境以及其他生长调控相关的顺式应答元件。苗期逆境qRT-PCR表达谱分析表明, 5个SiPEPC基因(SiPEPC1、SiPEPC2、SiPEPC3、SiPEPC5、SiPEPC6)不同程度受ABA、PEG、高盐和低温诱导表达, 表明其参与了苗期对非生物逆境的响应。5个SiPEPC基因表达量在正常生长条件下随着谷子的生长呈增强趋势, 且在不同生育时期干旱胁迫下明显增加, 表明其参与了拔节、抽穗、灌浆期的干旱胁迫应答。拔节期弱光可诱导5个SiPEPC基因的表达, 而在拔节期中等强度光照以及抽穗期和灌浆期的中等光照和弱光照下表达量均急剧降低, 揭示光照强度严重影响SiPEPC基因的表达。

关键词: 谷子, 磷酸烯醇式丙酮酸羧化酶, 非生物逆境, 表达分析

Abstract:

Phosphoenolpyruvate carboxylase (PEPC) is a key enzyme in photosynthesis of C4 plants and plays an important role in a variety of metabolic and stress pathways. In this study, we identified six candidate PEPC genes from foxtail millet genome via sequence alignment. The characteristic parameters of all SiPEPC protein were very similar and the sequences were very conservative. All SiPEPC genes contained the PEPcase motif, which is the characteristic domain of PEPC gene. SiPEPCs were localized in cytoplasm, nucleus and mitochondrion. Promoter analysis identified a variety of light, hormonal, stress, and other growth-related cis-elements in the promoter sequences of SiPEPC members. The qRT-PCR expression profiles showed that the five SiPEPC genes (SiPEPC1, SiPEPC2, SiPEPC3, SiPEPC5, SiPEPC6) were induced by ABA, PEG, high salt and low temperature at seedling stage, indicating that five SiPEPC genes ate involved in abiotic signaling pathway at the seedling stage. The expression of five SiPEPC genes increased with the growth of foxtail millet under normal growth conditions, and increased significantly under drought stress at different growth stages, indicating that five SiPEPCs are involved in drought stress response at jointing, heading and filling stages. The weak light at jointing stage could induce the expression of five SiPEPC genes, while the expression level decreased sharply under moderate light intensity at jointing stage, moderate and weak light intensity at heading and filling stages, showing that light intensity seriously affects the expression of SiPEPC genes.

Key words: foxtail millet, phosphoenolpyruvate carboxylase, abiotic stress, expression analysis

表1

本试验所用引物"

基因
Gene
上游引物
Forward primer (5'-3')
下游引物
Reverse primer (5'-3')
SiPEPC1 TGCGTGCTGGAATGAGTTACT CCAATAAGCATACATCCCGTG
SiPEPC2 CAAGAGCCAAACTATTGACCTG TCATACCAGCACGCATTTCA
SiPEPC3 ATGGAAGGGTGTCCCAAAGTT CCAAGAAGAGAACTGAATGAGAGG
SiPEPC5 GCTACTTCGACGACACCATC AGGAGGAGAACTGGATGAGC
SiPEPC6 GAGGTGGAACTGTGGGAAGA GTAAAACGTTGCAGGGTTCTAA
β-Actin CAGTGGACGCACAACAGGTAT AGCAAGGTCAAGACGGAGAAT

表2

预测谷子PEPC基因参数"

