欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (8): 1395-1404.doi: 10.3724/SP.J.1006.2009.01395

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦骨干亲本“胜利麦/燕大1817”杂交组合后代衍生品种遗传构成解析

韩俊1,2,张连松1,李静婷1,石丽娟1,解超杰1,尤明山1,杨作民1,刘广田1,孙其信1,刘志勇1,*   

  1. 1中国农业大学植物遗传育种系/农业生物技术国家重点实验室/农业部作物加油组学与遗传改良重点开放实验室/北京市作物遗传改良重点实验室/教育部作物杂种优势研究与利用重点实验室,北京100193;2北京农学院植物科技学院,北京102206
  • 收稿日期:2009-03-06 修回日期:2009-03-23 出版日期:2009-08-12 网络出版日期:2009-06-10
  • 通讯作者: 刘志勇, E-mail: zhiyongliu@cau.edu.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2006CB101701),国家高技术研究发展计划(863计划)项目(2006AA100102,2006AA10Z1E9,2006AA10Z1C4,2006BAD01A02),国家自然科学基金项目(30425039),教育部长江学者和创新团队发展计划项目,高等学校学科创新引智计划项目(11-2-03)资助。

Molecular Dissection of Core Parental Cross “Triumph/Yanda1817”and Its Derivatives in Wheat Breeding Program

HAN Jun1,2, ZHANG Lian-Song1, LI Jing-Ting1, SHI Li-Juan1, XIE Chao-Jie1, YOU Ming-Shan1, YANG Zuo-Min1, LIU Guang-Tian1, SUN Qi-Xin1, LIU Zhi-Yong1,*   

  1. 1 Department of Plant Genetics & Breeding, China Agricultural University / State Key Laboratory for Agrobiotechnology / Key Laboratory of Crop Genomics and Genetic Improvement, Ministry of Agriculture / Beijing Key Laboratory of Crop Genetic Improvement / Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, Beijing 100193, China; 2 College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
  • Received:2009-03-06 Revised:2009-03-23 Published:2009-08-12 Published online:2009-06-10
  • Contact: LIU Zhi-Yong, E-mail: zhiyongliu@cau.edu.cn

摘要:

小麦地方品种燕大1817是我国小麦育种骨干亲本之一,胜利麦/燕大1817杂交组合是北部冬麦区小麦品种遗传改良的基础组合。利用随机分布于小麦全基因组21条染色体上的175对在胜利麦和燕大1817间具有多态性的SSR标记(每条染色体平均8.3)分析了燕大1817和胜利麦对其38份后代衍生品种的遗传贡献率。结果表明,在全基因组水平上,燕大1817对其后代衍生品种贡献率为26.8%,胜利麦对其后代衍生品种贡献率为43.6%;在部分同源群水平上,燕大1817对其后代衍生品种ABD基因组的贡献率分别为25.9%25.726.4%,胜利麦对其后代衍生品种ABD基因组的贡献率分别为46.1%39.1%44.0%。说明引进种质对我国北部冬麦区小麦品种遗传改良起了重要作用。在染色体水平上,胜利麦对其后代衍生品种的21条染色体贡献率在20.0%~63.3%间,其中对1A染色体贡献率仅有20.0%,对7A染色体贡献率高达63.3%。骨干亲本燕大1817对其后代衍生品种的21条染色体贡献率在7.5%~44.2%间,其中对2A染色体贡献率仅有7.5%,对7D染色体贡献率可达44.2%。骨干亲本燕大1817对后代衍生品种贡献率较高的基因组(单元型)区段有7个,分别是3A上的Xwmc11Xcfa22627B上的Xbarc1073Xwmc4751AL上的Xgwm357Xwmc3127DS上的Xbarc305Xwmc5064AS上的 Xgwm165Xgwm6101B上的Xwmc419Xwmc1342D上的Xcfd56Xbarc228,其中,3A染色体上的Xwmc11Xcfa2262区段对衍生品种贡献率高达77.5%。而胜利麦对后代衍生品种贡献率较高的基因组(单元型)区段有8个,分别是6BS上的Xwmc105Xwmc3973D上的Xgdm72Xgdm82DS上的Xgdm5Xgwm4557AL上的Xbarc121Xgwm3325DL上的Xgwm174Xwmc1615BL上的 Xgwm499Xbarc3085A上的Xbarc141Xgwm2914BL上的Xgwm66Xgwm251,其中6BS上的Xwmc105Xwmc397区段对衍生品种的贡献率最高,达71.3%。这些基因组(单元型)区段上存在许多与产量、抗病、抗逆和适应性等重要农艺性状相关的基因和QTL,对北部冬麦区小麦品种遗传改良可能起了重要作用。

