欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (2): 320-331.doi: 10.3724/SP.J.1006.2021.04100

• 耕作栽培·生理生化 • 上一篇    下一篇

密度和施肥对旱地马铃薯干物质积累、产量和水肥利用的影响

柳燕兰1(), 郭贤仕1,*(), 张绪成1,*(), 马明生1, 王宏康2   

  1. 1甘肃省农业科学院旱地农业研究所 / 甘肃省旱作区水资源高效利用重点实验室, 甘肃兰州 730070
    2甘肃省种子总站, 甘肃兰州 730000
  • 收稿日期:2020-05-01 接受日期:2020-08-19 出版日期:2021-02-12 网络出版日期:2020-09-02
  • 通讯作者: 郭贤仕,张绪成
  • 作者简介:E-mail: liuyanlan868@163.com
  • 基金资助:
    甘肃省农业科学院重点研发计划项目(2019GAAS25);国家科技支撑计划项目(2015BAD22B01-05)

Effects of planting density and fertilization on dry matter accumulation, yield and water-fertilizer utilization of dryland potato

LIU Yan-Lan1(), GUO Xian-Shi1,*(), ZHANG Xu-Cheng1,*(), MA Ming-Sheng1, WANG Hong-Kang2   

  1. 1Institute of Drylang Farming, Gansu Academy of Agricultural Sciences / Gansu Province Key Laboratory of Effective Utilization of Water Resource on Dryland, Lanzhou 730070, Gansu, China
    2Gansu Seed General Station, Lanzhou 730000, Gansu, China
  • Received:2020-05-01 Accepted:2020-08-19 Published:2021-02-12 Published online:2020-09-02
  • Contact: GUO Xian-Shi,ZHANG Xu-Cheng
  • Supported by:
    Key Research and Development Program of Gansu Academy of Agricultural Sciences(2019GAAS25);National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2015BAD22B01-05)

摘要:

协同提高产量和资源利用效率, 是旱作马铃薯高产高效的基础。本研究以陇薯10号为材料, 于2017—2019年进行大田试验, 设置当地农民习惯栽培(CK)、高产高效栽培(YE)和超高产栽培(HY) 3种栽培模式, 测定旱地马铃薯叶面积指数(LAI)、叶片SPAD值、冠层光合能力、干物质积累转运、块茎产量、水肥利用效率等指标。结果表明, 与CK相比, YE和HY均提高了马铃薯LAI和叶片SPAD值, YE在降雨较少的2017年增幅更明显; 二者均减慢了马铃薯块茎膨大后的LAI和叶片SPAD降低幅度, 使其冠层光合能力在块茎膨大期和淀粉积累期2年平均提高29.9%、34.7%和40.2%、50.5%。基于较高的LAI和冠层光合能力, YE和HY的地上干物质在块茎膨大期较CK 3年平均增加123.05%和118.53%; 同时块茎膨大后同化物对块茎的贡献率增加22.56%和19.29%, 使马铃薯产量在2017—2019年平均增加47.93%和47.78%, 水分利用效率平均增加77.59%和75.85%, 均达到显著差异水平。YE和HY使马铃薯商品薯产量显著增加, 收益显著提高, 在2017—2019年分别较CK新增纯收益7330.3元 hm-2和6024.6元 hm-2。较大的群体冠层和较高的物质生产促进了植株对N、P、K的积累, YE的N、P利用效率较CK分别提高15.21%和17.20%, N、K收获指数分别提高3.85%和7.79%; HY的N利用效率提高12.37%。YE的WUE、N和P利用效率较HY提高2.05%、2.53%和23.41%, 新增纯收益1305.7元 hm-2。因此, YE减施缓释尿素40%并有机替代、密度60,000株 hm-2, 能够提高水分和养分利用效率, 维持马铃薯花后较高的冠层光合能力, 促进茎叶干物质向块茎转运, 实现作物增产和资源高效利用协同发展, 是半干旱区黑膜覆盖马铃薯种植推荐的高产高效模式。

关键词: 马铃薯, 栽培模式, 冠层光合能力, 干物质积累与转运, 产量, 水肥利用效率

Abstract:

