欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (8): 1581-1592.doi: 10.3724/SP.J.1006.2021.04160

• 耕作栽培·生理生化 • 上一篇    下一篇

花生根际土壤细菌群落多样性对盐胁迫的响应

戴良香1(), 徐扬1, 张冠初1, 史晓龙2, 秦斐斐1, 丁红1,*(), 张智猛1,*()   

  1. 1山东省花生研究所, 山东青岛 266100
    2沈阳农业大学农学院, 辽宁沈阳 110866
  • 收稿日期:2020-07-17 接受日期:2021-01-13 出版日期:2021-08-12 网络出版日期:2021-02-18
  • 通讯作者: 丁红,张智猛
  • 作者简介:戴良香, E-mail: liangxiangd@163.com
  • 基金资助:
    国家自然科学基金项目(31971856);国家自然科学基金项目(31971854);国家自然科学基金项目(31901574);山东省现代农业产业技术体系创新团队(花生)项目(SDAIT-04-06);山东省农业科学院创新工程项目(CXGC2018B05)

Response of rhizosphere bacterial community diversity to salt stress in peanut

DAI Liang-Xiang1(), XU Yang1, ZHANG Guan-Chu1, SHI Xiao-Long2, QIN Fei-Fei1, DING Hong1,*(), ZHANG Zhi-Meng1,*()   

  1. 1Shandong Peanut Research Institute, Qingdao 266100, Shandong, China
    2College of Agronomy, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
  • Received:2020-07-17 Accepted:2021-01-13 Published:2021-08-12 Published online:2021-02-18
  • Contact: DING Hong,ZHANG Zhi-Meng
  • Supported by:
    National Natural Science Foundation of China(31971856);National Natural Science Foundation of China(31971854);National Natural Science Foundation of China(31901574);Modern Agricultural Industry Technical System of Shandong Province(SDAIT-04-06);Agricultural Scientific and Technological Innovation Project of Shandong Academy of Agricultural Sciences(CXGC2018B05)

摘要:

为明确盐胁迫条件下花生根际土壤细菌群落结构的变化, 采用盆栽试验设置不同盐胁迫强度处理, 以开花下针期和成熟期花生根际土壤为研究对象, 提取其总DNA并构建细菌16S rRNA基因文库, 利用高通量测序技术进行测序, 并对测序结果进行生物信息学分析。结果显示, 各处理样本根际土壤优势菌门均为变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、Patescibacteria、酸杆菌门(Acidobacteria)、绿弯菌门(Chloroflexi)。优势菌目分别为(Saccharimonadales)、β-变形菌目(Betaproteobacteria)、鞘脂单胞菌目(sphingomonadales)、芽单胞菌目(Gemmatimonadales)和根瘤菌目(Rhizobiales)。盐胁迫提高了变形菌门(Proteobacteria)的相对丰度, 但降低了放线菌门(Actinobacteria)的相对丰度, 且均随盐胁迫强度提高其升降幅度增大。盐胁迫下基施钙肥使β-变形菌目(Betaproteobacteria)、芽单胞菌目(Gemmatimonadales)和鞘脂单胞菌目(Sphingomonadales)相对丰度显著升高, 并均受盐胁迫强度、生育时期和外源施钙肥的影响。聚类分析结果表明, 较高浓度盐胁迫处理样本的优势菌属组成相似而聚为一组, 非盐胁迫处理样本属水平丰度依生育时期相同而相近, 各聚为一组。盐胁迫强度、生育时期对花生根际土壤微生物菌群类型影响较大, 基施钙肥影响较小。土壤微生物功能预测分析显示, 高盐胁迫可明显降低次生代谢产物、聚糖的生物合成与代谢, 以及氨基酸和脂肪酸代谢等功能基因在根际土壤中的富集。花生旺盛生长期、低盐胁迫和基施钙肥处理使得功能基因丰度大幅提高, 可能对花生生长及胁迫应答具有重要功能。根际土壤微生物菌群多样性的研究将为通过改良土壤微生物环境来提高植物胁迫耐受性提供重要途径。

关键词: 花生, 盐胁迫, 根际, 土壤微生物群落, 16S rRNA基因

Abstract:

