α-淀粉酶,基因结构,进化,表达," /> α-淀粉酶,基因结构,进化,表达,"/> α-amylase,Gene Structure,Evolution,Expression profiling,"/>
作物学报 ›› 2010, Vol. 36 ›› Issue (1): 17-27.doi: 10.3724/SP.J.1006.2010.00017
廖登群1,2,张洪亮1,李自超1,John BENNETT 2,3
LIAO Deng-Qun1,2,ZHANG Hong-Liang1,LI Zi-Chao1,*,John BENNETT 2,3
摘要:
[1] Stanley D, Farnden K J F, MacRae E A. Plant α-amylases: functions and roles in carbohydrate metabolism. Biologia, Bratislava, 2005, 60(suppl 16): 65-71 [2] Smith A M, Zeeman S C, Smith S M. Starch degradation. Annu Rev Plant Biol, 2005, 56: 73-98 [3] Beck E, Ziegler P. Biosynthesis and degradation of starch in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1989, 40: 95-117 [4] Williamson J F, Peterson M L. Relation between alpha amylase activity and growth of rice seedlings. Crop Sci, 1973, 13: 612-614 [5] Karrer E E, Chandler J M, Foolad M R, Rodriguez R L. Correlation between a-amylase gene expression and seedling vigor in rice. Euphytica, 1993, 66: 163-169 [6] Guglielminetti L, Yamaguchi J, Perata P, Alpi A. Amylolytic activities in cereal seeds under aerobic and anaerobic conditions. Plant Physiol, 1995, 109: 1069-1076 [7] Hwang Y S, Thomas B R, Rodriguez R L. Differential expression of rice a-amylase genes during seedling development under anoxia. Plant Mol Biol, 1999, 40: 911-920 [8] Rogers J C. Two barley alpha-amylase gene families are regulated differently in aleurone cells. J Biol Chem, 1985, 260: 3731-3738 [9] Khursheed B, Rogers J C. Barley alpha-amylase genes. Quantitative comparison of steady-state mRNA levels from individual members of the two different families expressed in aleurone cells. J Biol Chem, 1988, 263: 18953-18960 [10] Gubler F, Jacobsen J V. Gibberellin-responsive elements in the promoter of a barley high-pl [alpha]-amylase gene. Plant Cell, 1992, 4: 1435-1441 [11] Sogaard M, Kadziola A, Haser R, Svensson B. Site-directed mutagenesis of histidine 93, aspartic acid 180, glutamic acid 205, histidine 290, and aspartic acid 291 at the active site and tryptophan 279 at the raw starch binding site in barley alpha-amylase 1. J Biol Chem, 1993, 268: 22480-22484 [12] Huang N, Sutliff T D, Litts J C, Rodriguez R L. Classification and characterization of the rice alpha-amylase multigene family. Plant Mol Biol, 1990, 14: 655-668 [13] Huang N, Koizumi N, Reinl S, Rodriguez R L. Structural organization and differential expression of rice alpha-amylase genes. Nucl Acids Res, 1990, 18: 7007-7014 [14] Ranjhan S, Litts J C, Foolad M R, Rodriguez R L. Chromosomal localization and genomic organization of alpha-amylase genes in rice (Oryza sativa L.). Theor Appl Genet, 1991, 82: 481-488 [15] Yu S M, Kuo Y H, Sheu G, Sheu Y J, Liu L F. Metabolic derepression of alpha-amylase gene expression in suspension- cultured cells of rice. J Biol Chem, 1991, 266: 21131-21137 [16] Itoh K, Yamaguchi J, Huang N, Rodriguez R L, Akazawa T, Shimamoto K. Developmental and hormonal regulation of rice [alpha]-amylase (RAmy1A)-gusA fusion genes in transgenic rice seeds. Plant Physiol, 1995, 107: 25-31 [17] Mitsui T, Yamaguchi J, Akazawa T. Physicochemical and serological characterization of rice [alpha]-amylase isoforms and identification of their corresponding genes. Plant Physiol, 1996, 110: 1395-1404 [18] Chen M H, Liu L F, Chen Y R, Wu H K, Yu S M. Expression of -amylases, carbohydrate metabolism, and autophagy in cultured rice cells is coordinately regulated by sugar nutrient. Plant J, 1994, 6: 625-636 [19] Tetlow I J, Morell M K, Emes M J. Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot, 2004, 55: 2131-2145 [20] Zeeman S C, Smith S M, Smith A M. The breakdown of starch in leaves. New Phytol, 2004, 163: 247-261 [21] Stanley D, Fitzgerald A M, Farnden K J F, MacRae E A. Characterization of putative α-amylases from apple (Malus domestica) and Arabidopsis thaliana. Biologia, Bratislava, 2002, 57(suppl 11): 137-148 [22] Huang N, Stebbins G L, Rodriguez R L. Classification and evolution of a-amylase genes in plants. Proc Natl Acad Sci USA, 1992, 89: 7526-7530 [23] Sutliff T D, Huang N, Litts J C, Rodriguez R L. Characterization of an a-amylase multigene cluster in rice. Plant Mol Biol, 1991, 16: 579-591 [24] Abe R, Chiba Y, Nakajima T. Characterization of the functional module responsible for the low temperature optimum of a rice a-amylase (Amy3E). Biologia, Bratislava, 2002, 57(suppl 11): 197-202 [25] Karrer E E, Litts J C, Rodriguez R L. Differential expression of a-amylase genes in germinating rice and barley seeds. Plant Mol Biol, 1991, 16: 797-805 [26] Umemura T A, Perata P, Futsuhara Y, Yamaguch J. Sugar sensing and a-amylase gene repression in rice embryos. Planta, 1998, 204: 420-428 [27] Karrer E E, Chandler J M, Foolad M R, Rodriguez R L. Correlation between a-amylase gene expression and seedling vigor in rice. Euphytica, 1993, 66: 163-169 [28] Huang J R, Toyofuku K, Yamaguchi J, Akita S. Expression of a-amylase isoforms and the RAmy1A gene in rice (Oryza sativa L.) during seed germination, and itsrelationship with coleoptile length in submerged soil. Plant Prod Sci, 2000, 3: 32-37 [29] Washio K, Ishikawa K. Structure and expression during the germination of rice seeds of the gene for a carboxypeptidase. Plant Mol Biol, 1992, 19: 631-640 [30] Moritaa A, Umemurab T A, Kuroyanagib M, Futsuharab Y, Perata P, Yamaguchia J. Functional dissection of a sugar-repressed a-amylase gene (RAmy1A) promoter in rice embryos. FEBS Lett, 1998, 423: 81-85 [31] Sugimoto N, Takeda G, Nagato Y, Yamaguchi J. Temporal and spatial expression of the a-amylase gene during seed germination in rice and barley. Plant Cell Physiol, 1998, 39: 323-333 [32] Janecek S. alpha-Amylase family: molecular biology and evolution. Prog Biophys Mol Biol, 1997, 67: 67-97 [33] Sánchez D, Ganfornina M D, Gutiérrez G, Marín A. Exon-intron structure and evolution of the lipocalin gene family. Mol Biol Evol, 2003, 20: 775-783 [34] Li W, Liu B, Yu L, Feng D, Wang H, Wang J. Phylogenetic analysis, structural evolution and functional divergence of the 12-oxo-phytodienoate acid reductase gene family in plants. BMC Evol Biol, 2009, 9: 90 [35] Janecek S. Sequence similarities and evolutionary relationships of microbial, plant and animal a-amylases. Eur J Biochem, 1994, 224: 519-524 Doolittle W F. The Origin and function of intervening sequences in DNA: A review. Am Nat, 1987, 130: 915-928 |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839. |
[13] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[14] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[15] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
|