It is important to increase potato production and the natural resource utilization efficiency in dryland farming system. A field experiment was conducted using Longshu 10 with three planting modes from 2017 to 2019, including farmer mode (CK), the mode with high yield and efficiency (YE), and higher yield mode (HY). The leaf area index (LAI), SPAD, photosynthetic rate, accumulation and remobilization of dry matter, water use efficiency (WUE) and fertilizer use efficiency (FUE) was investigated. The results showed that LAI and SPAD were increased in YE and HY compared to CK, and it was more significant in 2017 when there was less rainfall. Meanwhile, less reduction in LAI and SPAD after tubers enlargement resulted in an increase of canopy photosynthetic rate by 29.9%, 34.7% (in 2018 and 2019), and 40.2%, 50.5% (in 2018 and 2019) during the expanding stage and starch accumulation stage, respectively. Average aboveground dry matter in YE and HY was higher than CK by 123.1% and 118.5% in the enlargement stage due to higher LAI and photosynthetic rate. The contribution rate of assimilation after potato tuber enlargement in YE and HE was higher than CK by 22.56% and 19.29%, resulting in an average potato production increase of 47.93% and 47.78%, and average water use efficiency increased by 77.59% and 75.85%, respectively. YE and HY advantaged in tuber production and income improvement. Compared with CK, the net income increased by 7330.3 Yuan hm-2 and 6024.6 Yuan hm-2 in 2017 to 2019, respectively. The accumulation of N, P, and K was significantly enhanced due to large population canopy and high plant biomass accumulation. Compared to CK, N and P use efficiency, and the harvest index of N and P was increased under YE mode by 15.21%, 17.20% and 3.85%, 7.79%, respectively, and the N use efficiency was increased by 12.37% under HY mode. WUE, N, and P use efficiency of YE mode was higher than HY by 2.05%, 2.53%, and 23.41%, respectively, and the net income increased by 1305.7 Yuan hm-2. Therefore, replacement of slow-release urea with organic manure by 40% and improvement of planting density with 60,000 plants hm-2 in YE mode potentially increased in water use efficiency, nutrient use efficiency, high canopy photosynthetic rate maintenances, and remobilization of dry matter from stem and leaf to tubers. In conclusion, YE as a high tuber production and resource use efficiency planting mode, is recommended in semi-arid areas with black-film mulched potato cultivation regime.

Key words: potato, cultivation pattern, canopy photosynthetic capacity, dry matter accumulation and transportation, yield, water-fertilization use efficiency

图1

全膜覆盖垄沟种植马铃薯示意图"

表1

不同栽培模式的种植密度和肥料用量"

栽培模式
Cultivation pattern
缩写
Abbreviations
覆盖方式
Coverage style
密度
Density
(plant hm-2)
肥料种类及用量
Fertilizer type and dosage (kg hm-2)
N P2O5 K2O 羊粪
Sheep manure
农户栽培
Farmer mode
cultivation
CK 露地平作
Flat planting without plastic mulching
45,000 120 75 0 0
高产高效栽培
High yield and
efficiency cultivation
YE 全膜覆盖垄沟种植
Ridge-furrow planting with plastic mulching
60,000 150 90 120 45,000
超高产栽培
Higher yield
cultivation
HY 全膜覆盖垄沟种植
Ridge-furrow planting with plastic mulching
67,500 210 120 150 45,000

图2

2017-2019年试验区降水(P)和平均气温(T)变化"

表2

不同栽培模式下马铃薯叶面积指数"

