欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (1): 9-16.doi: 10.3724/SP.J.1006.2010.00009

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

小麦骨干亲本碧蚂4号的基因组特异位点及其在衍生后代中的传递

袁园园,王庆专,崔法,张景涛,杜斌,王洪刚   

  1. 山东农业大学作物生物学国家重点实验室/国家小麦改良中心泰安分中心/山东农业大学农学院,山东泰安27108
  • 收稿日期:2009-08-05 修回日期:2009-10-07 出版日期:2010-01-12 网络出版日期:2009-11-17
  • 通讯作者: 王洪刚, E-mail: hgwang@sdau.edu.cn
  • 基金资助:

    本研究由国家重大基础研究发展计划(973计划)项目(2006CB101700)资助。

Specific Loci in Genome of Wheat Milestone Parent Bima 4 and Their Transmission in Derivatives

YUAN Yuan-Yuan,WANG Qing-Zhuan,CUI Fa,ZHANG Jing-Tao,DU Bin,WANG Hong-Gang   

  1. State Key Laboratory of Crop Biology,Shandong Agricultural University/Tai'an Subcenter of National Wheat Improvement Center/Agronomy College of Shandong Agricultural University,Tai'an 271018,China
  • Received:2009-08-05 Revised:2009-10-07 Published:2010-01-12 Published online:2009-11-17
  • Contact: WANG Hong-Gang, E-mail: hgwang@sdau.edu.cn

摘要:

为探讨小麦骨干亲本碧蚂4号的遗传构成及其特异位点在衍生后代中的传递特点,利用覆盖小麦全基因组的1239SSREST-SSRSTS标记对碧蚂4号子一代衍生品种()4个亲本进行标记筛选,获得33个特异标记可用于76份碧蚂4号衍生材料的分析。在子一代和子二代材料中,除标记Xgwm577外的32个标记均能扩增出碧蚂4号特异带,且分别有8个和10个标记位点的传递频率大于50%;在子三代和子四代材料中能扩增出碧蚂4号特异带的标记分别有29个和20个,传递频率大于50%的标记位点分别有8个和4个;Xgwm261Xedm80SWES222CFE2234个世代中的传递频率都保持在50%以上;有18个标记位点对衍生品种()的遗传贡献率大于25%;推测这些基因组位点及其附近的染色体区域可能是被育种家强烈选择的部分,碧蚂4号含有一些特殊的与重要农艺性状相关的基因组位点/区段,可能是其成为骨干亲本的遗传基础。

关键词: 碧蚂4号, 骨干亲本, 衍生后代, 特异位点, 分子标记

Abstract:

Bima 4 is one of the most important milestone parents in China. The objective of this study was to reveal the genetic structure of Bima 4 and the transmission of its specific loci in descendents using molecular markers. A total of 1239 SSR, EST-SSR and STS markers covering the whole genome of wheat were screened with the four parents of the first progeny of Bima 4, i.e., Bima 4, Early Piemium, Jubileina 2, and Ckopocneлka JI-1. Thirty-three markers were effective to trace the specific loci of Bima 4 in the progenies. Seventy-six derivatives of Bima 4 were genotyped with the 33 markers. In the first and the second generations of Bima 4 derivatives, 32 markers, except for Xgwm577, could amplify the specific bands of Bima 4. The inheritable frequency of the specific loci were 7.1–92.6% in the first generation and 2.9–80.0% in the second generation, of which eight and ten loci showed the transmission percentage larger than 50.0% in the first and the second generations, respectively. In the third and the fourth generations, twenty-nine and twenty specific markers were observed, eight and four loci had the transmission rate higher than 50.0%, respectively. Among the specific loci, Xgwm261, Xedm80, SWES222, and CFE223 possessed the inheritable frequency higher than 50% in all four generations. Another 18 loci of Bima 4 were detected in the progenies with genetic contribution ratio higher than 25%. This indicates that some desirable traits, such as yield, grain quality, disease resistance, and adaptability might be associated with these loci or the nearby chromosome regions in Bima 4, and intensively selected in breeding programs. The important loci detected in this study provide the information for understanding the genetic basis of Bima 4 as a milestone parent in wheat breeding.

