Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (12): 1819-1830.doi: 10.3724/SP.J.1006.2020.02027

• REVIEW •     Next Articles

Physiological response of crop to elevated atmospheric carbon dioxide concentration: a review

Yan-Sheng LI1,2,*(), Jian JIN2,*(), Xiao-Bing LIU2   

  1. 1Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences / Key Laboratory of Agricultural Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2Key Laboratory of Mollisols Agroecology / Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
  • Received:2020-04-15 Accepted:2020-08-19 Online:2020-12-12 Published:2020-11-25
  • Contact: Yan-Sheng LI,Jian JIN E-mail:liyansheng@iga.ac.cn;jinjian@iga.ac.cn
  • Supported by:
    Key Laboratory for Agricultural Environment, the Ministry of Agriculture of China;National Key Research and Development Program of China(2017YFD0300300);National Natural Science Foundation of China(31501259)

Abstract:

The increase of atmospheric concentration of carbon dioxide ([CO2]) has substantially had a huge impact on agricultural production. As the sole substrate for photosynthesis, the increase of atmospheric [CO2] stimulates the net photosynthetic rate, thus promoting the biomass accumulation and yield level in many crops. However, the ‘fertilization’ effect of the elevated atmospheric [CO2] on crop production is less than theoretical expectation, and elevated [CO2] increases the health risk due to the decline in grain quality. The relevant mechanism is still unclear. In this paper, we analyzed the effect of elevated [CO2] on crop photosynthesis system, reviewed various responses of key photosynthesis indicators, such as the leaf net photosynthetic rate, the intercellular [CO2] of leaves, maximum carboxylation rate of Rubisco (Vc, max), and the capacity of Rubp-regeneration (Jmax) in different crops, in response to the elevated atmospheric [CO2]. Based on the C-N metabolism of the whole plant, we summarized two prevailing hypotheses about the acclimation of photosynthetic capacity under elevated atmospheric [CO2], namely the source-sink regulation mechanism and N limitation mechanism, respectively. We summarized the influence of elevated [CO2] on the nutritional quality of the grain, such as the change in the protein, oil, mineral elements, and vitamin concentrations. Furthermore, we also reviewed the potential interactive effect of the elevated atmospheric temperature and [CO2] on crop growth. Finally, the main research directions of this field in the future are proposed. In summary, this review can provide theoretical reference for accurately assessing the changes in crop yield and quality under climate change conditions, maximizing the ‘fertilization’ effect of elevated [CO2], and mitigating the adverse effects of climate change on crop production.

Key words: climate change, global warming, rice, wheat, soybean, maize

Fig. 1

Annual and monthly changes of atmospheric concentration of CO2 from 1958 to 2020 The data between the two blue dashed lines represent the increases of CO2 concentration per 10 years. The black dashed line represents the highest atmospheric CO2 concentration measured in May 2019. All the data in this figure are from https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html."

Fig. 2

Calvin cycle (black lines) and photorespiration (red lines) This schematic diagram is modified according to https://www.knowablemagazine.org/article/sustainability/2017/photosynthesis-fix."

Fig. 3

Hypothesis of the photosynthetic acclimation under elevated atmospheric CO2 concentration in C3 crop (soybean)"

[1] IPCC. Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013. pp 95-123.
[2] Still C J, Berry J A, Collatz G J, DeFries R S . Global distribution of C3 and C4 vegetation: carbon cycle implications. Global Biogeochem Cycles, 2003,17:1006.
[3] Jablonski L M, Wang X Z, Curtis P S . Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol, 2002,156:9-26.
doi: 10.1046/j.1469-8137.2002.00494.x
[4] Rogers A, Ainsworth E A, Leakey A D B . Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiol, 2009,151:1009-1016.
doi: 10.1104/pp.109.144113 pmid: 19755541
[5] 韩雪, 林而达, 郝兴宇, 马占云, 王贺然 . FACE条件下冬小麦的光合适应. 中国农业气象, 2009,30:481-485.
Han X, Lin E D, Hao X Y, Ma Z Y, Wang H R . Photosynthetic acclimation of winter wheat under free air CO2 enrichment (FACE). Chin J Agrometol, 2009,30:481-485 (in Chinese with English abstract).
[6] Stitt M, Schulze D . Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant Cell Environ, 1994,17:465-487.
doi: 10.1111/pce.1994.17.issue-5
[7] Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, Hagemann M . The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc Natl Acad Sci USA, 2008,105:17199-17204.
doi: 10.1073/pnas.0807043105 pmid: 18957552
[8] Brown M E, Funk C C. Food Security and Climate Change. Chichester: Wiley-Blackwell Press, 2018. pp 51-69.
