作物学报 ›› 2009, Vol. 35 ›› Issue (8): 1386-1394.doi: 10.3724/SP.J.1006.2009.01386
王韵1,2,程立锐2,孙勇2,周政2,朱苓华2,徐正进1,徐建龙2,*,黎志康2,3
WANG Yun1,2, CHENG Li-Rui2, SUN Yong2, ZHOU Zheng2, ZHU Ling-Hua2, XU Zheng-Jin1, XU Jian-Long2,*,LI Zhi-Kang2,3
摘要:
利用粳稻Lemont和籼稻特青相互导入构建的遗传背景基本一致的双向回交导入系群体,分别在北京和海南环境定位影响抽穗期和株高的主效QTL及其环境互作,分析QTL及其与环境互作表达的遗传背景效应。在北京和海南分别检测到影响抽穗期和株高的主效QTL 16个和17个,其中有5个主效QTL (QHd2、QHd8a、QPh3、QPh5和QPh12)在两种背景下同时被检测到,表明多数主效QTL的表达具有遗传背景特异性。两种背景下检测到影响抽穗期的3个主效QTL (QHd8a、QHd9和QHd10b)存在环境互作,其中QHd8a与海南环境的互作在两种背景下提早抽穗2~3 d,与北京环境的互作则延迟抽穗2~3 d,是影响抽穗期的一个重要主效QTL。通过与以往相同亲本来源的7个不同定位群体在不同环境下定位结果的比较,鉴定出一些在不同遗传背景和环境下稳定表达的主效QTL,如QHd3、QHd8a、QPh3和QPh4,适宜用于水稻抽穗期和株高的分子标记改良。基于QTL定位结果,本文对如何通过分子标记辅助改良品种在不同环境下的抽穗期进行了深入探讨。
[1] Burr B, Burr F A. Recombinant inbreds for molecular mapping in maize: theoretical and practical considerations. Trends Genet, 1991, 7: 55-60 [2] Li Z K , Arif M, Zhong D B,Fu Y, Xu J L, Domingo-Rey J, Ali J, Vijayakumar C H M, Yu S B, Khush G S. Complex genetic networks underlying the defensive system of rice (Oryza sativa L.) to Xanthomonas oryzae pv. oryzae. Proc Natl Acad Sci USA, 2006, 103: 7994-7999 [3] Mu P(穆平), Li Z-C(李自超), Li C-P(李春平), Zhang H-L(张洪亮), Wu C-M(吴长明), Li C(李晨), Wang X-K(王象坤). QTL mapping of the root traits and their correlation analysis with drought resistance using DH lines from paddy and upland rice cross.Chin Sci Bull (科学通报), 2003, 48(24): 2718-2724 (in Chinese) [4] Xu J-C(徐吉臣), Wang J-L(王久林), Ling Z-Z(凌忠专), Zhu L-H(朱立煌). Analysis of rice blast resistance genes by QTL mapping.Chin Sci Bull (科学通报), 2004, 49(4): 337-342 (in Chinese) [5] Tang J-H(汤继华), Ma X-Q(马西青), Teng W-T(滕文涛), Yan J-B(严建兵), Wu W-R(吴为人), Dai J-R(戴景瑞), Li J-S(李建生). Detection of quantitative trait loci and heterotic loci for plant height using an immortalized F2 population in maize. Chin Sci Bull (中国科学通报), 2007, 52(4): 477-483 (in Chinese) [6] Yang H(杨华), Yang J-P(杨俊品), Rong T-Z(荣廷昭), Tan J(谭君), Qiu Z-G(邱正高). QTL mapping of resistance to sheath blight in maize (Zea mays L.).Chin Sci Bull (中国科学通报), 2005, 50(8): 782-787 (in Chinese) [7] Mei H W, Li Z K, Shu Q Y, Guo L B, Wang Y P,Yu X Q,Ying C S, Luo L J. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations. Theor Appl Genet, 2005, 110: 649-659 [8] Paterson A H, Damon S, Hewitt J D. Mendelian factors underlying quantitative traits in tomato: comparison across species, generations and environments. Genetics, 1991, 127: 181--197 [9] Yan J Q, Zhu J, He C X. Molecular marker-assisted dissection of genotype ´ environment interaction for plant type traits in rice. Crop Sci, 1999, 39: 538-544 [10]Li Z K, Yu S B, Lafitte H R, Huang N, Courtois B, Hittalmani S, Vijayakumar C H M, Liu G F, Wang G C, Shashidhar H E, Zhuang J Y, Zheng K L, Singh V P, Sidhu J S, Srivantaneeyakul S, Khush G S. QTL ´ environment interactions in rice. I. Heading date and plant height. Theor Appl Genet, 2003, 108: 141-153 [11]Zang J-P(藏金萍), Sun Y(孙勇), Wang Y(王韵), Yang J(杨静), Li F(李芳), Zhou Y-L(周永力), Zhu L-H(朱苓华), Xu J-L(徐建龙), Li Z-K(黎志康). Dissection of genetic overlap of salt tolerance QTLs at the seeding and tillering stages using backcross introgressive lines in rice. Sci China (Ser C-Life Sci)(中国科学·C辑), 2008, 51(7): 583-591(in Chinese) [12]Chevin L M, Hospital F. Selective sweep at a quantitative trait locus in the presence of background genetic variation. Genetics, 2008, 180: 1645-1660 [13]Tanksley S D, Nelson J C. Advanced backcross QTL analysis: A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet, 1996, 92: 191-203 [14]Li D-J(李德军), Sun C-Q(孙传清), Fu Y-C(付永彩), Li C(李晨), Zhu Z-F(朱作峰), Chen L(陈亮), Cai H-W(才宏伟), Wang X-K(王象坤). Identification andmapping of genes for improving yield from Chinese common wild rice (O. rufipogon Griff.) using advanced backcross QTL analysis. Chin Sci Bull (中国科学通报), 2002, 47(18): 1533-1537 (in Chinese) [15]Tian F, Li D J, Fu Q, Zhu Z F, Fu Y C, Wang X K, Sun C Q. Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet, 2006, 112: 570-580 [16]Ren Z H, Gao J P, Li L G, Cai X L,Huang W, Chao D Y, Zhu M Z, Wang Z Y, Luan S, Lin H X. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet, 2005, 37: 1141-1146 [17]Yang Q-H(杨权海), Lu W(陆巍), Hu M-L(胡茂龙), Wang C-M(王春明), Zhang R-X(张荣铣), Yano M, Wan J-M(万建民). QTL and epistatic interaction underlying leaf chlorophyll and H2O2 content variation in rice (Oryza sativa L.).Acta Genet Sin (遗传学报), 2003, 30(3): 245-250 (in Chinese with English abstract) [18]Zhao X Q, Xu J L, Zhao M, Lafitte R, Zhu L H, Fu B Y, Gao M Y, Li Z K. QTLs affecting morph-physiological traits related to drought tolerance detected in overlapping introgression lines of rice (Oryza sativa L.). Plant Sci, 2008, 174: 618-625 [19]Xu J L, Lafitte H R, Gao Y M, Fu B Y, Torres R, Li Z K. QTLs for drought avoidance and tolerance identified in a set of random introgression lines of rice. Theor Appl Genet, 2005, 111: 1642-1650 [20]Zhang X, Zhou S, Fu Y, Su Z, Wang X, Sun C. Identification of a drought tolerant introgression line derived from Dongxiang common wild rice (O. rufipogon Griff.). Plant Mol Biol, 2006, 62: 247-259 [21]Steele K A, Price A H, Shashidhar H E, Witcombe J R. Marker-assisted selection to introgress rice QTLs controlling root traits into an Indian upland rice variety. Theor Appl Genet, 2006, 112: 208-221 [22]Tanksley S D, Grandillo S, Fulton T M, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T. Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet, 1996, 92: 213-224 [23]Bernacchi D, Beck-Bunn T, Emmatty D, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D, Tanksley S. Advanced backcross QTL analysis in tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor Appl Genet, 1998, 97: 170-180 [24]Emebiri L, Michael P, Moody D B, Ogbonnaya F C, Black C. Pyramiding QTLs to improve malting quality in barley: gains in phenotype and genetic diversity. Mol Breed, 2009, 23: 219-228 [25]Robbins M D, Casler M D, Staub J E. Pyramiding QTL for multiple lateral branching in cucumber using inbred backcross lines. Mol Breed, 2008, 22: 131-139 [26]Manly K F, Olson J M .Overview of QTL mapping software and introduction to Map Manager QT. Mammalian Genome, 1999, 10: 327-334 [27]SAS Institute. SAS/STAT User’s Guide. Cary NC, USA: SAS Institute, 1996. pp 25-36 [28]Xue X-W(谢学文), Xu M-R(许美容), Zang J-P(藏金萍), Sun Y(孙勇), Zhu L-H(朱苓华), Xu J-L(徐建龙), Zhou Y-L(周永力), Li Z-K(黎志康).Genetic background and environmental effects on expression of QTL for sheath blight resistance in reciprocal introgression lines of rice. Acta Agron Sin (作物学报), 2008, 34(11): 1885-1893 (in Chinese with English abstract) [29]Li Z K , Pinson S R M, Stansel J W, Park W D. Identification of QTL for heading date and plant height in rice using RFLP markers. Theor Appl Genet, 1995, 91: 374-381 [30]Li Z K, Pinson S R M, Paterson A H, Park W D, Stansel J W. Genetics of hybrid sterility and hybrid breakdown in an inter-subspecific rice (Oryza sativa L.) population. Genetics, 1997, 145: 1139-1148 [31]Mei H W, Luo L J, Ying C S, Wang Y P, Yu X Q, Guo L B, Paterson A H, Li Z K. