欢迎访问作物学报,今天是

作物学报 ›› 2019, Vol. 45 ›› Issue (6): 829-838.doi: 10.3724/SP.J.1006.2019.84111

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

控制高粱分蘖与主茎株高一致性的基因定位

王瑞1,*,凌亮2,*,詹鹏杰1,于纪珍1,楚建强1,平俊爱1,*(),张福耀1,*()   

  1. 1 山西省农业科学院高粱研究所 / 高粱遗传与种质创新山西省重点实验室, 山西榆次 030600
    2 山西省农业科学院食用菌研究所, 山西太原030031
  • 收稿日期:2018-08-21 接受日期:2019-01-19 出版日期:2019-06-12 网络出版日期:2019-06-12
  • 通讯作者: 王瑞,凌亮,平俊爱,张福耀
  • 作者简介:王瑞, E-mail: wangrui989@163.com|凌亮, E-mail: 478781770@qq.com
  • 基金资助:
    本研究由山西省农业科学院博士研究基金(YBSJJ1606);国家现代农业产业技术体系建设专项(CARS-06);山西省农业科学院优势课题组(YCX2018D2YS11)项目资助

Mapping of genes confessing same height of tiller and main stem in sorghum

Rui WANG1,*,Liang LING2,*,Peng-Jie ZHAN1,Ji-Zhen YU1,Jian-Qiang CHU1,Jun-Ai PING1,*(),Fu-Yao ZHANG1,*()   

  1. 1 Sorghum Institute, Shanxi Academy of Agricultural Sciences / Key Laboratory of Genetic and Germplasm Innovation in Sorghum for Shanxi Province, Yuci 030600, Shanxi, China
    2 Institute of Edible Fungi, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, Shanxi, China
  • Received:2018-08-21 Accepted:2019-01-19 Published:2019-06-12 Published online:2019-06-12
  • Contact: Rui WANG,Liang LING,Jun-Ai PING,Fu-Yao ZHANG
  • Supported by:
    This study was supported by the Doctoral Research Fund of Shanxi Academy of Agricultural Sciences(YBSJJ1606);the China Agriculture Research System(CARS-06);the Advantage Research Group of Shanxi Academy of Agricultural Sciences (YCX2018D2YS11).

摘要:

用分蘖与主茎株高一致的高粱品系K35-Y5与分蘖明显高于主茎的高粱恢复系1383杂交, F1自交获得F2分离群体, 构建两混池, 采用BSA (bulked segregation analysis)和SLAF (specific length amplified fragment sequencing)技术将高粱分蘖与主茎株高一致基因定位。遗传分析表明, 分蘖与主茎株高一致性状由1对隐性核基因控制。参考已公布高粱基因组设计酶切方案, 构建SLAF文库并测序。对高粱参考基因组序列进行电子酶切预测, 确定限制性内切酶为Rsa I + Hae III, 酶切片段长度为364~414 bp; 测序Q30为91.70%, GC含量为45.79%, 达到测序要求; 与水稻的测序数据相比, 高粱的双端比对效率为93.35%, 酶切效率为90.60%, SLAF建库正常。共获得30.80 M reads, 开发出133,246个SLAF标签, 再通过分析SLAF标签的多态性, 检测到319,428个SNP位点。利用SNP-index法和Euclidean distance法及取两者交集进行关联分析, 最后得到一个关联区域, 位于第9染色体上的54,788,026~56,740,873区间内, 关联区域长度1.95 Mb。分析关联区域内的基因在2个亲本之间SNP, 对这些SNP进行变异的注释, 发现4个非同义突变的SNP。经验证, 这4个SNP位点和分蘖与主茎株高一致性状相关。对应到Sobic.009G197901.1Sobic.009G213300.1Sobic.009G221200.1三个基因上, 这些基因可能是与性状直接相关的功能基因。

关键词: 高粱, 分蘖与主茎株高一致, SLAF, SNP

Abstract:

In this study, an F2 population derived from a cross between two sorghum lines with same height and different heights of tiller and main stem respectively was used to construct pools. In order to map genes related to same height of tiller and main stem, BSA and SLAF-seq technique were developed. Genetic analysis showed that the trait of same height of tiller and main stem was controlled by a single recessive nuclear gene. Reference genome of sorghum was used to design markers by simulating the number of markers produced by different enzymes. The SLAF library was conducted and sequenced by paired-end sequencing. The restriction enzyme was Rsa I + Hae III. The fragment length was 364-414 bp. The quality of Q30 was up to 91.70% and the GC content (45.79%) was low enough to perform sequencing. Compared with the sequencing data of rice, the construction of SLAF library fitted well to the standard, with its paired-end mapped reads reaching to 93.35% and normal digestion ratio reaching to 90.60% in sorghum. In total of 30.80 M reads and 133,246 SLAF labels were obtained and 319,428 SNPs were found. The associated region was located by SNP-index, Euclidean distance, and their combination. The candidate regions had a size of 1.95 Mb at nucleotides 54,788,026-56,740,873 on Chr.9. The SNPs locating at the associated region were analyzed between the two parents. Four non-synonymous-coding SNPs were found in this region. By verification, these SNPs were considered to be related to same height of tiller and main stem. Corresponding to three candidate genes (Sobic.009G197901.1, Sobic.009G213300.1, and Sobic.009G221200.1), these genes may be functional genes directly related to the traits.

Key words: sorghum, same height of tiller and main stem, SLAF, SNP

表1

SLAF标签在各染色体上的数量统计"

染色体
Chromosome
染色体长度
Chromosome length
预测SLAF标签数
Expected SLAF number
平均SLAF间距
Average SLAF distance (bp)
Chr.1 84007898 11859 7083.89
Chr.2 88663305 12527 7077.78
Chr.3 84691115 11983 7067.61
Chr.4 77402132 10684 7244.68
Chr.5 70937750 9529 7444.41
Chr.6 70774438 9694 7300.88
Chr.7 73201405 10007 7315.02
Chr.8 63096686 8854 7126.35
Chr.9 67846938 9319 7280.50
Chr.10 69378333 9446 7344.73
合计Total 750000000 103902 7218.34

图1

SLAF标签在参考基因组各染色体上的分布 横坐标为染色体长度, 图中颜色越深的区域即SLAF标签集中分布的区域。"

图2

对照reads插入片段分布"

表2

水稻测序reads比对分析"

样品
Sample
双端比对
Paired-end
mapped reads (%)
单端比对
Single-end
mapped reads (%)
未比对成功
Unmap reads
(%)
正常酶切比例
Digestion normally
(%)
部分酶切
Digestion partly
(%)
水稻 Oryza sativa 93.35 2.79 3.86 90.60 9.40

表3

各样品测序数据统计表"

样品编号
Sample ID
总reads数
Total reads
Q30 (%) GC (%)
父本 Male parent 4040595 92.05 45.96
母本 Female parent 3591789 92.49 45.96
混池aa Pool aa 10734806 92.02 45.58
混池ab Pool ab 12433150 90.24 45.67
水稻(对照) Rice (control) 192955 92.22 43.57

表4

SLAF标签统计"

样品编号
Sample ID
SLAF标签数
SLAF number
测序总深度
Total depth
平均测序深度
Average depth
父本 Male parent 117244 2922769 24.93×
母本 Female parent 119317 2438178 20.43×
混池aa Pool aa 131993 8387924 63.55×
混池ab Pool ab 132818 8011244 60.32×

表5

SNP信息统计"

样品编号
Sample ID
SNP总数
Total SNP
SNP个数
SNP number
杂合率
Heterozygote ratio (%)
父本 Male parent 319428 221552 3.42
母本 Female parent 319428 233073 5.54
混池aa Pool aa 319428 265665 48.54
混池ab Pool ab 319428 312515 68.51

表6

SLAF标签和SNP标记在染色体上的分布统计"

染色体
Chromosome
SLAF标签数
SLAF number
SNP数
SNP number
Chr.1 12565 31481
Chr.2 14026 40153
Chr.3 14064 35216
Chr.4 11159 24654
Chr.5 10947 29394
Chr.6 11411 31105
Chr.7 11939 24799
Chr.8 10144 25585
Chr.9 10634 27338
Chr.10 10933 25189
其他Other 15424 24514
合计Total 133246 319428

图3

SLAF标签和SNP标记在染色体上的分布 横坐标为染色体长度, 图中颜色越深的区域即SLAF标签集中分布的区域。左图为SLAF标签的分布图, 右图为SNP标记的分布图。"

图4

SNP-index关联值在染色体上的分布 红色的线代表置信度为0.99的阈值线, 蓝色的线代表置信度为0.95的阈值线, 绿色的线代表置信度为0.90的阈值线。"

表7

关联区域信息统计表"

染色体
Chromosome
关联区域起始位置
Start
关联区域终止位置
End
关联区域大小
Size (Mb)
关联区域内的基因数量
Gene number
Chr.9 54788026 56740873 1.95 265
Total 1.95 265

图5

ED关联值在染色体上的分布"