年份
Year
处理
Treatment
现蕾期
Squaring stage
花期
Flowering stage
块茎膨大期
Tuber expanding stage
淀粉积累期
Starching accumulation stage
2017 CK 1.27±0.09 c 1.53±0.18 b 3.07±0.16 b 2.45±0.10 c
YE 1.80±0.20 b 2.41±0.16 a 3.73±0.16 a 3.32±0.17 a
HY 2.03±0.17 a 2.56±0.17 a 3.68±0.13 a 3.21±0.15 b
2018 CK 1.83±0.18 b 2.83±0.18 b 3.32±0.16 b 2.71±0.21 b
YE 2.49±0.21 a 3.68±0.25 a 4.14±0.12 a 3.75±0.16 a
HY 2.65±0.29 a 3.73±0.18 a 4.28±0.14 a 3.88±0.16 a
2019 CK 2.22±0.16 b 2.37±0.13 b 3.38±0.17 b 2.82±0.31 b
YE 2.73±0.13 a 3.11±0.16 a 4.27±0.20 a 3.82±0.28 a
HY 2.83±0.24 a 3.23±0.17 a 4.32±0.16 a 3.95±0.22 a

表3

不同栽培模式下马铃薯叶片SPAD"

年份
Year
处理
Treatment
苗期
Seedling stage
现蕾期
Squaring stage
花期
Flowering stage
块茎膨大期
Tuber expanding stage
淀粉积累期
Starching accumulation stage
2017 CK 50.73±0.43 a 58.27±0.86 b 60.58±0.91 b 62.49±0.69 b 53.87±1.06 b
YE 52.90±0.96 a 61.73±0.57 a 64.68±0.80 a 66.67±0.87 a 60.36±0.75 a
HY 51.29±0.86 a 62.80±0.76 a 65.48±0.52 a 66.13±0.57 a 58.67±0.78 a
2018 CK 45.07±0.75 a 50.23±0.57 b 52.66±0.34 b 56.60±1.07 b 47.19±2.16 b
YE 46.58±0.31 a 54.76±0.54 a 55.86±1.19 a 61.15±0.44 a 55.16±0.31 a
HY 45.88±0.62 a 55.26±0.25 a 56.92±0.91 a 61.02±0.20 a 54.56±0.33 a
2019 CK 42.03±0.99 b 48.15±1.03 b 53.43±1.06 b 58.62±1.04 b 48.58±0.93 b
YE 45.29±0.76 a 55.82±0.85 a 58.82±0.42 a 62.37±0.63 a 53.40±0.74 a
HY 46.62±0.54 a 56.14±0.25 a 57.58±0.78 a 63.22±0.29 a 52.73±0.28 a

表4

不同栽培模式下马铃薯净光合速率和冠层光合能力"

年份
Year
处理
Treatment
块茎膨大期Tuber expanding stage 淀粉积累期Starching accumulation stage
净光合速率(CO2)
Net photosynthetic rate (μmol m-2 s-1)
冠层光合能力
Canopy photosynthesis ability (Pn×LAI)
净光合速率(CO2)
Net photosynthetic rate (μmol m-2 s-1)
冠层光合能力
Canopy photosynthesis ability (Pn×LAI)
2018 CK 18.92 a 62.72 b 14.69 a 39.81 b
YE 19.47 a 80.52 a 14.92 a 55.96 a
HY 19.55 a 83.69 a 15.59 a 60.41 a
2019 CK 19.45 a 65.74 b 15.83 a 44.64 b
YE 20.22 a 86.34 a 16.36 a 62.41 a
HY 20.68 a 89.34 a 16.88 a 66.59 a

图3

不同栽培模式下马铃薯地上部干物质的变化 处理同表1。"

表5

不同栽培模式下马铃薯块茎膨大前后干物质积累与转运"

年份
Year
处理
Treatment
块茎膨大前干物质
转运量DMT (kg hm-2)
块茎膨大前干物质
转运率DMTE (%)
块茎膨大后同化物输入
块茎量PEA (kg hm-2)
同化物对块茎的
贡献率CPAT (%)
2017 CK 2800 b 47.07 a 2406 c 46.22 c
YE 2879 b 25.66 b 5046 a 63.67 a
HY 3207 a 29.57 b 4765 b 59.78 b
2018 CK 2124 b 70.03 a 2747 b 56.39 c
YE 2427 a 36.38 b 4662 a 65.76 a
HY 2401 a 35.74 c 4606 a 65.73 a
2019 CK 2107 b 68.75 a 3111 b 59.61 b
YE 2236 a 34.11 b 4654 a 67.55 a
HY 2298 a 33.68 b 4612 a 66.74 a