基因
Gene
基因ID
Gene ID
染色体位置
Chr. location
基因长度
Genome
length (bp)
氨基酸数目
No. of amino acid
等电点
pI
分子量
Molecular weight (kD)
内含子数
Intron number
不稳定指数
Instability index
脂肪系数
Aliphatic index
平均疏水指数
Grand average of hydropathicity
PEPcse保守域位置
PEPcse domain location
SiPEPC1 Seita.1G020700 1784608-1791259 6652 965 5.83 109.82 9 48.48 87.36 -0.392 163-965
SiPEPC2 Seita.2G173700 26198697-26204510 5814 967 5.77 110.20 9 44.74 92.41 -0.351 164-967
SiPEPC3 Seita.4G175200 28034663-28043265 8603 964 5.95 109.98 8 45.83 85.81 -0.418 162-964
SiPEPC4 Seita.5G074200 6390259-6398514 8256 1032 7.14 114.89 20 52.09 93.87 -0.277 144-348, 414-1032
SiPEPC5 Seita.5G147000 13061164-13065839 4676 1015 5.89 113.53 6 49.05 87.69 -0.319 213-1015
SiPEPC6 Seita.5G324500 37380598-37387338 6741 969 5.70 110.44 9 44.10 89.79 -0.375 165-969

图1

SiPEPC成员的基因结构"

表3

SiPEPC蛋白亚细胞定位预测"

基因
Gene
预测位置
Localization
可信度
Reliability
SiPEPC1 Cytoplasmic; nuclear; mitochondrial 3.395; 0.685; 0.414
SiPEPC2 Cytoplasmic; nuclear; mitochondrial 3.398; 0.831; 0.317
SiPEPC3 Cytoplasmic; nuclear; mitochondrial 3.679; 0.620; 0.321
SiPEPC4 Cytoplasmic; mitochondrial; nuclear 1.838; 1.290; 1.230
SiPEPC5 Cytoplasmic; mitochondrial; nuclear 2.258; 1.092; 0.472
SiPEPC6 Cytoplasmic; nuclear; mitochondrial 3.428; 0.758; 0.338

表4

SiPEPC基因启动子区域顺式元件预测"

顺式元件
cis-element
典型序列
Typical sequence
特性
Characteristic
基因
Gene
Box 4 ATTAAT Light responsive element SiPEPC1, SiPEPC2, SiPEPC3
G-Box CACGTT Light responsive element SiPEPC1, SiPEPC2, SiPEPC3, SiPEPC4, SiPEPC5, SiPEPC6
GATA-motif AAGGATAAGG Light responsive element SiPEPC1, SiPEPC6
AE-box AGAAACAA Light responsive element SiPEPC2, SiPEPC4, SiPEPC6
GT1-motif GGTTAAT Light responsive element SiPEPC2, SiPEPC4, SiPEPC5
ACE GACACGTATG Light responsive element SiPEPC3, SiPEPC5
Sp1 GGGCGG Light responsive element SiPEPC3, SiPEPC4
ABRE ACGTG Abscisic acid responsiveness SiPEPC1, SiPEPC2, SiPEPC3, SiPEPC4, SiPEPC5
P-box CCTTTTG Gibberellin-responsive SiPEPC1, SiPEPC2
TATC-box TATCCCA Gibberellin-responsiveness SiPEPC2, SiPEPC4
GARE-motif TCTGTTG Gibberellin-responsive element SiPEPC6
TCA-element CCATCTTTTT Salicylic acid responsiveness SiPEPC1, SiPEPC2, SiPEPC5, SiPEPC6
ERE ATTTCATA Ethylene-responsive element SiPEPC2, SiPEPC4
CGTCA-motif CGTCA MeJA-responsiveness SiPEPC3, SiPEPC6
TGACG-motif TGACG MeJA-responsiveness SiPEPC3, SiPEPC6
TGA-element AACGAC Auxin-responsive element SiPEPC1, SiPEPC4
TC-rich repeats GTTTTCTTAC Defense and stress responsiveness SiPEPC1, SiPEPC3
LTR CCGAAA Low-temperature responsiveness SiPEPC2, SiPEPC3, SiPEPC4, SiPEPC6
WUN-motif TTATTACAT Wound-responsive element SiPEPC3
MBS CAACTG MYB binding site involved in drought-inducibility SiPEPC5
ARE AAACCA Anaerobic induction SiPEPC1, 3, 4, 6
CCGTCC-box CCGTCC Meristem specific activation SiPEPC1, 2, 4, 6
GC-motif CCCCCG Anoxic specific inducibility SiPEPC1, 2, 6
O2-site GATGACATGG Zein metabolism regulation SiPEPC2, 4, 5
RY-element CATGCATG Seed-specific regulation SiPEPC3
circadian CAAAGATATC Circadian control SiPEPC5
CAT-box GCCACT Meristem expression SiPEPC6