[9] Farquhar G D, von Caemmerer S V, Berry J A . A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 1980,149:78-90.
doi: 10.1007/BF00386231 pmid: 24306196
[10] Zhao D L, Reddy K R, Kakani V G, Mohammed A R, Read J J, Gao W . Leaf and canopy photosynthetic characteristics of cotton (Gossypium hirsutum) under elevated CO2 concentration and UV-B radiation. J Plant Physiol, 2004,161:581-590.
doi: 10.1078/0176-1617-01229 pmid: 15202715
[11] Long S P, Bernacchi C J . Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot, 2003,54:2393-2401.
doi: 10.1093/jxb/erg262 pmid: 14512377
[12] Liu B B, Li M, Li Q M, Cui Q Q, Zhang W D, Ai X Z, Bi H G . Combined effects of elevated CO2 concentration and drought stress on photosynthetic performance and leaf structure of cucumber (Cucumis sativus L.) seedlings. Photosynthetica, 2018,56:942-952.
doi: 10.1007/s11099-017-0753-9
[13] Chen G Y, Yong Z H, Liao Y, Zhang D Y, Chen Y, Zhang H B, Chen J, Zhu J G, Xu D Q . Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose- 1,5-bisphosphate carboxylation limitation and ribulose- 1,5-bisphosphate regeneration limitation. Plant Cell Physiol, 2005,46:1036-1045.
doi: 10.1093/pcp/pci113 pmid: 15840641
[14] Ainsworth E A, Rogers A . The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant Cell Environ, 2007,30:258-270.
doi: 10.1111/j.1365-3040.2007.01641.x pmid: 17263773
[15] Biggins J. Progress in Photosynthesis Research. Berlin: Springer Science & Business Press, 1987. pp 221-224.
[16] Mott K A . Do stomata respond to CO2 concentrations other than intercellular? Plant Physiol, 1988,86:200-203.
doi: 10.1104/pp.86.1.200 pmid: 16665866
[17] Leakey A D B, Ainsworth E A, Bernacchi C J, Rogers A, Long S P, Ort D R . Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot, 2009,60:2859-2876.
doi: 10.1093/jxb/erp096 pmid: 19401412
[18] Medlyn B E, Barton C V M, Broadmeadow M S J, Ceulemans R, De Angelis P, Forstreuter M, Freeman M, Jackson S B, Kellomaki S, Laitat E, Rey A, Roberntz P, Sigurdsson B D, Strassemeyer J, Wang K, Curtis P S, Jarvis P G . Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol, 2001,149:247-264.
doi: 10.1046/j.1469-8137.2001.00028.x
[19] Ainsworth E A, Rogers A, Blum H, Nosberger J, Long S P . Variation in acclimation of photosynthesis in Trifolium repens after eight years of exposure to Free Air CO2 Enrichment (FACE). J Exp Bot, 2003,54:2769-2774.
doi: 10.1093/jxb/erg309 pmid: 14585828
[20] Sanz-Saez A, Koester R P, Rosenthal D M, Montes C M, Ort D R, Ainsworth E A . Leaf and canopy scale drivers of genotypic variation in soybean response to elevated carbon dioxide concentration. Glob Change Biol, 2017,23:3908-3920.
doi: 10.1111/gcb.2017.23.issue-9
[21] Thomey M L, Slattery R A, Köhler I H, Bernacchi C J, Ort D R . Yield response of field-grown soybean exposed to heat waves under current and elevated [CO2]. Glob Change Biol, 2019,25:4352-4368.
doi: 10.1111/gcb.v25.12
[22] Sage R F, Monson R K. C4 Plant Biology. Amsterdam: Elsevier Press, 1999. p 87.
[23] Morgan J A, LeCain D R, Read J J, Hunt H W, Knight W G . Photosynthetic pathway and ontogeny affect water relations and the impact of CO2 on Bouteloua gracilis (C4) and Pascopyrum smithii (C3). Oecologia, 1998,114:483-493.
doi: 10.1007/s004420050472 pmid: 28307897
[24] Seneweera S P, Ghannoum O, Conroy J . High vapour pressure deficit and low soil water availability enhance shoot growth responses of a C4 grass (Panicum coloratum cv. Bambatsi) to CO2 enrichment. Funct Plant Biol, 1998,25:287-292.
doi: 10.1071/PP97054
[25] Cunniff J, Jones G, Charles M, Osborne C P . Yield responses of wild C3 and C4 crop progenitors to subambient CO2: a test for the role of CO2 limitation in the origin of agriculture. Glob Change Biol, 2017,23:380-393.