图4

不同栽培模式下马铃薯产量、耗水量和水分利用效率 处理同表1。不同小写字母表示同一年份不同处理间差异显著(P < 0.05)。"

表6

不同栽培模式下马铃薯肥料积累与利用(2019年)"

指标Item CK YE HY
N 氮素总积累量NTA (kg hm-2) 330.04±5.29 b 389.05±11.32 a 397.54±7.14 a
氮素利用效率NUE (kg kg-1) 81.58±0.26 b 93.99±1.65 a 91.67±2.55 a
氮素收获指数NHI 0.78±0.001 b 0.81±0.001 a 0.79±0.015 b
P 磷素总积累量PTA (kg hm-2) 24.59±1.18 c 28.45±1.01 b 34.98±0.03 a
磷素利用效率PUE (kg kg-1) 1096.72±66.52 b 1285.33±14.38 a 1041.50±11.11 b
磷素收获指数PHI 0.81±0.015 a 0.81±0.034 a 0.82±0.001 a
K 钾素总积累量KTA (kg hm-2) 115.34±1.25 b 165.56±6.54 a 164.43±8.44 a
钾素利用效率KUE (kg kg-1) 233.43±0.47 a 220.89±1.57 b 221.81±9.21 b
钾素收获指数KHI 0.77±0.022 b 0.83±0.079 a 0.88±0.024 a

表7

不同栽培模式对马铃薯经济收益的影响"