图2

PEPC家族蛋白序列的氨基酸序列多重比对 AtPEPC1、AtPEPC2、AtPEPC3: 拟南芥AtPEPC1、AtPEPC2、AtPEPC3; SbPEPC1、SbPEPC2、SbPEPC3: 高粱SbPEPC1、SbPEPC2、SbPEPC3; GmPEPC: 大豆GmPEPC; ZmPEPC1、ZmPEPC2: 玉米ZmPEPC1、ZmPEPC2; StPEPC: 马铃薯StPEPC; AhPEPC: 花生AhPEPC; RcPEPC: 蓖麻RcPEPC; NtPEPC: 烟草 NtPEPC。对应GenBank蛋白序列号分别为Q9MAH0.1、Q5GM68.2、Q84VW9.2、P29195.1、P29194.1、P15804.2、P51061.1、P04711.2、P51059.1、P29196.2、ABY87944.1、ABR29878.1、P27154.1。相同氨基酸残基用黑色表示, 相似氨基酸残基用灰色表示(相似性 ≥ 60%)。"

图3

不同物种PEPC 蛋白的进化关系"

图4

SiPEPC基因苗期逆境表达谱 图中浅绿、深绿、黑色、浅红、深红5种颜色代表基因表达水平。绿色表示基因表达弱, 红色表示基因表达强。"

图5

正常和干旱条件下SiPEPC基因在不同发育阶段的相对表达量 *表示在0.05水平上显著; **表示在0.01水平上显著。"

图6

光照和干旱条件下SiPEPC 的相对表达量 图中浅绿、深绿、黑色、浅红、深红五色代表基因表达水平。绿色表示基因表达弱, 红色表示基因表达强。J-1: 拔节期对照; J-2: 拔节期干旱; J-3: 拔节期中等光照; J-4: 拔节期弱光照; H-1: 抽穗期对照; H-2: 抽穗期干旱; H-3: 抽穗期中等光照; H-4: 抽穗期弱光照; F-1: 灌浆期对照; F-2: 灌浆期干旱; F-3: 灌浆期中等光照; F-4: 灌浆期弱光照。"