表8

关联区域信息统计表"

染色体
Chromosome
关联区域起始位置
Start
关联区域终止位置
End
关联区域大小
Size (Mb)
关联区域内的基因数量
Gene number
Chr.9 30964929 38410608 7.45 44
Chr.9 43824552 59633348 15.81 1538
合计Total 23.26 1582

表9

SNP标记信息"

染色体
Chromosome
位置
Position
碱基替换
Transform
基因
Gene
Chr.9 55037659 C→A Sobic.009G197901.1
Chr.9 55037906 T→G Sobic.009G197901.1
Chr.9 56069487 T→G Sobic.009G213300.1
Chr.9 56613839 A→G Sobic.009G221200.1

表1

0 引物序列和信息"

引物名称
Primer ID
引物序列
Forward primer (5'-3')
引物序列
Reverse primer (5'-3')
产物大小
Size (bp)
SNP1 AAAATCACGTGGATAGGCCA AGATCCGGCAATGATAGTGG 269
SNP2 CCACTATCATTGCCGGATCT ATCTGAGGAAGCAAGCGAGA 233
SNP3 GGAGGAAATGCTGTGCTTCT AAGCGATGGTCCATTGAATC 245
SNP4 TGATTCCTTCGTTGGAGGAG TCACTAACATTGGGCAACCA 199

图6

引物SNP1(A)、SNP2(B)、SNP3(C)、SNP4(D)对双亲的测序结果"