年份
Year
处理
Treatment
商品率
Commodity
rate (%)
商品产量
Commodity yield
(kg hm-2)
非商品产量Non-commodity yield
(kg hm-2)
经济收益Benefit
(Yuan hm-2)
生产资料投入
Production
materials input
(Yuan hm-2)
劳力投入Labor input
(Yuan hm-2)
燃油投入
Fuel input
(Yuan hm-2)
纯收益
Profit
(Yuan hm-2)
2017 CK 49.76 c 12,887 b 13,011 b 23,271 b 4809 6720 750 10,992 c
YE 62.53 b 27,828 a 16,679 a 43,401 a 9837 9600 750 23,214 a
HY 71.50 a 29,199 a 11,636 b 42,020 a 11,305 10,000 750 19,965 b
2018 CK 64.14 c 16,047 b 8972 a 24,639 b 4809 6720 750 12,360 b
YE 79.90 a 28,066 a 7060 a 37,916 a 9837 9600 750 17,729 a
HY 75.27 b 28,518 a 9371 a 39,845 a 11,305 10,000 750 17,790 a
2019 CK 49.00 b 13,589 b 14,144 a 24,793 b 4809 6720 750 12,514 b
YE 68.43 a 25,123 a 11,590 b 37,102 a 9837 9600 750 16,915 a
HY 69.94 a 26,230 a 11,274 b 38,240 a 11,305 10,000 750 16,185 a
[1] 农业部. 2017年全国各地蔬菜、瓜果(西瓜、甜瓜、草莓等)、马铃薯播种面积和产量. 中国蔬菜, 2019, (11):22.
Ministry of Agriculture. The nationwide plant area and yield of vegetable, watermelon, melon, strawberry, potato in 2017. China Veget, 2019, (11):22 (in Chinese with English abstract).
[2] 侯慧芝, 王娟, 张绪成, 方彦杰, 于显枫, 王红丽, 马一凡. 半干旱区全膜覆盖垄上微沟种植对土壤水热及马铃薯产量的影响. 作物学报, 2015,41:1582-1590.
Hou H Z, Wang J, Zhang X C, Fang Y J, Yu X F, Wang H L, Ma Y F. Effects of mini-ditch planting with plastic mulching in ridges on soil water content, temperature and potato yield in rain-fed Semiarid Region. Acta Agron Sin, 2015,41:1582-1590 (in Chinese with English abstract).
[3] 王晓明, 陈士宾, 牛俊义. 陇中半干旱地区马铃薯经济产量及效益模式探讨. 干旱地区农业研究, 1991,6(2):175-179.
Wang X M, Chen S B, Niu J Y. Discussion on the economical yield and benefit model of potatoes in Semiarid Area in the middle part of Gansu province. Agric Res Arid Areas, 1991,6(2):175-179 (in Chinese with English abstract).
[4] 方彦杰, 张绪成, 侯慧芝, 于显枫, 王红丽, 马一凡. 近20年来甘肃省黄土高原区粮食产量的影响因素及未来粮食需求分析. 中国农业科技导报, 2015,17(4):165-175.
Fang Y J, Zhang X C, Hou H Z, Yu X F, Wang H L, Ma Y F. Influence factors of grain yield in the Loess Plateau of Gansu Province during the latest 20 years and analysis on its future grain requirement. J Agric Sci Technol, 2015,17(4):165-175 (in Chinese with English abstract).
[5] 王红丽, 张绪成, 于显枫, 马一凡, 侯慧芝. 黑色地膜覆盖的土壤水热效应及其对马铃薯产量的影响. 生态学报, 2016,36:5215-5226.
Wang H L, Zhang X C, Yu X F, Ma Y F, Hou H Z. Effect of using black plastic film as mulch on soil temperature and moisture and potato yield. Acta Ecol Sin, 2016,36:5215-5226 (in Chinese with English abstract).
[6] 曹倩, 贺明荣, 代兴龙, 门洪文, 王成雨. 密度、氮肥互作对小麦产量及氮素利用效率的影响. 植物营养与肥料学报, 2011,17:815-822.
Cao Q, He M R, Dai X L, Men H W, Wang C Y. Effect of interaction between density and nitrogen on grain yield and nitrogen use efficiency of winter wheat. Plant Nutr Fert Sci, 2011,17:815-822 (in Chinese with English abstract).
[7] 段民孝. 从农大108和郑单958中得到的玉米育种启示. 玉米科学, 2005,13(4):49-52.
Duan M X. Some advice on corn breeding obtained from the elite varieties of Nongda 108 and Zhengdan 958. J Maize Sci, 2005,13(4):49-52 (in Chinese with English abstract).
[8] 曹胜彪, 张吉旺, 董树亭, 刘鹏, 赵斌, 杨今胜. 施氮量和种植密度对高产夏玉米产量和氮素利用效率的影响. 植物营养与肥料学报, 2012,18:1343-1353.