[1] Hibberd J M, Quick W P . Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature (London), 2002,415:451-454.
doi: 10.1038/415451a pmid: 11807559
[2] Lara M V, Chuong S D X, Akhani H, Andreo S C, Edwards G E . Species Having C4 single-cell-type photosynthesis in the chenopodiaceae family evolved a photosynthetic phosphoenolpyruvate carboxylase like that of kranz-type C4 species. Plant Physiol, 2006,142:673-684.
doi: 10.1104/pp.106.085829 pmid: 16920871
[3] Merkelbach S, Gehlen J, Denecke M, Hirschet H J, Kreuzaler F . Cloning, sequence analysis and expression of a cDNA encoding active phosphoenolpyruvate carboxylase of the C3 plant Solanum tuberosum. Plant Mol Biol, 1993,23:881-888.
doi: 10.1007/bf00021542 pmid: 8251640
[4] Hart Y, Mayo A E, Milo R, Alon U . Robust control of PEP formation rate in the carbon fixation pathway of C4 plants by a bi-functional enzyme. BMC Systems Biol, 2011,5:171.
doi: 10.1186/1752-0509-5-171 pmid: 22024416
[5] 魏绍巍, 黎茵 . 植物磷酸烯醇式丙酮酸羧化酶的功能及其在基因工程中的应用. 生物工程学报, 2011,27:1702-1710.
Wei S W, Li Y . Functions of plant phosphoenolpyruvate carboxylase and its applications for genetic engineering. Chin J Biotechnol, 2011,27:1702-1710 (in Chinese with English abstract).
[6] Lebouteiller B, Gousset-Dupont A, Pierre J N, Bleton J, Tchapla A, Maucourt M, Moing A, Rolin D, Vidal J . Physiological impacts of modulating phosphoenolpyruvate carboxylase levels in leaves and seeds of Arabidopsis thaliana. Plant Sci, 2007,172:265-272.
doi: 10.1016/j.plantsci.2006.09.008
[7] Muramatsu M, Suzuki R, Yamazaki T, Miyao M . Comparison of plant-type phosphoenolpyruvate carboxylases from rice: identification of two plant-specific regulatory regions of the allosteric enzyme. Plant Cell Physiol, 2015,56:468-480.
doi: 10.1093/pcp/pcu189 pmid: 25505033
[8] Sanchez R, Cejudo F J . Identification and expression analysis of a gene encoding a bacterial-type phosphoenolpyruvate carboxylase from Arabidopsis and rice. Plant Physiol, 2003,132:949-957.
doi: 10.1104/pp.102.019653 pmid: 12805623
[9] Dong L Y, Masuda T, Kawamura T, Hata S, Izui K . Cloning, expression, and characterization of a root-form phosphoenolpyruvate carboxylase from Zea mays: comparison with the C4-form enzyme. Plant Cell Physiol, 1998,39:865-873.
doi: 10.1093/oxfordjournals.pcp.a029446 pmid: 9787461
[10] Besnard G, Pincon G, Dhonta A, D'Hont A, Hoarau J Y, Cadet F, Offmann B . Characterisation of the phosphoenolpyruvate carboxylase gene family in sugarcane ( Saccharum spp.). Theor Appl Genet, 2003,107:470-478.
doi: 10.1007/s00122-003-1268-2 pmid: 12759729
[11] Sullivan S, Jenkins G I, Nimmo H G . Roots, cycles and leaves: Expression of the phosphoenolpyruvate carboxylase kinase gene family in soybean. Plant Physiol, 2004,135:2078-2087.
doi: 10.1104/pp.104.042762 pmid: 15299132
[12] 蔡小宁, 陈茜, 杨平, 任源浩 . 磷酸烯醇式丙酮酸羧化酶的生物信息学分析. 安徽农业科学, 2008,36:914-916.
Cai X N, Chen X, Yang P, Ren Y H . Bioinformatics analysis of phosphoenolpyruvate carboxylase. J Anhui Agric Sci, 2008,36:914-916 (in Chinese with English abstract).
[13] 焦进安 . 植物磷酸烯醇式丙酮酸羧化酶的多生理功能. 植物生理学通讯, 1987, ( 1):40-43.
Jiao J A . Multiple function of phosphoenolpyruvate carboxylase in plants. Plant Physiol Commun, 1987, ( 1):40-43 (in Chinese).
[14] Bandyopadhyay A, Datta K, Zhang J, Yang W, Raychaudhur S, Miyao M . Enhanced photosynthesis rate in genetically engineered indica rice expressing pepc gene cloned from maize. Plant Sci (Oxford), 2007,172:1204-1209.
doi: 10.1016/j.plantsci.2007.02.016