[1] 邹剑秋, 朱凯, 张志鹏, 黄先伟 . 国内外高粱深加工研究现状与发展前景. 杂粮作物, 2002,22(5):296-298.
Zou J Q, Zhu K, Zhang Z P, Huang X W . Status and prospects of research on sorghum deep processing at home and abroad. Rain Fed Crops, 2002,22(5):296-298 (in Chinese with English abstract).
[2] 吕富堂, 韩爱清, 杜秀兰, 张福耀, 李团银 . 建国以来中国高粱发展历程及发展趋势. 山西农业科学, 2002,30(3):20-24.
Lyu F T, Han A Q, Du X L, Zhang F Y, Li T Y . Development and tendency of Chinese sorghum since the founding of P R China. J Shanxi Agric Sci, 2002,30(3):20-24 (in Chinese with English abstract).
[3] 白文斌, 张福跃, 焦晓燕, 董良利, 柳青山, 平俊爱 . 中国高粱产业工程技术研究的定位思考. 中国农学通报, 2013,29(11):107-110.
Bai W B, Zhang F Y, Jiao X Y, Dong L L, Liu Q S, Ping J A . The fixed position thought of sorghum engineering technology research in china. Chin Agric Sci Bull, 2013,29(11):107-110 (in Chinese with English abstract).
[4] 张福耀, 平俊爱 . 高粱的根本出路在于机械化. 农业技术与装备, 2012, ( 20):19-21.
Zhang F Y, Ping J A . The fundamental way of sorghum is mechanization. Agric Technol Equip, 2012, ( 20):19-21 (in Chinese with English abstract).
[5] 焦少杰, 王黎明, 姜艳喜, 严洪冬, 苏德峰, 孙广全 . 粒用高粱机械化栽培品种选择. 园艺与种苗, 2012, ( 12):1-2.
Jiao S J, Wang L M, Jiang Y X, Yan H D, Su D F, Sun G Q . Varieties selection of grain sorghum for mechanized cultivation. Hortic Seed, 2012, ( 12):1-2 (in Chinese with English abstract).
[6] Quinby J R, Karper R E . Inheritance of height in sorghum. Agronomy, 1954,46:212-216.
doi: 10.2134/agronj1954.00021962004600050007x
[7] Pereira M G, Lee M, Bramel-Cox P, Woodman W, Doebley J, Whitkus R . Construction of an RFLP map in sorghum and comparative mapping in maize. Genome, 1994,37:236-243.
doi: 10.1139/g94-033 pmid: 18470074
[8] Lin Y R, Schertz K F, Paterson A H . Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics, 1995,141:391-411.
doi: 10.1101/gad.9.17.2193 pmid: 8536986
[9] Rami J F, Dufour P, Trouch G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P . Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum ( Sorghum bicolor L. Moench). Theor Appl Genet, 1998,97:605-616.
doi: 10.1007/s001220050936
[10] Klein R R, Rodrigyez-Herrera R, Schlueter J A . Identification of genomic regions that affect grain-mould incidence and other traits of agronomic importance in sorghum. Theor Appl Genet, 2001,102:307-319.
doi: 10.1007/s001220051647
[11] Upadhyaya H D, Wang Y H, Sharma S, Singh S . Association mapping of height and maturity across five environments using the sorghum mini core collection. Genome, 2012,55:471-479.
doi: 10.1139/g2012-034 pmid: 22680231
[12] Upadhyaya H D, Wang Y H, Gowda C L, Sharma S . Association mapping of maturity and plant height using SNP markers with the sorghum mini core collection. Theor Appl Genet, 2013,126:2003-2015.
doi: 10.1007/s00122-014-2318-7 pmid: 23649651
[13] Harris-Shultz K R, Davis R F, Knoll J E, Anderson W, Wang H . Inheritance and identification of a major quantitative trait locus (QTL) that confers resistance to Meloidogyne incognita and a novel QTL for plant height in sweet sorghum. Phytopathology, 2015,105:1522-1528.
[14] 苏舒 . 高粱形态学农艺性状的QTL定位研究. 南京大学硕士学位论文, 江苏南京, 2012.
Su S . QTL Mapping of Agronomic Traits of Morphology in Sorghum. MS Thesis of Nanjing University, Nanjing, Jiangsu,China, 2012 (in Chinese with English abstract).
[15] 刘娟 . 高粱株高和抗蚜连锁标记的发掘与验证. 河北农业大学硕士学位论文, 河北保定, 2014.
Liu J . Discover and Validation of Markers Linkage with Plant Height and Resistance to Aphid of Sorghum. MS Thesis of Agricultural University of Hebei, Baoding, Hebei, China, 2014 (in Chinese with English abstract).
[16] Lafarge T A, Broad J, Hammer G L . Tillering in grain sorghum over a wide range of population densities: identification of a common hierarchy for tiller emergence, leaf area development and fertility. Ann Bot, 2002,90:87-98.
doi: 10.1093/aob/mcf152 pmid: 4233856
[17] Feltus F A, Hart G E, Schertz K F, Casa A M, Kresovich S, Abraham S, Klein P E, Brown P J, Paterson A H . Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet, 2006,112:1295-1305.
[18] Shehzad T, Iwata H, Okuno K . Genome-wide association mapping of quantitative traits in sorghum ( Sorghum bicolor( L.) Moench) by using multiple models. Breed Sci, 2009,59:217-227.
[19] Shiringani A L, Frisch M, Friedt W . Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Theor Appl Genet, 2010,121:323-336.