doi: 10.1111/gcb.13473
[26] Samarakoon A, Gifford R . Elevated CO2 effects on water use and growth of maize in wet and drying soil. Funct Plant Biol, 1996,23:53-62.
doi: 10.1071/PP9960053
[27] Ghannoum O, Caemmerer S V, Ziska L H, Conroy J P . The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment. Plant Cell Environ, 2000,23:931-942.
doi: 10.1046/j.1365-3040.2000.00609.x
[28] Maroco J P, Edwards G E, Ku M S B . Photosynthetic acclimation of maize to growth under elevated levels of carbon dioxide. Planta, 1999,210:115-125.
doi: 10.1007/s004250050660 pmid: 10592039
[29] Leakey A D, Uribelarrea M, Ainsworth E A, Naidu S L, Rogers A, Ort D R, Long S P . Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought. Plant Physiol, 2006,140:779-790.
doi: 10.1104/pp.105.073957 pmid: 16407441
[30] Zhu C, Ziska L, Zhu J, Zeng Q, Xie Z, Tang H, Jia X, Hasegawa T . The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat(Triticum aestivum) under elevated carbon dioxide. Physiol Plant, 2012,145:395-405.
doi: 10.1111/j.1399-3054.2012.01581.x pmid: 22268610
[31] Gamage D, Thompson M, Sutherland M, Hirotsu N, Makino A, Seneweera S . New insights into the cellular mechanisms of plant growth at elevated atmospheric carbon dioxide concentrations. Plant Cell Environ, 2018,41:1233-1246.
doi: 10.1111/pce.13206 pmid: 29611206
[32] Arp W . Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant Cell Environ, 1991,14:869-875.
doi: 10.1111/pce.1991.14.issue-8
[33] Smart D, Chatterton N, Bugbee B . The influence of elevated CO2 on non-structural carbohydrate distribution and fructan accumulation in wheat canopies. Plant Cell Environ, 1994,17:435-442.
doi: 10.1111/j.1365-3040.1994.tb00312.x pmid: 11537974
[34] Moore B, Cheng S H, Sims D, Seemann J . The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2. Plant Cell Environ, 1999,22:567-582.
doi: 10.1046/j.1365-3040.1999.00432.x
[35] Ludewig F, Sonnewald U . High CO2-mediated down-regulation of photosynthetic gene transcripts is caused by accelerated leaf senescence rather than sugar accumulation. FEBS Lett, 2000,479:19-24.
doi: 10.1016/s0014-5793(00)01873-1 pmid: 10940381
[36] Zhu C, Zhu J, Zeng Q, Liu G, Xie Z, Tang H, Cao J, Zhao X . Elevated CO2 accelerates flag leaf senescence in wheat due to ear photosynthesis which causes greater ear nitrogen sink capacity and ear carbon sink limitation. Funct Plant Biol, 2009,36:291-299.
doi: 10.1071/FP08269 pmid: 32688647
[37] Fabre D, Dingkuhn M, Yin X, Clément-Vidal A, Roques S, Soutiras A, Luquet D . Genotypic variation in morphological source and sink traits affects the response of rice photosynthesis and growth to elevated atmospheric CO2. Biol Rxiv, 2019: 694307.
[38] Bernacchi C J, Calfapietra C, Davey P A, Wittig V E , Scarascia- Mugnozza G E, Raines C A, Long S P. Photosynthesis and stomatal conductance responses of poplars to free-air CO2 enrichment (PopFACE) during the first growth cycle and immediately following coppice. New Phytol, 2003,159:609-621.
doi: 10.1046/j.1469-8137.2003.00850.x
[39] Davey P, Olcer H, Zakhleniuk O, Bernacchi C, Calfapietra C, Long S P, Raines C . Can fast-growing plantation trees escape biochemical down-regulation of photosynthesis when grown throughout their complete production cycle in the open air under elevated carbon dioxide? Plant Cell Environ, 2006,29:1235-1244.
doi: 10.1111/j.1365-3040.2006.01503.x pmid: 17080946
[40] Paul M J, Foyer C H . Sink regulation of photosynthesis. J Exp Bot, 2001,52:1383-1400.
doi: 10.1093/jexbot/52.360.1383 pmid: 11457898
[41] Aranjuelo I, Pardo A, Biel C, Savé R, Azcón-Bieto J, Nogués S . Leaf carbon management in slow-growing plants exposed to elevated CO2. Glob Change Biol, 2009,15:97-109.