关键词: 骨干亲本, 燕大1817, 胜利麦, 遗传构成, SSR, 小麦育种

Abstract:

Wheat landrace Yanda 1817 is one of the ‘core parental’ breeding lines for North China Winter Wheat Breeding Program during 1950–1960. The derivatives of cross Triumph/Yanda 1817 have been widely planted in the area and, thereafter, used as parental lines to make further crosses for new varieties development. In this study, the genetic contributions of core parental lines Yanda 1817 and Triumph to their derivative cultivars were analyzed using 175 polymorphic SSR markers randomly distributed on the 21 chromosomes of wheat genome with an average of 8.3 markers per chromosome. The results indicated that Triumph (43.6%) contributed more genetic components than Yanda 1817 (26.8%) to their derivatives on the whole genome level. On the A, B and D subgenome levels, triumph had the contribution ratio of 46.1%, 39.1% and 44.0%, While Yanda 1817 only had the contribution ratio of 25.9%, 25.7% and 26.4% to their derivatives, respectively. It revealed that exogenous germplasm played an important role in the improvement of wheat varieties in the North China Winter Wheat Breeding Program. As for single chromosomes, 20.0% (1A) to 63.3% (7A) of Triumph alleles and 7.5% (2A) to 44.2% (7D) of Yanda 1817 alleles could be detected on the derivative cultivars. Seven Yanda 1817 genomic (haplotypic) regions, Xwmc11-3A–Xcfa2262, Xbarc1073-7B–Xwmc475, Xgwm357-1AL–Xwmc312, Xbarc305-7DS–Xwmc506, Xgwm165-4AS–Xgwm610, Xwmc419-1B–Xwmc134, and Xcfd56-2D–Xbarc228, and eight Triumph genomic (haplotypic) regions, Xwmc105-6BS–Xwmc397, Xgdm72-3D–Xgdm8, Xgdm5-2DS–Xgwm455, Xbarc121-7AL–Xgwm332, Xgwm174-5DL–Xwmc161, Xgwm499-5BL–Xbarc308, Xbarc141-5A–Xgwm291, and Xgwm66-4BL–Xgwm251, were found to be significantly important in the Triumph/Yanda 1817 derivative cultivars. Genomic (haplotypic) regions Xwmc11-3A–Xcfa2262 derived from Yanda 1817 and Xwmc105-6BS–Xwmc397 derived from Triumph had the contribution ratio of 77.5% and 71.3%, respectively to the derivative cultivars of Triumph/Yanda 1817, indicating they are important targets for selection in breeding program. Agronomic important genes and QTLs relevant to yield, disease resistance, tolerance to abiotic stresses and adaptation to diversified environments located on these genomic (haplotypic) regions are important targets for new varieties development in the North China Winter Wheat Breeding Program.

Key words: Core Parental line, Yanda 1817, Triumph, Genetic component, SSR markers, Wheat breeding

[1] Zhuang Q-S (庄巧生). Chinese Wheat Improvement and Pedigree Analysis (中国小麦品种改良及其系谱分析). Beijing: Agriculture Press, 2003 (in Chinese)

[2] Sharp P G, Kreis M, Shewry P R, Gale M D. Resistance to Puccinia recondite tritici in synthetic hexaploid wheats. Indian J Genet, 1988, 58: 263-269

[3] Röder M S, Korzun V, Gill B S, Ganal M W. The physical mapping of microsatellite markers in wheat. Genome, 1998, 41: 278-283

[4] Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007-2023

[5] Pestsova E, Ganal M W, Röder M S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 2000, 43: 689-697

[6] Song Q J, Fickus E W, Cregan P B. Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet, 2002, 104: 286-293

[7] Guyomarc’h H, Sourdille P, Charmet G, Edwards K J, Bernard M. Characterization of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D genome of bread wheat. Theor Appl Genet, 2002, 104: 1164-1172

[8] Somers D J, Isaac P, Edwards K. A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105-1114

[9] Gupta P K, Balyan H S, Edwards K J, Isaac P, Korzun V, Röder M S, Gautier M F, Joudrier P, Schlatter A R, Dubcovsky J, Dela Pena R C, Khairallah M, Penner G, Hayden M J, Sharp P, Keller B, Wang R C C, Hardouin J P, Jack P, Leroy P. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theor Appl Genet, 2002, 105: 413-422

[10] Gupta P K, Rustgi S R, Sharma S, Singh R, Kumar N, Balyan H S. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Gen Genomics, 2003, 270: 315-323