Cao S B, Zhang J W, Dong S T, Liu P, Zhao B, Yang J S. Effects of nitrogen rate and planting density on grain yield and nitrogen utilization efficiency of high yield summer maize. Plant Nutr Fert Sci, 2012,18:1343-1353 (in Chinese with English abstract).
[9] 吕丽华, 陶洪斌, 王璞, 刘明, 赵明, 王润正. 种植密度对夏玉米碳氮代谢和氮利用率的影响. 作物学报, 2008,34:718-723.
Lyu L H, Tao H B, Wang P, Liu M, Zhao M, Wang R Z. Carbon and nitrogen metabolism and nitrogen use efficiency in summer maize under different planting densities. Acta Agron Sin, 2008,34:718-723 (in Chinese with English abstract).
[10] Zhou B Y, Sun X F, Ding Z S, Ma W, Zhao M. Multisplit nitrogen application via drip irrigation improves maize grain yield and nitrogen use efficiency. Crop Sci, 2017,57:1687-1703.
[11] 赵风华, 马军花, 欧阳竹. 过量施氮对冬小麦生产力的影响. 植物生态学报, 2012,36:1075-1081.
Zhao F H, Ma J H, Ou-yang Z. Effects of excessive nitrogen supply on productivity of winter wheat. Chin J Plant Ecol, 2012,36:1075-1081 (in Chinese with English abstract).
[12] 宁运旺, 马洪波, 张辉, 汪吉东, 许仙菊, 张永春. 甘薯源库关系建立、发展和平衡对氮肥用量的响应. 作物学报, 2015,41:432-439.
Ning Y W, Ma H B, Zhang H, Wang J D, Xu X J, Zhang Y C. Response of sweetpotato in source-sink relationship establishment, expanding, and balance to nitrogen application rates. Acta Agron Sin, 2015,41:432-439 (in Chinese with English abstract).
[13] 郭恒, 陈占全, 张亚丽, 高玉亭, 李月梅. 全膜覆盖条件下缓释氮肥对马铃薯干物质及产量的影响. 河南农业科学, 2013,42(6):37-41.
Guo H, Chen Z Q, Zhang Y L, Gao Y T, Li Y M. Effects of slow-released urea on dry matter and yield of potato under plastic film mulching condition. J Henan Agric Sci, 2013,42(6):37-41 (in Chinese with English abstract).
[14] 王永军, 孙其专, 杨今胜, 王空军, 董树亭, 袁翠平, 王立春. 不同地力水平下控释尿素对玉米物质生产及光合特性的影响. 作物学报, 2011,37:2233-2240.
Wang Y J, Sun Q Z, Yang J S, Wang K J, Dong S T, Yuan C P, Wang L C. Effects of controlled-release urea on yield and photosynthesis characteristics of maize (Zea mays L.) under different soil fertility conditions. Acta Agron Sin, 2011,37:2233-2240 (in Chinese with English abstract).
[15] 席旭东, 李效文, 姬丽君. 缓控释肥不同施用量和施用方式对旱作区全膜马铃薯生长及产量的影响. 干旱地区农业研究, 2016,34(5):193-197.
Xi X D, Li X W, Ji L J. Effects of different fertilization methods and amounts slow/controlled releasing fertilizer on growth and yield of all-film potato in dry farming areas. Agric Res Arid Areas, 2016,34(5):193-197 (in Chinese with English abstract).
[16] 刘兆辉, 吴小宾, 谭德水, 李彦, 江丽华. 一次性施肥在我国主要粮食作物中的应用与环境效应. 中国农业科学, 2018,51:3827-3839.
Liu Z H, Wu X B, Tan D S, Li Y, Jiang L H. Application and environmental effects of one-off fertilization technique in major cereal crops in china. Sci Agric Sin, 2018,51:3827-3839 (in Chinese with English abstract).
[17] 王月超, 李传兴, 代兴龙, 周晓燕, 张宇, 李华英, 贺明荣. 栽培模式对冬小麦光能利用和产量的影响. 应用生态学报, 2015,26:2707-2713.
Wang Y C, Li C X, Dai X L, Zhou X Y, Zhang Y, Li H Y, He M R. Effects of cultivation patterns on the radiation use and grain yield of winter wheat. J Appl Ecol, 2015,26:2707-2713 (in Chinese with English abstract).
[18] 张仁和, 胡富亮, 杨晓钦, 高杰, 郝引川, 张兴华, 薛吉全. 不同栽培模式对旱地春玉米光合特性和水分利用率的影响. 作物学报, 2013,39:1619-1672.
Zhang R H, Hu F L, Yang X Q, Gao J, Hao Y C, Zhang X H, Xue J Q. Effects of different cultivation patterns on photosynthetic characteristics and water use efficiency in dryland spring maize. Acta Agron Sin, 2013,39:1619-1627 (in Chinese with English abstract).