doi: 10.1111/gcb.2009.15.issue-1
[42] Ainsworth E A, Rogers A, Nelson R, Long S P . Testing the “source-sink” hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max. Agric For Meteorol, 2004,122:85-94.
doi: 10.1016/j.agrformet.2003.09.002
[43] Gordon A J, Minchin F R, James C L, Komina O . Sucrose synthase in legume nodules is essential for nitrogen fixation. Plant Physiol, 1999,120:867-878.
doi: 10.1104/pp.120.3.867 pmid: 10398723
[44] Wang T, Hedley C . Seed development in peas: knowing your three ‘r’s’ (or four, or five). Seed Sci Res, 1991,1:3-14.
doi: 10.1017/S096025850000057X
[45] 邸伟 . 大豆根瘤固氮酶活性与固氮量的研究. 东北农业大学硕士学位论文, 黑龙江哈尔滨, 2010.
Di W . Study on Nodule Nitrogenous Activities and Amount of Nitrogen Fixation of Soybean. MS Thesis of Northeast Agricultral University, Harbin, Heilongjiang, China, 2010 (in Chinese with English abstract).
[46] Socias F X, Medrano H, Sharkey T D . Feedback limitation of photosynthesis of Phaseolus vulgaris L. grown in elevated CO2. Plant Cell Environ, 1993,16:81-86.
doi: 10.1111/pce.1993.16.issue-1
[47] Cen Y P, Sage R F . The regulation of Rubisco activity in response to variation in temperature and atmospheric CO2 partial pressure in sweet potato. Plant Physiol, 2005,139:979-990.
doi: 10.1104/pp.105.066233 pmid: 16183840
[48] Ellis R J . The most abundant protein in the world. Trends Biochem Sci, 1979,4:241-244.
doi: 10.1016/0968-0004(79)90212-3
[49] Spreitzer R J, Salvucci M E . Rubisco: Structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol, 2002,53:449-475.
doi: 10.1146/annurev.arplant.53.100301.135233 pmid: 12221984
[50] Drake B G, Gonzalez M A, Long S P . More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Physiol Plant Mol Biol, 1997,48:609-639.
doi: 10.1146/annurev.arplant.48.1.609 pmid: 15012276
[51] Vu J C V, Allen L H, Boote K J, Bowes G . Effects of elevated CO2 and temperature on photosynthesis and rubisco in rice and soybean. Plant Cell Environ, 1997,20:68-76.
doi: 10.1046/j.1365-3040.1997.d01-10.x
[52] Rogers A, Fischer B U, Bryant J, Frehner M, Blum H, Raines C A, Long S P . Acclimation of photosynthesis to elevated CO2 under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-air CO2 enrichment. Plant Physiol, 1998,118:683-689.
doi: 10.1104/pp.118.2.683 pmid: 9765554
[53] Yang L X, Wang Y L, Dong G C, Gu H, Huang J Y, Zhu J G, Yang H J, Liu G, Han Y . The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Res, 2007,102:128-140.
doi: 10.1016/j.fcr.2007.03.006
[54] Zeng Q, Liu B A, Gilna B, Zhang Y L, Zhu C W, Ma H L, Pang J, Chen G P, Zhu J G . Elevated CO2 effects on nutrient competition between a C3 crop ( Oryza sativa L.) and a C4 weed(Echinochloa crusgalli L.). Nutr Cycl Agroecosyst, 2011,89:93-104.
doi: 10.1007/s10705-010-9379-z
[55] Uddling J, Broberg M C, Feng Z Z, Pleijel F . Crop quality under rising atmospheric CO2. Curr Opin Plant Biol, 2018,45:262-267.
doi: 10.1016/j.pbi.2018.06.001 pmid: 29958824
[56] Dong J L, Li X, Chu W Y, Duan Z Q . High nitrate supply promotes nitrate assimilation and alleviates photosynthetic acclimation of cucumber plants under elevated CO2. Sci Hortic, 2017,218:275-283.
doi: 10.1016/j.scienta.2016.11.026
[57] Long S P, Ainsworth E A, Leakey A D, Nösberger J, Ort D R . Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 2006,312:1918-1921.
doi: 10.1126/science.1114722 pmid: 16809532
[58] Taub D R, Wang X . Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. J Integr Plant Biol, 2008,50:1365-1374.
doi: 10.1111/j.1744-7909.2008.00754.x
[59] Li Y S, Yu Z H, Liu X B, Mathesius U, Wang G H, Tang C X, Wu J J, Liu J D, Zhang S Q, Jin J . Elevated CO2 increases nitrogen fixation at the reproductive phase contributing to various yield responses of soybean cultivars. Front Plant Sci, 2017,8:1546.