[11] Eujayl I, Sorrells M E, Baum M, Wolters P, Powell W. Isolation of EST derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet, 2002, 104: 399-407

[12] Yu J K, Dake T M, Singh S, Benscher D, Li W L, Gill B, Sorrells M E. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome, 2004, 47: 805-818

[13] McIntosh R A, Yamazaki Y, Dubcovsky J, Rogers J,Morris C, Somers D J, Appels R,Devos KM. Catalogue of gene symbols for wheat. In Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P. eds. Proc 11th Intl Wheat Genet Symp. Sydney, Australia: Sydney University Press, 2008. pp 114-121

[14] Shah M M, Gill K S, Baenziger P S, Yen Y, Kaeppler S M, Ariyarathne H M. Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci, 1999, 39: 1728-1732

[15] Ma L Q, Zhou E F, Huo N X, Zhou R H, Wang G Y, Jia J Z. Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica, 2007, 153: 109-117

[16] Otto C D, Kianian S F, Elias E M, Stack R W, Joppa L R . Genetic dissection of a major Fusarium head blight QTL in tetraploid wheat. Plant Mol Biol, 2002, 48: 625-632

[17] Börner A, Schumann E, Furste A, Coster H, Leithold B, Roder M S, Weber W E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet,2001, 105: 921-936

[18] Dyck P L. Genetics of leaf rust reaction in three introductions of common wheat. Can J Genet Cytol, 1977, 19: 711-716

[19] Araki E, Miura H, Sawada S. Identification of genetic loci affecting amylose content andagronomic traits on chromosome 4A of wheat. Theor Appl Genet, 1999, 98: 977-984

[20] Keller M, Karutz C H, Schmid J E, Stamp P, Winzeler M, Keller B, Messmer M M. Quantitative trait loci for lodging resistance in a segregating wheat × spelt population. Theor Appl Genet, 1999, 98: 1171-1182

[21] Messmer M M, Seyfarth R, Keller M, Schachermayr G, Winzeler M, Zanetti S, Feuillet C, Keller B. Genetic analysis of durable leaf resistance in winter wheat. Theor Appl Genet,2000, 100: 419-431

[22] Yildirim A, Jones S S, Murray T D, Line R F. Evaluation of Daspyrum villosum populations for resistance to cereal eyespot and stripe rust pathogens. Plant Dis,2000, 84: 40-44

[23] Peng J H, Fahima T, Roder M S, Li Y C, Dahan A, Grama A, Ronin Y I, Korol A B, Nevo E. Microsatellite tagging of the stripe rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theor Appl Genet,1999, 98: 862-872

[24] Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M, Weber W. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921-936

[25] William H M, Singh R P, Huerta-Espino J, Palacios G, Suenaga K. Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome, 2006, 49: 977-990

[26] Somers D J, Fedak G, Clarke J, Cao W G. Mapping of FHB resistance QTLs in tetraploid wheat. Genome, 2006, 49:1586-1593

[27] Raupp W J, Sukhwinder-Singh, Brown-Guerdira, Gill B S. Cytogenetic and molecular mapping of the leaf rust resistance gene Lr39 in wheat. Theor Appl Genet,2001, 102: 347-352

[28] Law C N, Snape J W, Worland A J. Intra-specific chromosome manipulation. Philosophical Transactions of the Royal Society of London, 1981, 292: 509-518

[29] Worland A J, Law C N. Genetic analysis of chromosome 2D of wheat: I. The location of genes affecting height, day-length insensitivity, hybrid dwarfism and yellow-rust resistance. Zeitschrift fur Pflanzenzuchtung, 1986, 96: 331-345

[30] Perugini L D, Murphy J P, Marshall D S, Brown-Guedira G. Pm37, a new broadly effective powdery mildew resistance gene from Triticum timopheevii. Theor Appl Genet, 2007, 116: 417-425

[31] Kumar S, Stack R W, Friesen T L, Faris J D. Identification of a novel Fusarium head blight resistance quantitative locus on chromosome 7A in tetraploid wheat. Phytopathology, 2007, 97: 592-597

[32] Chantret N, Sourdille P, Roder M, Tavaud M, Bernard M, Doussinault G. Location and mapping of the powdery mildew resistance gene MlRE and detection of a resistance QTL by bulked segregant analysis (BSA) with microsatellites in wheat. Theor Appl Genet, 2000, 100: 1217-1224

[33] Toth B, Galiba G, Feher E, Sutka J, Snape J W. Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet, 2003, 107: 509-514

[34] Nelson J C, Autrique J E, Fuentes-Dávila G, Sorrells M E. Chromosomal location of genes for resistance to Karnal bunt in bread wheat. Crop Sci, 1998, 38: 231-236