[19] 王洪章, 刘鹏, 贾绪存, 李静, 任昊, 董树亭, 张吉旺, 赵斌. 不同栽培管理条件下夏玉米产量与肥料利用效率的差异解析. 作物学报, 2019,45:1544-1553.
Wang H Z, Liu P, Jia X C, Li J, Ren H, Dong S T, Zhang J W, Zhao B. Analysis of differences in summer maize yield and fertilizer use efficiency under different cultivation managements. Acta Agron Sin, 2019,45:1544-1553 (in Chinese with English abstract).
[20] 张玉芹, 杨恒山, 高聚林, 张瑞富, 王志刚, 徐寿军, 范秀艳, 杨升辉. 超高产春玉米冠层结构及其生理特性. 中国农业科学, 2011,44:4367-4376.
Zhang Y Q, Yang H S, Gao J L, Zhang R F, Wang Z G, Xu S J, Fan X Y, Yang S H. Study on canopy structure and physiological characteristics of super-high yield spring maize. Sci Agric Sin, 2011,44:4367-4376 (in Chinese with English abstract).
[21] 王立为, 潘志华, 高西宁, 陈东东, 张璐阳, 程路, 周蒙蒙, 李超, 赵沛义. 不同施肥水平对旱地马铃薯水分利用效率的影响. 中国农业大学学报, 2012,17(2):54-58.
Wang L W, Pan Z H, Gao X N, Chen D D, Zhang L Y, Cheng L, Zhou M M, Li C, Zhao P Y. Influence of different fertilizer levels water use efficiency of the potato in the dry land. J China Agric Univ, 2012,17(2):54-58 (in Chinese with English abstract).
[22] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000. pp 408-421.
Bao S D. Soil and Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000. pp 408-421(in Chinese).
[23] 王永华, 黄源, 辛明华, 苑沙沙, 康国章, 冯伟, 谢迎新, 朱云集, 郭天财. 周年氮磷钾配施模式对砂姜黑土麦玉轮作体系籽粒产量和养分利用效率的影响. 中国农业科学, 2017,50:1031-1046.
Wang Y H, Huang Y, Xin M H, Yuan S S, Kang G Z, Feng W, Xie Y X, Zhu Y J, Guo T C. Effects of the year-round management model of N, P and K combined application on grain yield and nutrient efficiency of wheat-maize rotation system in lime concretion black soil. Sci Agric Sin, 2017,50:1031-1046 (in Chinese with English abstract).
[24] 刘星, 张书乐, 刘国锋, 邱慧珍, 王蒂, 张俊莲, 沈其荣. 连作对甘肃中部沿黄灌区马铃薯干物质积累和分配的影响. 作物学报, 2014,40:1274-1285.
Liu X, Zhang S L, Liu G F, Qiu H Z, Wang D, Zhang J L, Shen Q R. Effect of continuous cropping on dry matter accumulation and distribution of potato plants in the yellow river irrigation areas of middle Gansu province. Acta Agron Sin, 2014,40:1274-1285 (in Chinese with English abstract).
[25] 李少昆, 王崇桃. 作物株型和冠层结构信息获取与表述的方法. 石河子大学学报(自然科学版), 1997,1:250-256.
Li S K, Wang C T. The methods of obtaining and expressing information of crop plant shape and population structure. J Shihezi Univ (Nat Sci), 1997,1:250-256 (in Chinese with English abstract).
[26] 陈雨海, 余松烈, 于振文. 小麦生长后期群体光截获量及其分布与产量的关系. 作物学报, 2003,29:730-734.
Chen Y H, Yu S L, Yu Z W. Relationship between amount or distribution of PAR interception and grain output of wheat communities. Acta Agron Sin, 2003,29:730-734 (in Chinese with English abstract).
[27] 高海涛, 王育红, 孟战赢, 吴少辉, 张园. 超高产小麦产量及旗叶生理特性的研究. 麦类作物学报, 2010,30:1080-1084.
Gao H T, Wang Y H, Meng Z Y, Wu S H, Zhang Y. Study on grain yield and physiological characteristics of flag leaves in super high yield winter wheat. J Triticeae Crops, 2010,30:1080-1084 (in Chinese with English abstract).
[28] 董树亭, 高荣岐, 胡昌浩, 王群瑛, 王空军. 玉米花粒期群体光合性能与高产潜力的研究. 作物学报, 1997,23:318-325.
Dong S T, Gao R Q, Hu C H, Wang Q Y, Wang K J. Study of canopy photosynthesis property and high yield potential after anthesis in maize. Acta Agron Sin, 1997,23:318-325 (in Chinese with English abstract).