Key words: Bima 4, Milestone parent, Pedigrees, Specific locus, Molecular marker

[1] Lu M-Z(陆懋曾). Genetic Improvement of Wheat Varieties in Shandong Province (山东小麦遗传改良). Beijing: China Agriculture Press, 2007 (in Chinese)

[2] Zhuang Q-S(庄巧生). Improvement and Pedigree of China Wheat Varieties (中国小麦品种改良及系谱分析). Beijing: China Agricultural Press, 2003 (in Chinese)

[3] Li Q-Q (李晴祺). Creation, Evaluation and Utilization of Winter Wheat Germplasm (冬小麦种质创新与评价利用). Jinan: Shandong Science and Technology Press, 1998 (in Chinese)

[4] Li Z-S (李振声). New wheat variety selected by distant hybrid technique, Xiaoyan 6. J Shanxi Agric Sci (山西农业科学), 1986, (5): 18 (in Chinese)

[5] Manifesto M M, Schlatter A R, Hopp H E, Suarez E Y, Dubcovsky J. Quantitative evaluation of genetic diversity in wheat germplasm using molecular markers. Crop Sci, 2001, 41: 682-690

[6] Reif J C, Zhang P, Dreisigacker S, Warburton M L, Ginkel M V, Hoisington D, Bohn M, Melchinger A E. Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet, 2005, 110: 859-864

[7] Ma Z, Zhao D, Zhang C, Zhang Z, Xue S, Lin F, Kong Z, Tian D, Luo Q. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genomics, 2007, 277: 31-42

[8] Lin F, Xue S L, Zhang Z Z, Zhang C Q, Kong Z X, Yao G Q, Tian D G, Zhu H L, Li C J, Cao Y, Wei J B, Luo Q Y, Ma Z Q. Mapping QTL associated with resistance to Fusarium head blight in the Nanda 2419 × Wangshuibai population: II. Type I resistance. Theor Appl Genet, 2006, 112: 528-535

[9] Wei X-Y(魏新艳), Yang W-X(杨文香), Liu D-Q(刘大群), Kong J-Y(孔俊英). MAS for leaf rust resistance gene Lr35 in 150 wheat cultivars. Sci Agric Sin(中国农业科学), 2004, 37(12): 1951-1954 (in Chinese with English abstract)

[10] Zhang X-Y(张学勇), Dong Y-C(董玉琛), You G-X(游光侠), Wang L-F(王兰芬), LI P(李培), Jia J-Z(贾继增). Allelic variation of Glu-A1, Glu-B1 and Glu-D1 in Chinese commercial wheat varieties in the last 50 years. Sci Agric Sin(中国农业科学), 2001, 34(4):355-362 (in Chinese with English abstract)

[11] Zhang X-Y(张学勇), Tong Y-P(童依平), You G-X(游光霞), Hao C-Y(郝晨阳), Gai H-M(盖红梅), Wang L-F(王兰芬), Li B(李滨), Dong Y-C(董玉琛), Li Z-S(李振声). Hitchhiking effect mapping: A new approach for discovering agronomic important genes. Sci Agric Sin (中国农业科学), 2006, 39(8): 1526-1535 (in Chinese with English abstract)

[12] Wang S-S(王珊珊), Li X-Q(李秀全), Tian J-C(田纪春). Genetic diversity of main parent of wheat ‘Aimengniu’ and its pedigree on SSR markers. Mol Plant Breed (分子植物育种), 2007, 5(4): 485-490 (in Chinese with English abstract)

[13] Si Q-L(司清林), Liu X-L(刘新伦), Liu Z-K(刘智奎), Wang C-Y(王长有), Ji W-Q(吉万全). SSR analysis of Funo wheat and its derivatives. Acta Agron Sin (作物学报), 2009, 35(4): 615-619 (in Chinese with English abstract)