[15] 丁在松, 周宝元, 孙雪芳, 赵明 . 干旱胁迫下 PEPC 过表达增强水稻的耐强光能力. 作物学报, 2012,38:285-292.
doi: 10.3724/SP.J.1006.2012.00285
Ding Z S, Zhou B Y, Sun X F, Zhao M . High light tolerance is enhanced by overexpressed PEPC in rice under drought stress. Acta Agron Sin, 2012,38:285-292 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.00285
[16] 焦德茂, 李霞, 黄雪清, 迟伟, 匡廷云, 古森本 . 转PEPC基因水稻的光合CO2同化和叶绿素荧光特性. 科学通报, 2001,46:414-418.
Jiao D M, Li X, Huang X Q, Chi W, Kuang T Y, Gu S B . Photosynthetic CO2 assimilation and chlorophyll fluorescence characteristics of transgenic PEPC rice. Chin Sci Bull, 2001,46:414-418 (in Chinese).
[17] 方立锋, 丁在松, 赵明 . 转ppc基因水稻苗期抗旱特性研究. 作物学报, 2008,34:1220-1226.
Fang L F, Ding Z S, Zhao M . Characteristics of drought tolerance in ppc overexpressed rice seedlings. Acta Agron Sin, 2008,34:1220-1226 (in Chinese with English abstract).
[18] Jeanneau M, Gerentes D, Foueillassar X, Zivy M, Vidal J, Toppan A, Perez P . Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC. Biochimie, 2002,84:1127-1135.
doi: 10.1016/S0300-9084(02)00024-X
[19] Gonzalez M C, Sanchez R, Cejudo F J . Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings. Planta, 2003,216:985-992.
doi: 10.1007/s00425-002-0951-x pmid: 12687366
[20] Sanchez R, Flores A, Cejudo F J . Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. Planta, 2006,223:901-909.
doi: 10.1007/s00425-005-0144-5
[21] Garciá-Maurino S, Monreal J, Alvarez R, Vidal J, Echevarría C . Characterization of salt stress-enhanced phosphoenolpyruvate carboxylase kinase activity in leaves of sorghum vulgare: independence of osmotic stress, involvement of iontoxicity and significance of dark phosphorylation. Planta, 2003,216:648-655.
doi: 10.1007/s00425-002-0893-3 pmid: 12569407
[22] 智慧, 牛振刚, 贾冠清, 柴杨, 李伟, 王永芳, 李海权, 陆平, 白素兰, 刁现民 . 谷子干草饲用品质性状变异及相关性分析. 作物学报, 2012,38:800-807.
doi: 10.3724/SP.J.1006.2012.00800
Zhi H, Niu Z G, Jia G Q, Chai Y, Li W, Wang Y F, Li H Q, Lu P, Bai S L, Diao X M . Variation and correlation analysis of hay forage quality traits of foxtail millet [ Setaria italica (L.) Beauv.]. Acta Agron Sin, 2012,38:800-807 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2012.00800
[23] Devos K M, Wang Z M, Beales J, Sasaki T, Gale M D . Comparative genetic maps of foxtail millet ( Setaria italica) and rice (Oryza sativa). Theor Appl Genet, 1998,96:63-68.
doi: 10.1007/s001220050709
[24] Jayaraman A, Puranik S, Rai N K, Vidapu S, Sahu P P, Lata C , Prasad M. cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Mol Biotechnol, 2008,40:241-251.
doi: 10.1007/s12033-008-9081-4
[25] 赵晋锋, 余爱丽, 田岗, 杜艳伟, 郭二虎, 刁现民 . 谷子CBL基因鉴定及其在干旱, 高盐胁迫下的表达分析. 作物学报, 2013,39:360-367.
doi: 10.3724/SP.J.1006.2013.00360
Zhao J F, Yu A L, Tian G, Du Y W, Guo E H, Diao X M . Identification of CBL genes from foxtail millet ( Setaria italica [L.] Beauv.) and its expression under drought and salt stresses. Acta Agron Sin, 2013,39:360-367 (in Chinese with English abstract).
doi: 10.3724/SP.J.1006.2013.00360
[26] Zhang G Y, Liu X, Quan Z W, Cheng S F, Xu X, Pan S K, Xie M, Zeng P, Yue Z, Wang W L, Tao Y, Bian C, Han C L, Xia Q J, Peng X H, Cao R, Yang X H, Zhan D L, Hu J C, Zhang Y X, Li H N, Li H, Li N, Wang J Y, Wang C C, Wang R Y, Guo T, Cai Y J, Liu C Z, Xiang H T, Shi Q X, Huang P, Chen Q C, Li Y R, Wang J, Zhao Z H, Wang J . Genome sequence of foxtail millet ( Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol, 2012,30:549-554.
doi: 10.1038/nbt.2195 pmid: 22580950
