欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (4): 615-619.doi: 10.3724/SP.J.1006.2009.00615

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

阿夫及其衍生小麦品种(系)的SSR分析

司清林12,刘新伦1,刘智奎3,王长有1,吉万全1*   

  1. 1西北农林科技大学农学院,陕西杨凌712100;2济源市农业科学研究所,河南济源454652;3陕西省西安市种子管理站,陕西西安710054
  • 收稿日期:2008-09-22 修回日期:2008-10-15 出版日期:2009-04-12 网络出版日期:2009-02-13
  • 通讯作者: 吉万全
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2006CB101701-9)资助。

SSR Analysis of Funo Wheat and Its Derivatives

SI Qing-Lin12,LIU Xin-Lun1,LIU Zhi-Kui3,WANG Chang-You1,JI Wan-Quan1*   

  1. 1College of Agronomy,Northwest A&F University,Yangling 712100,China;2Institute of Jiyuan Agricultual Science, JiYuan 454652,China;3Seed Management Station of Xi'an City,Xi'an 710054,China
  • Received:2008-09-22 Revised:2008-10-15 Published:2009-04-12 Published online:2009-02-13
  • Contact: JI Wan-Quan

摘要:

为了研究小麦骨干亲本阿夫(Funo)遗传物质在其衍生品种()的传递规律,用247SSR引物对阿夫和8个阿夫子一代衍生品种()的亲本进行分析,发现有3个标记Xwmc398 (178 bp, 151 bp)Xgwm400(180 bp, 149 bp)Xgwm268(191 bp)在阿夫上有稳定、清晰的特异带。以筛选的特异引物对5个阿夫系选品种和255个阿夫衍生品种()进行了SSR分析。结果表明,Xwmc3985个系选品种中均有阿夫的特异带,而Xgwm400只在安选2号,Xgwm268只在扬麦1号具有阿夫特异带。Xwmc398在阿夫子一代至子六代衍生品种()中的遗传频率分别为52.8%38.4%16.7%0.0%0.0%0.0%, 平均为32.2%Xgwm400的相应遗传频率分别为32.1%19.2%41.7%33.3%20.0%0.0%,平均为26.7%Xgwm268的相应传递率分别为22.6%34.4%11.1%12.1%0.0%0.0%,平均为24.7%。表明SSR位点Xwmc398Xgwm400Xgwm268在阿夫衍生品种()中有明显的传递。

关键词: 阿夫(Funo)衍生品种, 骨干亲本, SSR特异带

Abstract:

Funo is one of the most important backbone parents in China, and many wheat (Triticum aestivum L.) varieties are derived from it. Funo and 8 parents of the first generation of Funo were analyzed using 247 simple sequence repeat (SSR) markers that covered the entire wheat genome to disclose the inheritance of genes in Funo on genome level and provide theoretical basis on development of backbone parent in wheat. Specific DNA fragments were detected using three SSR markers, Xwmc398, Xgwm400, and Xgwm268. The specific fragments were 178 and 151 bp for Xwmc398, 180 and 149 bp for Xgwm400, and 191 bp for Xgwm268. A total of 255 derivatives of Funo including 54, 124, 36, 33, 5, and 3 varieties respectively from the first to the sixth generations and 5 selected strains of Funo were analyzed using the specific primers. The specific bands of Xwmc398 were observed in all the five selected strains of Funo, whereas, only in Anxuan 2 for Xgwm400 and in Yangmai 1 for Xgwm268,. In the 255 varieties derived from Funo, the inheritable rates of specific bands for Xwmc398 were 52.8%, 38.4%, 16.7%, 0.0%, 0.0%, and 0.0% from the first to the sixth generations, respectively, with an average rate of 32.2%. For Xgwm400, the rates were 32.1%, 19.2%, 41.7%, 33.3%, 20.0%, and 0.0%, with an average of 26.7%. For Xgwm268, the rates were 22.6, 34.4, 11.1, 12.1, 0.0, and 0.0%, respectively, with an average of 24.7%. Xwmc398 had the highest inheritable rate in the Funo-derivative varieties and the most stable inheritance in Funo-selective varieties.