doi: 10.3389/fpls.2017.01546 pmid: 28959266
[60] Li Y S, Yu Z H, Yang S C, Jin J, Wang G H, Liu C K, Herbert S J, Liu X B . Soybean intraspecific genetic variation in response to elevated CO2. Arch Agron Soil Sci, 2019,65:1733-1744.
doi: 10.1080/03650340.2019.1575958
[61] Feng Z, Rütting T, Pleijel H, Wallin G, Reich P B, Kammann C I, Newton P C, Kobayashi K, Luo Y, Uddling J . Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. Glob Change Biol, 2015,21:3152-3168.
doi: 10.1111/gcb.12938
[62] Conroy J, Hocking P . Nitrogen nutrition of C3 plants at elevated atmospheric CO2 concentrations. Physiol Plant, 1993,89:570-576.
doi: 10.1111/ppl.1993.89.issue-3
[63] Field C B, Jackson R B, Mooney H A . Stomatal responses to increased CO2: implications from the plant to the global scale. Plant Cell Environ, 1995,18:1214-1225.
doi: 10.1111/pce.1995.18.issue-10
[64] Norby R J, Wullschleger S D, Gunderson C A, Johnson D W, Ceulemans R . Tree responses to rising CO2 in field experiments: implications for the future forest. Plant Cell Environ, 1999,22:683-714.
doi: 10.1046/j.1365-3040.1999.00391.x
[65] Bunce J A . Direct and acclimatory responses of stomatal conductance to elevated carbon dioxide in four herbaceous crop species in the field. Glob Change Biol, 2001,7:323-331.
doi: 10.1046/j.1365-2486.2001.00406.x
[66] Stitt M, Krapp A . The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant Cell Environ, 1999,22:583-621.
doi: 10.1046/j.1365-3040.1999.00386.x
[67] BassiriRad H, Gutschick V P, Lussenhop J . Root system adjustments: regulation of plant nutrient uptake and growth responses to elevated CO2. Oecologia, 2001,126:305-320.
doi: 10.1007/s004420000524 pmid: 28547443
[68] Hawkesford M J, Barraclough P B. The Molecular and Physiological Basis of Nutrient Use Efficiency in Crops. Chichester: Wiley-Blackwell Press, 2011. pp 5-19.
[69] Tanner W, Beevers H . Transpiration, a prerequisite for long-distance transport of minerals in plants? Proc Natl Acad Sci USA, 2001,98:9443-9447.
doi: 10.1073/pnas.161279898 pmid: 11481499
[70] Wu K, Chen D, Tu C, Qiu Y, Burkey K O, Reberg-Horton S C, Peng S, Hu S . CO2-induced alterations in plant nitrate utilization and root exudation stimulate N2O emissions. Soil Biol Biochem, 2017,106:9-17.
doi: 10.1016/j.soilbio.2016.11.018
[71] Luo Y, Su B, Currie W S, Dukes J S, Finzi A, Hartwig U, Hungate B, McMurtrie R E, Oren R, Parton W J . Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience, 2004,54:731-739.
doi: 10.1641/0006-3568(2004)054[0731:PNLOER]2.0.CO;2
[72] Cheng L, Booker F L, Tu C, Burkey K O, Zhou L, Shew H D, Rufty T W, Hu S . Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 2012,337:1084-1087.
doi: 10.1126/science.1224304 pmid: 22936776
[73] Niu Y, Chai R, Dong H, Wang H, Tang C, Zhang Y . Effect of elevated CO2 on phosphorus nutrition of phosphate-deficient Arabidopsis thaliana(L.) Heynh under different nitrogen forms. J Exp Bot, 2013,64:355-367.
doi: 10.1093/jxb/ers341 pmid: 23183255
[74] Loladze I . Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife, 2014,3.
doi: 10.7554/eLife.03606 pmid: 25535795
[75] Robinson E A, Ryan G D, Newman J A . A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytol, 2012,194:321-336.
doi: 10.1111/j.1469-8137.2012.04074.x
[76] Bates P D, Stymne S, Ohlrogge J . Biochemical pathways in seed oil synthesis. Curr Opin Plant Biol, 2013,16:358-364.
doi: 10.1016/j.pbi.2013.02.015 pmid: 23529069
[77] Li Y S, Yu Z H, Jin J, Zhang Q Y, Wang G H, Liu C K, Wu J J, Wang C, Liu X B . Impact of elevated CO2 on seed quality of soybean at the fresh edible and mature stages. Front Plant Sci, 2018,9:1413.