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theor Appl Genet, 2003, 107: 89-101 [32]Fan C C, Yu X Q, Xing Y Z, Xu C G, Luo L J, Zhang Q F. The main effects, epistatic effects and environmental interactions of QTL on the cooking and eating quality of rice in a doubled-haploid line population .Theor Appl Genet, 2005, 110: 1445-1452 [33]Zhang K P, Tian J C, Zhao L, Wang S S. Mapping QTLs with epistatic effects and QTL ´ environment interactions for plant height using a doubled haploid population in cultivated wheat. J Genet Genomics, 2008, 35: 119-127 [34]Yuan A-P(袁爱平), Cao L-Y(曹立勇), Zhuang J-Y(庄杰云), Li R-Z(李润植), Zheng K-L(郑康乐), Zhu J(朱军), Cheng S-H(程式华). Analysis of additive and AE interaction effects of QTLs controlling plant height, heading date and panicle number in rice (Oryza sativa L.). Acta Genet Sin (遗传学报), 2003, 30(10): 899-906(in Chinese) [35]Liu G, Yang J, Xu H, Zhu J. Influence of epistasis and QTL´environment interaction on heading date of rice (Oryza sativa L.). J Genet Genomics, 2007, 34: 608-615 [36]Li Z K, Pinson S R M, Paterson A H, Park W D, Stansel J W. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics, 1997, 145: 453-465 [37]Ware D P, Jaiswal J J, Pan N X, Chang K,Clerk K, Teytelman L, Schmidt S, Zhao W, Cartinhour S, McCouch S, Stein L. Gramene: A Resource for Comparative Grass Genomics. Nucl Acids Res, 2002,30: 103-105 [38]Temnykh S, Declerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res, 2001, 11:1441-1452 [39]Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes & Dev, 2004, 18: 926-936 [40]Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473-2484 [41]Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. Hd3a, a rice ortholog of the ArabidopsisFT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol, 2002, 43: 1096-1105 [42]Takahashi Y, Shomura A, Sasaki T, Yano M. Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the a subunit of protein kinase CK2. Proc Natl Acad Sci USA, 2001, 98: 7922-7927 [43]Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet, 2008, 40: 761-767 Liu P Y, Zhu J, Lu Y. Impacts of QTL ´ environment interactions on genetic response to marker-assisted selection. Acta Genet Sin, 2006, 33: 63-71 |
[1] | 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356. |
[2] | 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102. |
[3] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[4] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[5] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[6] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[7] | 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461. |
[8] | 付虹雨, 崔国贤, 李绪孟, 佘玮, 崔丹丹, 赵亮, 苏小惠, 王继龙, 曹晓兰, 刘婕仪, 刘皖慧, 王昕惠. 基于无人机遥感图像的苎麻产量估测研究[J]. 作物学报, 2020, 46(9): 1448-1455. |
[9] | 姜树坤,王立志,杨贤莉,李波,母伟杰,董世晨,车韦才,李忠杰,迟力勇,李明贤,张喜娟,姜辉,李锐,赵茜,李文华. 基于高密度SNP遗传图谱的粳稻芽期耐低温QTL鉴定[J]. 作物学报, 2020, 46(8): 1174-1184. |
[10] | 姜朋,何漪,张旭,吴磊,张平平,马鸿翔. 宁麦9号与扬麦158株高及其构成因素的遗传解析[J]. 作物学报, 2020, 46(6): 858-868. |
[11] | 马娟, 曹言勇, 王利锋, 李晶晶, 王浩, 范艳萍, 李会勇. 利用WGCNA鉴定玉米株高和穗位高基因共表达模块[J]. 作物学报, 2020, 46(3): 385-394. |
[12] | 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227. |
[13] | 崔月,陆建农,施玉珍,殷学贵,张启好. 蓖麻株高性状主基因+多基因遗传分析[J]. 作物学报, 2019, 45(7): 1111-1118. |
[14] | 贾小平,全建章,王永芳,董志平,袁玺垒,张博,李剑峰. 不同光周期环境对谷子农艺性状的影响[J]. 作物学报, 2019, 45(7): 1119-1127. |
[15] | 王瑞,凌亮,詹鹏杰,于纪珍,楚建强,平俊爱,张福耀. 控制高粱分蘖与主茎株高一致性的基因定位[J]. 作物学报, 2019, 45(6): 829-838. |
|