[35] Bariana H S, Parry N, Barclay I R, Loughman R, McLean R J, Shankar M, Wilson R E, Willey N J, Francki M. Identification and characterization of stripe rust resistance gene Yr34 in common wheat. Theor Appl Genet, 2006, 112: 1143-1148

[36] Liang S S, Suenaga K, He Z H, Wang Z L, Liu H Y, Wang D S, Singh R P, Sourdille P, Xia X C. Quantitative trait loci mapping for adult-plant resistance to powdery mildew in bread wheat. Phytopathology, 2006, 96: 784-789

[37] Jin S-B(金善宝). Wheat Varieties and Their Pedigrees in China (中国小麦品种及其系谱). Beijing: Agriculture Press, 1983 (in Chinese)

[38] Li Q-Q(李晴祺). Creation, Evaluation and Utilization of Winter Wheat Germplasm (冬小麦种质创新与评价利用). Jinan: Shandong Science and Technology Press, 1998 (in Chinese)
Li Z-S(李振声). New wheat variety selected by distant hybrid technique, Xiaoyan 6. J Shanxi Agric Sci (山西农业科学), 1986, (5): 18 (in Chinese)
[1] 陈小红, 林元香, 王倩, 丁敏, 王海岗, 陈凌, 高志军, 王瑞云, 乔治军. 基于高基元SSR构建黍稷种质资源的分子身份证[J]. 作物学报, 2022, 48(4): 908-919.
[2] 张霞, 于卓, 金兴红, 于肖夏, 李景伟, 李佳奇. 马铃薯SSR引物的开发、特征分析及在彩色马铃薯材料中的扩增研究[J]. 作物学报, 2022, 48(4): 920-929.
[3] 王琰琰, 王俊, 刘国祥, 钟秋, 张华述, 骆铮珍, 陈志华, 戴培刚, 佟英, 李媛, 蒋勋, 张兴伟, 杨爱国. 基于SSR标记的雪茄烟种质资源指纹图谱库的构建及遗传多样性分析[J]. 作物学报, 2021, 47(7): 1259-1274.
[4] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[5] 刘少荣, 杨扬, 田红丽, 易红梅, 王璐, 康定明, 范亚明, 任洁, 江彬, 葛建镕, 成广雷, 王凤格. 基于农艺及品质性状与SSR标记的青贮玉米品种遗传多样性分析[J]. 作物学报, 2021, 47(12): 2362-2370.
[6] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[7] 王恒波,祁舒婷,陈姝琦,郭晋隆,阙友雄. 甘蔗栽培种单倍体基因组SSR位点的发掘与应用[J]. 作物学报, 2020, 46(4): 631-642.
[8] 张红岩,杨涛,刘荣,晋芳,张力科,于海天,胡锦国,杨峰,王栋,何玉华,宗绪晓. 利用EST-SSR标记评价羽扇豆属(Lupinus L.)遗传多样性[J]. 作物学报, 2020, 46(3): 330-340.
[9] 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913.
[10] 刘荣, 王芳, 方俐, 杨涛, 张红岩, 黄宇宁, 王栋, 季一山, 徐东旭, 李冠, 郭瑞军, 宗绪晓. 利用2个F2群体整合中国豌豆高密度SSR遗传连锁图谱[J]. 作物学报, 2020, 46(10): 1496-1506.
[11] 叶卫军,陈圣男,杨勇,张丽亚,田东丰,张磊,周斌. 绿豆SSR标记的开发及遗传多样性分析[J]. 作物学报, 2019, 45(8): 1176-1188.
[12] 白彦明,李龙,王绘艳,柳玉平,王景一,毛新国,昌小平,孙黛珍,景蕊莲. 蚂蚱麦和小白麦衍生系的遗传多样性分析[J]. 作物学报, 2019, 45(10): 1468-1477.
[13] 陈芳,乔麟轶,李锐,刘成,李欣,郭慧娟,张树伟,常利芳,李东方,阎晓涛,任永康,张晓军,畅志坚. 小麦新种质CH1357抗白粉病遗传分析及染色体定位[J]. 作物学报, 2019, 45(10): 1503-1510.
[14] 薛延桃,陆平,史梦莎,孙昊月,刘敏轩,王瑞云. 新疆、甘肃黍稷资源的遗传多样性与群体遗传结构研究[J]. 作物学报, 2019, 45(10): 1511-1521.
[15] 姚嘉瑜,张立武,赵捷,徐益,祁建民,张列梅. 黄麻全基因组SSR鉴定与特征分析[J]. 作物学报, 2019, 45(1): 10-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!