doi: 10.3389/fpls.2018.01413 pmid: 30386351
[78] Clemente T E, Cahoon E B . Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol, 2009,151:1030-1040.
doi: 10.1104/pp.109.146282 pmid: 19783644
[79] Demorest Z L, Coffman A, Baltes N J, Stoddard T J, Clasen B M, Luo S, Retterath A, Yabandith A, Gamo M E, Bissen J, Mathis L, Voytas D F, Zhang F . Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biol, 2016,16:225.
doi: 10.1186/s12870-016-0906-1 pmid: 27733139
[80] 蒋跃林, 张庆国, 岳伟, 姚玉刚, 王公明 . 大气CO2浓度升高对大豆生长和产量的影响. 中国农学通报, 2005,21:355-355.
Jiang Y L, Zhang Q G, Yue W, Yao G Y, Wang G M . Effects of elevated atmospheric CO2 concentration on growth and yield of soybean. Chin Agric Sci Bull, 2005,21:355-355 (in Chinese with English abstract).
[81] Högy P, Franzaring J, Schwadorf K, Breuer J, Schuetze W, Fangmeier A . Effects of free-air CO2 enrichment on energy traits and seed quality of oilseed rape. Agric Ecosyst Environ, 2010,139:239-244.
doi: 10.1016/j.agee.2010.08.009
[82] Myers S S, Zanobetti A, Kloog I, Huybers P, Leakey A D, Bloom A J, Carlisle E, Dietterich L H, Fitzgerald G, Hasegawa T, Holbrook N M, Nelson R L, Ottman M J, Raboy V, Sakai H, Sartor K A, Schwartz J, Seneweera S, Tausz M, Usui Y . Increasing CO2 threatens human nutrition. Nature, 2014,510:139-142.
doi: 10.1038/nature13179
[83] Soares J, Deuchande T, Valente L M, Pintado M, Vasconcelos M W . Growth and nutritional responses of bean and soybean genotypes to elevated CO2 in a controlled environment. Plants, 2019,8:465.
doi: 10.3390/plants8110465
[84] Li Y S, Yu Z H, Yang S C, Wang G H, Liu X B, Wang C Y, Xie Z H, Jin J . Impact of elevated CO2 on C : N : P ratio among soybean cultivars. Sci Total Environ, 2019,694:133784.
doi: 10.1016/j.scitotenv.2019.133784 pmid: 31756809
[85] Swaminathan S, Vaz M, Kurpad A V . Protein intakes in India. Br J Nutr, 2012,108:S50-S58.
doi: 10.1017/S0007114512002413 pmid: 23107548
[86] Pratelli R, Pilot G . Regulation of amino acid metabolic enzymes and transporters in plants. J Exp Bot, 2014,65:5535-5556.
doi: 10.1093/jxb/eru320
[87] Takahashi M, Uematsu Y, Kashiwaba K, Yagasaki K, Hajika M, Matsunaga R, Komatsu K, Ishimoto M . Accumulation of high levels of free amino acids in soybean seeds through integration of mutations conferring seed protein deficiency. Planta, 2003,217:577-586.
doi: 10.1007/s00425-003-1026-3 pmid: 12684787
[88] Beidler K V, Taylor B N, Strand A E, Cooper E R, Schonholz M, Pritchard S G . Changes in root architecture under elevated concentrations of CO2 and nitrogen reflect alternate soil exploration strategies. New Phytol, 2015,205:1153-1163.
doi: 10.1111/nph.13123 pmid: 25348775
[89] World Health Organization. The World Health Report 2002: Reducing Risks, Promoting Healthy Life. France: World Health Organization, 2002. [2020-04-26]. https://www.who.int/whr/2002/en/.
[90] Brown K H, Wuehler S E, Peerson J M . The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food Nutr Bull, 2001,22:113-125.
doi: 10.1177/156482650102200201
[91] Zhu C, Kobayashi K, Loladze I, Zhu J, Jiang Q, Xu X, Liu G, Seneweera S, Ebi K L, Drewnowski A . Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci Adv, 2018, 4: eaaq1012.
doi: 10.1126/sciadv.aaq1012 pmid: 29806023
[92] Saugier B. Carbon Dioxide and Environmental Stress. Amsterdam: Elsevier Press, 1999. pp 215-244.