To characterize the peanut rhizosphere bacteria community in response to salt stress, a pot experiment was performed with different salt concentrations. The peanut rhizosphere soils at flowering and mature stages were sampled to extract DNA for constructing bacterial 16S rRNA gene library, and then high-throughput sequencing was performed for sequencing and bioinformatics analysis. The results showed that Proteobacteria, Actinobacteria, Patescibacteria, Acidobacteria, and Chloroflexi were the dominant phyla, and the orders Saccharimonadales, Betaproteobacteria, Sphingomonadales, Gemmatimonadales, and Rhizobiales were dominated in the peanut rhizosphere soils. Comparisons of the bacterial community structure of peanuts revealed that the relative abundance of Proteobacteria dramatically increased, while that of Actinobacteria decreased in salt-treated soils, and the fluctuation increased with the increase of the salt concentration. Moreover, applying calcium fertilizer under salt stress increased the abundance of Betaproteobacteria, Gemmatimonadales, and Sphingomonadales, which were affected by salt stress, growth stages, and exogenous calcium application. Cluster analysis revealed that the dominant bacteria of soil groups with high salt concentration were similar and clustered together, while the soil samples of the same growth period were similar and clustered together according to the bacterial structure at the genus level under non-salt stress conditions. Bacterial community structure differed in the growth stages and soil salt concentrations, whereas the differences of soil groups with or without calcium application were relatively small. Function prediction analysis indicated that the sequences related to secondary metabolites, glycan biosynthesis and metabolism, and amino acid and lipid metabolism were enriched in high salt-treated soils. The functional groups increased significantly during the fast-growth period, low salt stress, and basal calcium fertilizer treatments, which may play an important role on the growth and stress response in peanut. This study of microbial communities could lay the foundation for future improvement of stress tolerance of peanuts via modification of the soil microbes.

Key words: peanut (Arachis hypogaea), salt stress, rhizosphere, soil microbial community, 16S rRNA gene

表1

施钙对盐胁迫下花生产量及构成因素的影响"

处理
Treatment
出米率
Kernel rate to pod (%)
百果质量
100-pod mass (g)
百仁质量
100-kernel mass (g)
产量
Yield (kg hm-2)
CK-HCK 64.70 a 164.67 b 88.78 a 5681.1 b
CY0-HCY0 65.42 a 180.19 a 89.59 a 7189.5 a
CY1-HCY1 65.52 a 143.36 c 72.88 b 3870.6 c
CY2-HCY2 61.15 b 100.95 d 53.09 c 2904.6 d

表2

花生根际微生物群落测序质量"

处理
Treatment
有效序列数目Seq_num 碱基数
Base_num
样本序列平均长度
Mean_length
最短序列长度Min_length 最长序列长度Max_length
CK 118,642.0 52,865,549 445.7210 222.00 482.00
CY0 174,409.0 78,663,396 451.0489 219.00 482.00
CY1 157,500.0 71,203,933 452.0910 201.50 482.00
CY2 168,392.0 75,848,924 450.3773 138.00 482.00
HCK 133,998.0 60,111,521 448.5154 200.00 482.00
HCY0 154,447.5 69,251,925 448.3878 182.00 482.00
HCY1 152,938.5 68,605,609 448.5900 215.50 482.00
HCY2 127,455.5 57,443,681 450.6802 190.50 482.00

图1

不同处理花生土壤样本中OTU数量维恩图 处理同表1。"

图2

Rarefaction曲线 处理同表1。"

表3

各处理根际土壤样本Alpha多样性指数"

处理
Treatment
丰富度指数
Richness index
测序深度指数
Sequencing depth
多样性指数
Diversity index
ACE chao coverage Shannon Simpson sobs
CK 3448.5655 3522.3969 0.9894 6.9797 0.002,170 3113.00
CY0 3661.0442 3715.9220 0.9943 7.1144 0.001,946 3428.50
CY1 3599.9666 3662.6245 0.9955 6.9930 0.002,021 3358.00
CY2 3684.9950 3762.5793 0.9930 6.9466 0.002,337 3364.00
HCK 3548.6551 3594.1464 0.9895 6.5863 0.005,682 3170.50
HCY0 3581.6755 3618.1750 0.9924 6.5738 0.005,456 3246.50
HCY1 3658.1430 3695.8227 0.9917 6.8209 0.003,160 3305.00
HCY2 3562.4287 3633.2745 0.9890 6.9478 0.002,281 3182.50