[20] 董维, 苏舒, 游录鹏, 黄守程, 戚金亮, 陆桂华, 黄应华, 杨永华 . 高粱F6代群体分蘖数的QTL定位. 南京林业大学学报(自然科学版), 2013,37(2):55-58.
Dong W, Su S, You L P, Huang S C, Qi J L, Lu G H, Huang Y H, Yang Y H . QTLs analysis of tillers number in F6 sorghum population. J Nanjing For Univ( Nat Sci Edn), 2013,37(2):55-58 (in Chinese with English abstract).
[21] Kozich J J, Westcott S L, Baxter N T, Highlander S K, Schloss P D . Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl Environ Microbiol, 2013,79:5112-5120.
doi: 10.1128/AEM.01043-13 pmid: 23793624
[22] International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature, 2005,436:793-800.
doi: 10.1038/nature03895 pmid: 16100779
[23] Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M, Innan H, Cano L, Kamoun S, Terauchi R . Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol, 2012,30:174-178.
doi: 10.1038/nbt.2095 pmid: 22267009
[24] Hill J T, Demarest B L, Bisgrove B W, Gorsi B, Su Y C, Yost H J . MMAPPR: mutation mapping analysis pipeline for pooled RNA-seq. Genome Res, 2013,23:687-697.
doi: 10.1101/gr.146936.112 pmid: 23299975
[25] Li H, Durbin R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009,25:1754-1760.
pmid: 2705234
[26] Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S, Innan H, Cano L M, Kamoun S, Terauchi R . QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013,74:174-183.
doi: 10.1111/tpj.12105 pmid: 23289725
[27] 贺捷 . 甜高粱分蘖特性国内研究进展. 中国糖料, 2017,39(2):65-67.
He J . Research progresses on tillering characteristics of sweet sorghum in China. Sugar Crops China, 2017,39(2):65-67 (in Chinese with English abstract).
[28] 詹鹏杰, 张福耀, 王瑞, 于纪珍, 李燕 . 适宜机械化生产酿造高粱汾酒粱1号的选育. 安徽农业科学, 2016,44(31):13-14.
Zhan P J, Zhang F Y, Wang R, Yu J Z, Li Y . Breeding of Fenjiuliang No.1: a brewing sorghum suitable for mechanized production. J Anhui Agric Sci, 2016,44(31):13-14 (in Chinese with English abstract).
[29] Brown P J, Klein P E, Bortiri E, Acharya C B, Rooney W L, Kresovich S . Inheritance of inflorescence architecture in sorghum. Theor Appl Genet, 2006,113:931-942.
doi: 10.1109/LPT.2002.806092 pmid: 16847662
[30] Shiringani A L, Frisch M, Friedt W . Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Theor Appl Genet, 2010,121:323-336.
[31] 王柏柯, 李宁, 唐亚萍, 王强, 杨涛, 杨生保, 帕提古丽, 余庆辉, 高杰 . 基于简化基因组测序技术的番茄雄性不育基因定位. 西北农林科技大学学报(自然科学版), 2017,45(6):177-184.
Wang B K, Li N, Tang Y P, Wang Q, Yang T, Yang S B, Pati G L, Yu Q H, Gao J . Mapping male-sterile gene in tomato by specific length amplified fragment sequencing. J Northwest A&F Univ(Nat Sci Edn). 2017,45(6):177-184 (in Chinese with English abstract).
[32] 王伟, 刘凡, 任莉, 徐理, 陈旺, 曾令益, 黄炳文, 方小平 . 采用SLAF-seq技术开发甘蓝型油菜霜霉病抗性SNP位点. 中国油料作物学报, 2016,38:555-562.
Wang W, Liu F, Ren L, Xu L, Chen W, Zeng L Y, Huang B W, Fang X P . Resistance SNP development to downy mildew in Brassica napus using SLAF-seq technique. Chin J Oil Crop Sci, 2016,38:555-562 (in Chinese with English abstract).
[33] Geng X, Jiang C, Yang J, Wang L, Wu X, Wei W . Rapid identification of candidate genes for seed weight using the SLAF-Seq method in Brassica napus. PLoS One, 2016,11:e0147580.
doi: 10.1371/journal.pone.0147580 pmid: 26824525
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[3] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[4] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[5] 郑向华, 叶俊华, 程朝平, 魏兴华, 叶新福, 杨窑龙. 利用SNP标记进行水稻品种籼粳鉴定[J]. 作物学报, 2022, 48(2): 342-352.
[6] 许德蓉, 孙超, 毕真真, 秦天元, 王一好, 李成举, 范又方, 刘寅笃, 张俊莲, 白江平. 马铃薯StDRO1基因的多态性鉴定及其与根系性状的关联分析[J]. 作物学报, 2022, 48(1): 76-85.
[7] 耿腊, 黄业昌, 李梦迪, 谢尚耿, 叶玲珍, 张国平. 大麦籽粒β-葡聚糖含量的全基因组关联分析[J]. 作物学报, 2021, 47(7): 1205-1214.
[8] 张春, 赵小珍, 庞承珂, 彭门路, 王晓东, 陈锋, 张维, 陈松, 彭琦, 易斌, 孙程明, 张洁夫, 傅廷栋. 甘蓝型油菜千粒重全基因组关联分析[J]. 作物学报, 2021, 47(4): 650-659.
[9] 王蕊, 施龙建, 田红丽, 易红梅, 杨扬, 葛建镕, 范亚明, 任洁, 王璐, 陆大雷, 赵久然, 王凤格. 玉米杂交种纯度鉴定SNP核心引物的确定及高通量检测方案的建立[J]. 作物学报, 2021, 47(4): 770-779.
[10] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[11] 王媛, 王劲松, 董二伟, 武爱莲, 焦晓燕. 长期施用不同剂量氮肥对高粱产量、氮素利用特性和土壤硝态氮含量的影响[J]. 作物学报, 2021, 47(2): 342-350.
[12] 董二伟, 王劲松, 武爱莲, 王媛, 王立革, 韩雄, 郭珺, 焦晓燕. 行距和密度对高粱籽粒灌浆、淀粉及氮磷钾累积特征的影响[J]. 作物学报, 2021, 47(12): 2459-2470.
[13] 谢磊, 任毅, 张新忠, 王继庆, 张志辉, 石书兵, 耿洪伟. 小麦穗发芽性状的全基因组关联分析[J]. 作物学报, 2021, 47(10): 1891-1902.
[14] 刘畅, 孟云, 刘金栋, 王雅美, Guoyou Ye. 结合QTL-seq和连锁分析发掘水稻中胚轴伸长相关QTL[J]. 作物学报, 2021, 47(10): 2036-2044.
[15] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!