[93] McDonald E P, Erickson J E, Kruger E L . Can decreased transpiration limit plant nitrogen acquisition in elevated CO2? Funct Plant Biol, 2002,29:1115-1120.
doi: 10.1071/FP02007 pmid: 32689563
[94] Pérez-López U, Miranda-Apodaca J, Mena-Petite A, Muñoz- Rueda A . Responses of nutrient dynamics in barley seedlings to the interaction of salinity and carbon dioxide enrichment. Environ Exp Bot, 2014,99:86-99.
doi: 10.1016/j.envexpbot.2013.11.004
[95] IPCC. Global Warming of 1.5°C: an IPCC Special Report, IPCC Secretariat. Cambridge: Cambridge University Press, 2018. pp 175-311.
[96] Kim H Y, Ko J, Kang S, Tenhunen J . Impacts of climate change on paddy rice yield in a temperate climate. Glob Change Biol, 2013,19:548-562.
doi: 10.1111/gcb.2012.19.issue-2
[97] Van Oort P A, Zwart S J . Impacts of climate change on rice production in Africa and causes of simulated yield changes. Glob Change Biol, 2018,24:1029-1045.
doi: 10.1111/gcb.2018.24.issue-3
[98] Wang J, Liu X, Zhang X, Smith P, Li L, Filley T R, Cheng K, Shen M, He Y, Pan G . Size and variability of crop productivity both impacted by CO2 enrichment and warming—a case study of 4 year field experiment in a Chinese paddy. Agric Ecosyst Environ, 2016,221:40-49.
doi: 10.1016/j.agee.2016.01.028
[99] Ainsworth E A, Ort D R . How do we improve crop production in a warming world? Plant Physiol, 2010,154:526-530.
doi: 10.1104/pp.110.161349 pmid: 20921178
[100] Supit I, Van Diepen C, De Wit A, Kabat P, Baruth B, Ludwig F . Recent changes in the climatic yield potential of various crops in Europe. Agric Sys, 2010,103:683-694.
doi: 10.1016/j.agsy.2010.08.009
[101] Bassu S, Brisson N, Durand J L, Boote K, Lizaso J, Jones J W, Rosenzweig C, Ruane A C, Adam M, Baron C . How do various maize crop models vary in their responses to climate change factors? Glob Change Biol, 2014,20:2301-2320.
doi: 10.1111/gcb.2014.20.issue-7
[102] Sultan B, Gaetani M . Agriculture in West Africa in the twenty-first century: climate change and impacts scenarios, and potential for adaptation. Front Plant Sci, 2016,7:1262.
doi: 10.3389/fpls.2016.01262 pmid: 27625660
[103] Lobell D B, Field C B . Global scale climate-crop yield relationships and the impacts of recent warming. Environ Res Lett, 2007,2:014002.
doi: 10.1088/1748-9326/2/1/014002
[104] Kucharik C J, Serbin S P . Impacts of recent climate change on Wisconsin corn and soybean yield trends. Environ Res Lett, 2008,3:034003.
doi: 10.1088/1748-9326/3/3/034003
[105] Hatfield J L, Boote K J, Kimball B, Ziska L, Izaurralde R C, Ort D, Thomson A M, Wolfe D . Climate impacts on agriculture: implications for crop production. Agron J, 2011,103:351-370.
doi: 10.2134/agronj2010.0303
[106] Ruiz-Vera U M, Siebers M, Gray S B, Drag D W, Rosenthal D M, Kimball B A, Ort D R, Bernacchi C J . Global warming can negate the expected CO2 stimulation in photosynthesis and productivity for soybean grown in the midwestern United States. Plant Physiol, 2013,162:410-423.
doi: 10.1104/pp.112.211938
[107] Schauberger B, Archontoulis S, Arneth A, Balkovic J, Ciais P, Deryng D, Elliott J, Folberth C, Khabarov N, Müller C, Thomas A M, Rolinski S, Schaphoff S, Schmid E, Wang X H, Schlenker W, Frieler K . Consistent negative response of US crops to high temperatures in observations and crop models. Nat Commun, 2017,8:1-9.
doi: 10.1038/s41467-016-0009-6 pmid: 28232747
[108] Frenck G, van der Linden L, Mikkelsen T N, Brix H, Jørgensen R B . Increased [CO2] does not compensate for negative effects on yield caused by higher temperature and [O3] in Brassica napus L. Eur J Agron, 2011,35:127-134.
doi: 10.1016/j.eja.2011.05.004
[1] CHEN Ling-Ling, LI Zhan, LIU Ting-Xuan, GU Yong-Zhe, SONG Jian, WANG Jun, QIU Li-Juan. Genome wide association analysis of petiole angle based on 783 soybean resources (Glycine max L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1333-1345.