图3

各样本在门水平的菌落结构及优势菌群组间差异分析 处理同表1。*、**、***分别表示处理间达0.05、0.01和0.001显著性水平。"

图4

各样本在目水平的菌落结构及优势菌群组间差异分析 处理同表1。*、**、***分别表示处理间达0.05、0.01和0.001显著性水平。"

图5

各样本属水平菌落丰度和heatmap图 处理同表1。"

图6

Beta多样性分析 处理同表1。"

图7

土壤微生物菌群功能预测 处理同表1。"

[1] Jamil A, Riaz S, Ashraf M, Foolad M R. Gene expression profiling of plants under salts tress. Crit Rev Plant Sci, 2011,30:435-458.
doi: 10.1080/07352689.2011.605739
[2] 贾敬敦, 张富. 依靠科技创新推进我国盐碱地资源可持续利用. 中国农业科技导报, 2014,16(5):1-7.
Jia J D, Zhang F. Sustainable utilization of saline-alkali land resources through scientific and technological innovation in China. J Agric Sci Technol, 2014,16(5):1-7 (in Chinese with English abstract).
[3] 姜焕焕. 耐盐碱解磷菌与磷石膏联用改良盐碱土的效果与机制. 哈尔滨工业大学博士学位论文, 黑龙江哈尔滨, 2019.
Jiang H H. Saline-alkali Soil Remediation by the Combined Application of Halotolerant Phosphate Solubilizing Microorganism and Rock Phosphate. PhD Dissertation of Harbin Institute of Technology, Harbin, Heilongjiang, China, 2019 (in Chinese with English abstract).
[4] 张旭龙, 马淼, 吴振振, 张志政, 高睿, 石灵玉. 不同油葵品种对盐碱地根际土壤酶活性及微生物群落功能多样性的影响. 生态学报, 2017,37:1659-1666.
Zhang X L, Ma M, Wu Z Z, Zhang Z Z, Gao R, Shi L Y. Effects of Helianthus annuus varieties on rhizosphere soil enzyme activities and microbial community functional diversity of saline-alkali land in Xinjiang. Acta Ecol Sin, 2017,37:1659-1666 (in Chinese with English abstract).
[5] Zhang Q, Yu X. Allelopathy in replant problem in forest soil. Allelopathy J, 2001,8:51-64.
[6] Kielak A, Pijl A S, Veen J A, Kowalchuk G A. Differences in vegetation composition and plant species identity lead to only minor changes in soil-borne microbial communities in a former arable field. FEMS Microbiol Ecol, 2008,63:372-382.
doi: 10.1111/j.1574-6941.2007.00428.x pmid: 18205817
[7] Nelson E B. Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol, 2004,42:271-309.
pmid: 15283668
[8] Buyer J S, Roberts D P, Russek-Cohen E. Microbial community structure and function in the spermosphere as affected by soil and seed type. Can J Microbiol, 1999,45:138-144.
doi: 10.1139/w98-227
[9] 叶淑红, 王艳, 万惠萍, 吉云秀, 林学政, 丁德文. 辽东湾湿地微生物量与土壤酶的研究. 土壤通报, 2006,37:897-900.
Ye S H, Wang Y, Wan H P, Ji Y X, Lin X Z, Ding D W. Wetland microbial biomass and soil enzyme activities in Liaodong bay. Chin J Soil Sci, 2006,37:897-900 (in Chinese with English abstract).
[10] 李凤霞, 王学琴, 郭永忠, 许兴, 杨建国, 季艳清. 宁夏不同类型盐渍化土壤微生物区系及多样性. 水土保持学报, 2011,25(5):107-111.
Li F X, Wang X Q, Guo Y Z, Xu X, Yang J G, Ji Y Q. Microbial flora and diversity in different types of saline-alkali soilin Ningxia. J Soil Water Conserv, 2011,25(5):107-111 (in Chinese with English abstract).
[11] 田家怡, 李甲亮, 陈印平, 李建庆, 于祥. 黄河三角洲外来入侵物种米草对底泥微生物群落的影响. 海洋湖沼通报, 2009, (4):157-162.
Tian J Y, Li J L, Chen Y P, Li J Q, Yu X. Effect on the sludge microbial communities by alien invasive species Spartina spp. in yellow river delta. Trans Oceanol Limnol, 2009, (4):157-162 (in Chinese with English abstract).
[12] 王震宇, 辛远征, 李锋民, 高冬梅. 黄河三角洲退化湿地微生物特性的研究. 中国海洋大学学报, 2009,39:1005-1012.
Wang Z Y, Xin Y Z, Li F M, Gao D M. Microbial community characteristics in a degraded wetland of the Yellow River Delta. Period Ocean Univ China, 2009,39:1005-1012 (in Chinese with English abstract).