Key words: Funo pedigree, Backbone parent, Specific band of SSR marker

[1] Wang S-S(王珊珊), Li X-Q(李秀全), Tian J-C(田纪春). Genetic diversity of main parent of wheat ‘Aimengniu’and its pedigree on SSR markers. Mol Plant Breed (分子植物育种), 2007, 5(4): 485–490 (in Chinese with English abstract)
[2] Qiu F-L(邱福林), Zhuang J-Y(庄杰云), Hua Z-T(华泽田), Wang Y-R(王彦荣), Cheng S-H(程式华). Inspect of genetic differentiation of main parents of japonica hybrid rice in the northern China by simple sequence repeats (SSR). Chin J Rice Sci (中国水稻科学), 2005, 19(2): 101–104 (in Chinese with English abstract)
[3] Zhang X-Y(张学勇), Tong Y-P(童依平), You G-X(游光霞), Hao C-Y(郝晨阳), Gai H-M(盖红梅), Wang L-F(王兰芬), Li B(李滨), Dong Y-C(董玉琛), Li Z-S(李振声). Hitchhiking effect mapping: a new approach for discovering agronomic important genes. Sci Agric Sin (中国农业科学), 2006, 39(8): 1526–1535 (in Chinese with English abstract)
[4] Duan S-H(段世华), Mao J-N(毛加宁), Zhu Y-G(朱英国). Genetics analysis and identification of hybrid rice HL-type (Honglian-2) and their backbone parental with RAPD markers. J Wuhan Bot Res (武汉植物学研究), 2002, 20(3): 171–176 (in Chinese with English abstract)
[5] Zhang K-Z(张楷正), Ming H-M(明红梅), Li P(李平). Identification and analysis of core rice parents’ resistance to rice sheath blight in south rice production regions of China. Plant Prot (植物保护), 2008, 34(1): 45–48 (in Chinese with English abstract)
[6] Zhao Y-Z(赵一洲), Wang S-L(王绍林), Zhang Z(张战). Analysis on breeding value primal parents in rice. Reclaiming & Rice Cult (垦殖与稻作), 2008, (4): 6–9 (in Chinese with English abstract)
[7] Zhan K-H(詹克慧), Gao X(高翔), Fan P(范平), Xu H(许海), Ren G-M(任国民), Wu X-T(吴秀婷). An analysis of the corner stone parents for registered wheat (Triticum aestivum L.) cultivars in Henan province. J Henan Agric Univ (河南农业大学学报), 2006, 40(1): 11–14 (in Chinese with English abstract)
[8] Zhuang Q-S(庄巧生). Chinese Wheat Improvement and Pedigree Analysis (中国小麦品种改良及系谱分析). Beijing: China Agriculture Press, 2003 (in Chinese)
[9] Jin S-B(金善宝). Chinese Wheat and Pedigree Analysis (中国小麦品种及其系谱). Beijing: Agriculture Press, 1983 (in Chinese)
[10] Yang H-A(杨华安), Stubbs R. W. Gene postulation for wheat stripe rust resistance on Chinese differential hosts. Acta Phytophylacica Sin (植物保护学报), 1990, 17(1): 67–72 (in Chinese with English abstract)
[11] McIntosh R A. Catalogue of gene symbols for wheat. In: Proceedings of the 9th International Wheat Genetics Symposium. 1998. pp 139–141