[2] HU Wen-Jing, LI Dong-Sheng, YI Xin, ZHANG Chun-Mei, ZHANG Yong. Molecular mapping and validation of quantitative trait loci for spike-related traits and plant height in wheat [J]. Acta Agronomica Sinica, 2022, 48(6): 1346-1356.
[3] TIAN Tian, CHEN Li-Juan, HE Hua-Qin. Identification of rice blast resistance candidate genes based on integrating Meta-QTL and RNA-seq analysis [J]. Acta Agronomica Sinica, 2022, 48(6): 1372-1388.
[4] ZHENG Chong-Ke, ZHOU Guan-Hua, NIU Shu-Lin, HE Ya-Nan, SUN wei, XIE Xian-Zhi. Phenotypic characterization and gene mapping of an early senescence leaf H5(esl-H5) mutant in rice (Oryza sativa L.) [J]. Acta Agronomica Sinica, 2022, 48(6): 1389-1400.
[5] ZHOU Wen-Qi, QIANG Xiao-Xia, WANG Sen, JIANG Jing-Wen, WEI Wan-Rong. Mechanism of drought and salt tolerance of OsLPL2/PIR gene in rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1401-1415.
[6] ZHENG Xiao-Long, ZHOU Jing-Qing, BAI Yang, SHAO Ya-Fang, ZHANG Lin-Ping, HU Pei-Song, WEI Xiang-Jin. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice [J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436.
[7] WANG Dan, ZHOU Bao-Yuan, MA Wei, GE Jun-Zhu, DING Zai-Song, LI Cong-Feng, ZHAO Ming. Characteristics of the annual distribution and utilization of climate resource for double maize cropping system in the middle reaches of Yangtze River [J]. Acta Agronomica Sinica, 2022, 48(6): 1437-1450.
[8] YAN Jia-Qian, GU Yi-Biao, XUE Zhang-Yi, ZHOU Tian-Yang, GE Qian-Qian, ZHANG Hao, LIU Li-Jun, WANG Zhi-Qin, GU Jun-Fei, YANG Jian-Chang, ZHOU Zhen-Ling, XU Da-Yong. Different responses of rice cultivars to salt stress and the underlying mechanisms [J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475.
[9] YANG Huan, ZHOU Ying, CHEN Ping, DU Qing, ZHENG Ben-Chuan, PU Tian, WEN Jing, YANG Wen-Yu, YONG Tai-Wen. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system [J]. Acta Agronomica Sinica, 2022, 48(6): 1476-1487.
[10] CHEN Jing, REN Bai-Zhao, ZHAO Bin, LIU Peng, ZHANG Ji-Wang. Regulation of leaf-spraying glycine betaine on yield formation and antioxidation of summer maize sowed in different dates [J]. Acta Agronomica Sinica, 2022, 48(6): 1502-1515.
[11] GUO Xing-Yu, LIU Peng-Zhao, WANG Rui, WANG Xiao-Li, LI Jun. Response of winter wheat yield, nitrogen use efficiency and soil nitrogen balance to rainfall types and nitrogen application rate in dryland [J]. Acta Agronomica Sinica, 2022, 48(5): 1262-1272.
[12] YANG Jian-Chang, LI Chao-Qing, JIANG Yi. Contents and compositions of amino acids in rice grains and their regulation: a review [J]. Acta Agronomica Sinica, 2022, 48(5): 1037-1050.
[13] SHAN Lu-Ying, LI Jun, LI Liang, ZHANG Li, WANG Hao-Qian, GAO Jia-Qi, WU Gang, WU Yu-Hua, ZHANG Xiu-Jie. Development of genetically modified maize (Zea mays L.) NK603 matrix reference materials [J]. Acta Agronomica Sinica, 2022, 48(5): 1059-1070.
[14] DENG Zhao, JIANG Nan, FU Chen-Jian, YAN Tian-Zhe, FU Xing-Xue, HU Xiao-Chun, QIN Peng, LIU Shan-Shan, WANG Kai, YANG Yuan-Zhu. Analysis of blast resistance genes in Longliangyou and Jingliangyou hybrid rice varieties [J]. Acta Agronomica Sinica, 2022, 48(5): 1071-1080.
[15] YU Chun-Miao, ZHANG Yong, WANG Hao-Rang, YANG Xing-Yong, DONG Quan-Zhong, XUE Hong, ZHANG Ming-Ming, LI Wei-Wei, WANG Lei, HU Kai-Feng, GU Yong-Zhe, QIU Li-Juan. Construction of a high density genetic map between cultivated and semi-wild soybeans and identification of QTLs for plant height [J]. Acta Agronomica Sinica, 2022, 48(5): 1091-1102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!