[13] 王文铜. 花生根际土壤细菌群落结构分析. 山东农业大学博士学位论文, 山东泰安, 2012.
Wang W T. Analysis of Bacterial Community Structure in Rhizosphere Soil of Peanut. PhD Dissertation of Shandong Agricultural University, Tai’an, Shandong, China, 2012 (in Chinese with English abstract).
[14] 吴凤芝, 包静, 刘淑芹. 盐胁迫对黄瓜根际土壤细菌群落结构和生长发育的影响. 园艺学报, 2010,37:741-748.
Wu F Z, Bao J, Liu S Q. Effects of salt stress on rhizospheric soil bacterial community structure and cucumber yield. Acta Hortic Sin, 2010,37:741-748 (in Chinese with English abstract).
[15] 朱泓, 王小敏, 黄涛, 吴文龙, 李维林. NaCl胁迫对滨梅根际细菌群落多样性及优势菌群的影响. 南京林业大学学报(自然科学版), 2017,41(4):49-54.
Zhu H, Wang X M, Huang T, Wu W L, Li W L. Effect of NaCl stress on bacterial community diversity and core microbiome in rhizosphere and bulk soil of beach plum (Prunus maritima Marshall). J Nanjing For Univ (Nat Sci Edn), 2017,41(4):49-54 (in Chinese with English abstract).
[16] Baumann K, Dignac M F, Rumpel C, Bardoux G, Sarr A, Steffens M, Maron P A. Soil microbial diversity affects soil organic matter decomposition in a silty grass land soil. Biogeochemistry, 2013,114:201-212.
doi: 10.1007/s10533-012-9800-6
[17] Philippot L, Spor A, Hénaul T C, Bru D, Bizouard F, Jones C M, Sarr A, Maron P. Loss in microbial diversity affects nitrogen cycling in soil. ISME J, 2013,7:1609-1619.
doi: 10.1038/ismej.2013.34 pmid: 23466702
[18] 马晓梅, 尹林克, 陈理. 塔里木河干流胡杨和柽柳根际土壤微生物及其垂直分布. 干旱区研究, 2008,25(2):183-189.
Ma X M, Yin L K, Chen L. Study on vertical distribution of microorganiss in rhizosphere of Populous euphratica and Tamarix sp. in the lower reaches of the Tarim river, Xinjiang. Arid Zone Res, 2008,25(2):183-189 (in Chinese with English abstract).
[19] 林学政, 陈靠山, 何培青, 沈继红, 黄晓航. 种植盐地碱蓬改良滨海盐渍土对土壤微生物区系的影响. 生态学报, 2006,26:801-807.
Lin X Z, Chen K S, He P Q, Shen J H, Huang X H. The effects of Suaeda salsa L. planting on the soil microflora in coastal saline soil. Acta Ecol Sin, 2006,26:801-807 (in Chinese with English abstract).
[20] 张智猛, 慈敦伟, 张冠初, 丁红, 杨吉顺, 戴良香, 张岱. 山东地区盐碱土花生种子际土壤微生物群落结构的研究. 微生物学报, 2017,57:582-596.
Zhang Z M, Ci D W, Zhang G C, Ding H, Yang J S, Dai L X, Zhang D. Diversity of microbial community structure in the spermosphere of saline-alkali soil in Shandong area. Acta Microbiol Sin, 2017,57:582-596 (in Chinese with English abstract)
[21] 戴良香, 康涛, 慈敦伟, 丁红, 徐扬, 张智猛, 张岱, 李文金. 黄河三角洲盐碱地花生根层土壤菌群结构多样性. 生态学报, 2019,39:7169-7178.
Dai L X, Kang T, Ci D W, Ding H, Xu Y, Zhang Z M, Zhang D, Li W J. Comparison of the microbial community in the rhizosphere of peanuts between salinealkali and non-saline soil at different soil depths and intercropping cultivation in the Yellow River Delta. Acta Ecol Sin, 2019,39:7169-7178.
[22] Yongge Y, Brune C, Kleunen M, Li J M, Jin Z X. Salinity-induced changes in the rhizosphere microbiome improve salt tolerance of Hibiscus hamabo. Plant Soil, 2019,443:525-537.
doi: 10.1007/s11104-019-04258-9
[23] 赵娇, 谢慧君, 张建. 黄河三角洲盐碱土根际微环境的微生物多样性及理化性质分析. 环境科学, 2020,41:1449-1455.