[14] Ge H-M(盖红梅), Wang L-F(王兰芬), You G-X(游光霞), Hao C-Y(郝晨阳), Dong Y-C(董玉琛), Zhang X-Y(张学勇). Fundamental roles of cornerstone breeding lines in wheat reflected by SSR random scanning. Sci Agric Sin (中国农业科学), 2009, 42(5): 1503-1511 (in Chinese with English abstract)

[15] Liu C, Yang Z J, Feng J, Zhou J P, Chi S, Ren Z L. Development of Dasypyrum genome specific marker by using wheat microsatellites. Hereditas, 2006, 28: 1573-1579

[16] Zhang L Y, Bernard M, Leroy P, Feuillet C, Sourdille P. High transferability of bread wheat EST-derived SSRs to other cereals. Theor Appl Genet, 2005, 111: 677-687

[17] Chen H M, Li L Z, Wei X Y, Li S, Lei T, Hu H Z, Wang H G, Zhang X S. Development, chromosome location and genetic mapping of EST-SSR markers in wheat. Chin Sci Bull, 2005, 50: 2328-2336

[18] Dnaiel J M, Amanda P, Natasha L T, Rudi A, Timothy D C, Joseph M A, Michael G F. EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome, 2005, 48: 811-822

[19] Yu J K, Dake T M, Singh S, Benscher D, Li W L, Gill B, Sorrells M E. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome, 2004, 47: 805-818

[20] Eujayl I, Sorrells M E, Baum M, Wolters P, Powell W. Isolation of EST derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet, 2002, 104: 399-407

[21] Kumar N, Kulwal P L, Balyan H S, Gupta P K. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Mol Breed, 2007, 19: 163-177

[22] Paillard S, Schnurbusch T, Tiwari R, Messmer M, Winzeler M, Keller B, Schachermayr G. QTL analysis of resistance to Fusarium head blight in Swiss winter wheat (Triticum aestivum L.). Theor Appl Genet, 2004,109: 323-332

[23] Zhang K-P(张坤普), Xu X-B(徐宪斌), Tian J-C(田继春). QTL mapping for grain filling rate and thousand-grain weight in different ecological environments in wheat. Acta Agron Sin (作物学报), 2008, 34(10): 1750-1756 (in Chinese with English abstract)

[24] Zhang K-P(张坤普), Zhao L(赵亮), Hai Y(海燕), Chen G-F(陈广凤), Tian J-C(田继春). QTL mapping for adult-plant resistance to powdery mildew, lodging resistance and internode length below spike in wheat. Acta Agron Sin (作物学报), 2008, 34(8):1350-1357 (in Chinese with English abstract)
[1] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[2] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[3] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[4] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[5] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[6] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[7] 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284.
[8] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[9] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[10] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[11] 黄冰艳,齐飞艳,孙子淇,苗利娟,房元瑾,郑峥,石磊,张忠信,刘华,董文召,汤丰收,张新友. 以分子标记辅助连续回交快速提高花生品种油酸含量及对其后代农艺性状的评价[J]. 作物学报, 2019, 45(4): 546-555.
[12] 张平,姜一梅,曹鹏辉,张福鳞,伍洪铭,蔡梦颖,刘世家,田云录,江玲,万建民. 通过分子标记辅助选择将耐储藏主效QTL qSS-9 Kas转入宁粳4号提高其种子贮藏能力[J]. 作物学报, 2019, 45(3): 335-343.
[13] 牟碧涛,赵卓凡,岳灵,李川,张钧,李章波,申汉,曹墨菊. 两份玉米CMS-C恢复系的育性恢复力测定及恢复基因的分子标记定位[J]. 作物学报, 2019, 45(2): 225-234.
[14] 徐益,张列梅,郭艳春,祁建民,张力岚,方平平,张立武. 黄麻核心种质的遴选[J]. 作物学报, 2019, 45(11): 1672-1681.
[15] 杨勇,陆彦,郭淑青,石仲慧,赵杰,范晓磊,李钱峰,刘巧泉,张昌泉. 籼稻背景下导入Wx in等位基因改良稻米食味和理化品质[J]. 作物学报, 2019, 45(11): 1628-1637.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!