[12] Ma L-L(马蕾蕾), Wang R-Y(王瑞义), Wu Y-X(吴玉星), Lin R-M(蔺瑞明), Xu S-C(徐世昌). Monosomic analysis of the resistant genes of Chinese differential-Funo to Puccinia striiformis. Plant Prot (植物保护), 2006, 32(1): 27–29 (in Chinese with English abstract)
[13] Saghai-Maroof M A, Soliman K, Joregensen R A, Allard R W. Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014–8018
[14] Roder M S, Korzum V, Wendehake K, Plaschke J, Tixier M H, Lnoy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007–2023
[15] Guyomarc’h H, Sourdille P, Charmet G, Edwards K J, Bernard M. Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet, 2002, 104: 1164–1172
[16] Somers D J, Isaac P, Edwards K. A high-density wheat microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105–1114
[17] Wang C Y, Ji W Q, Zhang G S, Wang Q Y, Cai D M, Xue X Z. SSR markers and preliminary chromosomal location of a powdery mildew resistance gene in common wheat germplasm N9134. Acta Agron Sin (作物学报), 2007, 33(1): 163–166
[18] Zhou Y(周阳), He Z-H(何中虎), Zhang G-S(张改生), Xia L-Q(夏兰琴), Chen X-M(陈新民), Zhang L-P(张立平), Chen F(陈锋). Rht8 dwarf gene distribution in Chinese wheats identified by microsatellite markers. Acta Agron Sin (作物学报), 2003, 29(6): 810–814 (in Chinese with English abstract)
[1] 白彦明,李龙,王绘艳,柳玉平,王景一,毛新国,昌小平,孙黛珍,景蕊莲. 蚂蚱麦和小白麦衍生系的遗传多样性分析[J]. 作物学报, 2019, 45(10): 1468-1477.
[2] 乔玲,刘成,郑兴卫,赵佳佳,尚保华,马小飞,乔麟轶,盖红梅,姬虎太,刘建军,张建诚,郑军. 小麦骨干亲本临汾5064单元型区段的遗传解析[J]. 作物学报, 2018, 44(6): 931-937.
[3] 邓梅, 何员江, 苟璐璐, 姚方杰, 李健, 张雪梅, 龙黎, 马建, 江千涛, 刘亚西, 魏育明, 陈国跃. 小麦骨干亲本繁6产量相关性状关键基因组区段的遗传效应[J]. 作物学报, 2018, 44(05): 706-715.
[4] 李玉刚, 任民, 孙绿, 王圣健, 韩梅, 李振清, 翟晓灵, 代小雁, 侯元江, 盖红梅. 利用SSR和SNP标记分析鲁麦14对青农2号的遗传贡献[J]. 作物学报, 2018, 44(02): 159-168.
[5] 谢辉,党小景,刘二宝,曾思远,洪德林. 江淮稻区杂交粳稻骨干亲本产量性状配合力的SSR标记位点鉴定[J]. 作物学报, 2016, 42(03): 330-343.
[6] 赵春华,樊小莉,王维莲,张玮,韩洁,陈梅,纪军,崔法,李俊明. 小麦候选骨干亲本科农9204遗传构成及其传递率[J]. 作物学报, 2015, 41(04): 574-584.
[7] 孙宗修**,*,鄂志国**,王磊,朱德峰,张玉屏,胡国成,刘文真,付亚萍*. 对中国水稻骨干亲本评定方法的探索[J]. 作物学报, 2014, 40(06): 973-983.
[8] 陈国跃, 刘伟, 何员江, 苟璐璐, 余马, 陈时盛, 魏育明, 郑有良. 小麦骨干亲本繁6条锈病成株抗性特异位点及其在衍生品种中的遗传解析[J]. 作物学报, 2013, 39(05): 827-836.
[9] 赵春华, 崔法, 李君, 丁安明, 李兴锋, 高居荣, 王洪刚. 冬小麦种质“矮孟牛”姊妹系遗传差异[J]. 作物学报, 2011, 37(08): 1333-1341.
[10] 袁园园,王庆专,崔法,张景涛,杜斌,王洪刚. 小麦骨干亲本碧蚂4号的基因组特异位点及其在衍生后代中的传递[J]. 作物学报, 2010, 36(1): 9-16.
[11] 韩俊,张连松,李静婷,石丽娟,解超杰,尤明山,杨作民,刘广田,孙其信,刘志勇. 小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析[J]. 作物学报, 2009, 35(8): 1395-1404.
[12] 何光华;裴炎;杨光伟;谢戎. 我国中籼杂交稻亲本的DNA变异性研究[J]. 作物学报, 2000, 26(04): 449-454.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!