Zhao J, Xie H J, Zhang J. Microbial diversity and physicochemical properties of rhizosphere microenvironment in saline-alkali soils of the Yellow River Delta. Environ Sci, 2020,41:1449-1455 (in Chinese with English abstract).
[24] 郑微. 天津不同盐度土壤微生物群落结构特征及其适应机理研究. 天津师范大学博士学位论文, 天津, 2018.
Zheng W. Study on the Structural Characteristics and Adaptation Mechanism of Microbial Community in Different Salinity Soils in Tianjin. PhD Dissertation of Tianjin Normal University, Tianjin, China, 2018 (in Chinese with English abstract).
[25] 涂勇, 杨文钰, 刘卫国, 雍太文, 江连强, 王小春. 大豆与烤烟不同套作年限对根际土壤微生物数量的影响. 作物学报, 2015,41:733-742.
Tu Y, Yang W Y, Liu W G, Yong T W, Jiang L Q, Wang X C. Effects of relay strip intercropping years between flue-cured tobacco and soybean on rhizospheric microbes quantities. Acta Agron Sin, 2015,41:733-742 (in Chinese with English abstract).
[26] Cui J, Li Y, Wang C, Kim K S, Wang T, Liu S. Characteristics of the rhizosphere bacterial community across different cultivation years in saline-alkaline paddy soils of Songnen Plain of China. Can J Microbiol, 2018,64:925-936.
doi: 10.1139/cjm-2017-0752
[27] Yu H, Si P, Shao W, Qiao X, Yang X, Gao D, Wang Z. Response of enzyme activities and microbial communities to soil amendment with sugar alcohols. Microbiologyopen, 2016,5:604-615.
doi: 10.1002/mbo3.2016.5.issue-4
[28] Kragelund C, Levantesi C, Borger A. Identity abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants. FEMS Microbiol Ecol, 2007,59:671-682.
pmid: 17381520
[29] Hill V R, Kahler A M, Jothikumar N, Johnson T B, Hahn D, Cromeans T L. Multistate evaluation of an ultrafiltration-based procedure for simultaneous recovery of enteric microbes in 100-liter tap water sample. Appl Environ Microbiol, 2007,73:4218-4225.
doi: 10.1128/AEM.02713-06
[30] 葛应兰, 孙廷. 马铃薯根际与非根际土壤微生物群落结构及多样性特征. 生态环境学报, 2020,29:141-148.
Ge Y L, Sun T. Soil microbial community structure and diversity of potato in rhizosphere and non-rhizosphere soil. Ecol Environ Sci, 2020,29:141-148 (in Chinese with English abstract).
[31] 覃潇敏, 郑毅, 汤利, 龙光强. 玉米与马铃薯间作对根际微生物群落结构和多样性的影响. 作物学报, 2015,41:919-928.
Qin X M, Zheng Y, Tang L, Long G Q. Effects of maize and potato intercropping on rhizosphere microbial community structure and diversity. Acta Agron Sin, 2015,41:919-928 (in Chinese with English abstract).
[1] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[2] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[3] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[4] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[5] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[6] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[7] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[8] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[9] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[10] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[11] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[12] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[13] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[14] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[15] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!