[29] Fletcher A L, Johnstone P R, Chakwizira E, Brown H E. Radiation capture and radiation use efficiency in response to N supply for crop species with contrasting canopies. Field Crops Res, 2013,150:126-134.
[30] 孙旭生, 林琪, 李玲燕, 姜雯, 翟延举. 氮素对超高产小麦生育后期光合特性及产量的影响. 植物营养与肥料学报, 2008,14:840-844.
Sun X S, Lin Q, Li L Y, Jiang W, Zhai Y J. Effect of nitrogen supply on photosynthetic characteristics at later developing stages and yield in super high-yield winter wheat. Plant Nutr Fert Sci, 2008,14:840-844 (in Chinese with English abstract).
[31] 高聚林, 刘克礼, 张永平, 杨永梅, 宋瑞华, 薛凤成, 于金刚, 卞宏淳, 李秀芬, 王洪军. 不同栽培措施对旱作春小麦叶面积和光合势的影响. 麦类作物学报, 2003,23:66-70.
Gao J L, Liu K L, Zhang Y P, Yang Y M, Song R H, Xue F C, Yu J G, Bian H C, Li X F, Wang H J. Effect of different cultivation measures on LAD and LAI of spring wheat in dryland. J Triticeae Crops, 2003,23:66-70 (in Chinese with English abstract).
[32] 张仁和, 王博新, 杨永红, 杨晓军, 马向峰, 张兴华, 郝引川, 薛吉全. 陕西灌区高产春玉米物质生产与氮素积累特性. 中国农业科学, 2017,50:2238-2246.
Zhang R H, Wang B X, Yang Y H, Yang X J, Ma X F, Zhang X H, Hao Y C, Xue J Q. Characteristics of dry matter and nitrogen accumulation for high-yielding maize production under irrigated conditions of Shaanxi. Sci Agric Sin, 2017,50:2238-2246 (in Chinese with English abstract).
[33] 高聚林, 刘克礼, 张宝林, 任有志. 马铃薯干物质积累与分配规律的研究. 中国马铃薯, 2003,17(4):209-212.
Gao J L, Liu K L, Zhang B L, Ren Y Z. Accumulation and distribution of dry matter in potato. Chin Potato J, 2003,17(4):209-212 (in Chinese with English abstract).
[34] 张宝林, 高聚林, 刘克礼, 盛晋华. 旱作马铃薯氮素的吸收、积累和分配规律. 中国马铃薯, 2003,17(4):193-198.
Zhang B L, Gao J L, Liu K L, Sheng J H. Nitrogen absorption, accumulation and distribution of potato under farming. Chin Potato J, 2003,17(4):193-198 (in Chinese with English abstract).
[35] Sainz H R, Echeverria H E, Barbie A. Nitrogen balance as affected by application time and nitrogen fertilizer rate in irrigated no-tillage maize. Agron J, 2004,96:1622-1631.
[36] He P, Li S T, Jin J Y, Wang H T, Li C J, Wang Y L, Cui R Z. Performance of an optimized nutrient management system for double-cropped wheat-maize rotations in North-central China. Agron J, 2009,101:1489-1496.
[37] 杜永, 刘辉, 杨成, 王志琴, 杨建昌. 超高产栽培迟熟中粳稻养分吸收特点的研究. 作物学报, 2007,33:208-215.
Du Y, Liu H, Yang C, Wang Z Q, Yang J C. Characteristics of nutrient absorption in super-high-yielding mid-season and late-maturity japonica rice. Acta Agron Sin, 2007,33:208-215 (in Chinese with English abstract).
[38] 杨恒山, 高聚林, 张玉芹, 毕文波, 张瑞富, 范秀艳, 高强. 超高产春玉米氮磷钾养分吸收与利用的研究. 干旱地区农业研究, 2011,29(2):15-20.
Yang H S, Gao J L, Zhang Y Q, Bi W B, Zhang R F, Fan X Y, Gao Q. Studies on absorption and use of N, P and K by spring maize under super-yield cultivation. Agric Res Arid Areas, 2011,29(2):15-20 (in Chinese with English abstract).
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 王海波, 应静文, 何礼, 叶文宣, 涂卫, 蔡兴奎, 宋波涛, 柳俊. rDNA和端粒重复序列鉴定马铃薯和茄子体细胞杂种染色体丢失和融合[J]. 作物学报, 2022, 48(5): 1273-1278.
[8] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 冯亚, 朱熙, 罗红玉, 李世贵, 张宁, 司怀军. 马铃薯StMAPK4响应低温胁迫的功能解析[J]. 作物学报, 2022, 48(4): 896-907.
[12] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[13] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!