[27] Bennetzen J L, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli A C, Estep M, Feng L, Vaughn J N, Grimwood J, Jen-kins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X W, Wu X M, Mitros T, Triplett J, Yang X H, Ye C Y, Mauro-herrera M, Wang L, Li P H, Sharma M, Sharma R, Ronald P C, Panaud O, Kellogg E A, Brutnell T P, Doust A N, Tuskan G A, Rokhsar D, Devos K M . Reference genome sequence of the model plant setaria. Nat Biotechnol, 2012,30:555-561.
doi: 10.1038/nbt.2196 pmid: 22580951
[28] Shinozaki K, Yamaguchi-Shinozaki K . A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell, 1994,6:251-264.
doi: 10.1105/tpc.6.2.251 pmid: 8148648
[29] Yu C S, Chen Y C, Lu C H, Hwang J K . Prediction of protein subcellular localization. Proteins, 2006,64:643-651.
doi: 10.1002/prot.21018 pmid: 16752418
[30] Larkin M A, Blackshields G, Brown N P, Chenna R, Mcgettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R . Clustal W and Clustal X version 2.0. Bioinformatics, 2007,23:2947-2948.
doi: 10.1093/bioinformatics/btm404 pmid: 17846036
[31] Tamura K, Stecher G, Peterson D, Filipski A, Kumar S . MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol, 2013,30:2725-2729.
doi: 10.1093/molbev/mst197
[32] Livak K J, Schmittgen T D . Analysis of relative gene expression data using real-time quantitative PCR and the 2 -ΔΔCt . Methods, 2001,25:402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609
[33] Narusaka Y, Nakashima K, Shinwari Z K, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K , Yamaguchi-shinozaki K. Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J, 2003,621:137-148.
doi: 10.3897/zookeys.621.10115 pmid: 27833421
[34] Nakashima K, Yamaguchi-shinozaki K . ABA signaling in stress-response and seed development. Plant Cell Rep, 2013,32:959-970.
doi: 10.1007/s00299-013-1418-1
[35] Verma V, Ravindran P, Kumar P P . Plant hormone-mediated regulation of stress responses. BMC Plant Biol, 2016,16:86.
doi: 10.1186/s12870-016-0771-y pmid: 27079791
[36] Zhang J, Jia W, Yang J, Ismail A M . Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res, 2006,97:111-119.
doi: 10.1016/j.fcr.2005.08.018
[37] 张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏 . 大田遮荫对夏玉米光合特性的影响. 作物学报, 2007,33:216-222.
Zhang J W, Dong S T, Wang K J, Hu C H, Liu P . Effects of shading in field on photosynthetic characteristics in summer corn. Acta Agron Sin, 2007,33:216-222 (in Chinese with English abstract).
[38] Bari R, Jones J D . Role of plant hormones in plant defence responses. Plant Mol Biol, 2009,69:473-488.
doi: 10.1007/s11103-008-9435-0
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[3] 杜晓芬, 王智兰, 韩康妮, 连世超, 李禹欣, 张林义, 王军. 谷子叶绿体基因RNA编辑位点的鉴定与分析[J]. 作物学报, 2022, 48(4): 873-885.
[4] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[5] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[6] 赵美丞, 刁现民. 谷子近缘野生种的亲缘关系及其利用研究[J]. 作物学报, 2022, 48(2): 267-279.
[7] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[8] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[9] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[10] 马贵芳, 满夏夏, 张益娟, 高豪, 孙朝霞, 李红英, 韩渊怀, 侯思宇. 谷子穗发育期转录组与叶酸代谢谱联合分析[J]. 作物学报, 2021, 47(5): 837-846.
[11] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[12] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[13] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236.
[14] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[15] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!