α-淀粉酶,基因结构,进化,表达," /> α-淀粉酶,基因结构,进化,表达,"/> α-amylase,Gene Structure,Evolution,Expression profiling,"/> 水稻(<em>Oryza sativa</em> L.)a-淀粉酶基因的进化及组织表达模式
欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (1): 17-27.doi: 10.3724/SP.J.1006.2010.00017

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻(Oryza sativa L.)a-淀粉酶基因的进化及组织表达模式

廖登群1,2,张洪亮1,李自超1,John BENNETT 2,3   

  1. 1中国农业大学/农业部作物基因组学与遗传改良重点开放实验室/北京市作物遗传改良重点实验室,北京100193;2Plant Breeding,Genetics and Biotechnology Division,Intermational Rice Research Institute,DAPO Box 777,Metro Manila,Philippines;3School of Biological Sciences,University of Sydney,NSW 2006,Australia
  • 收稿日期:2009-07-14 修回日期:2009-09-07 出版日期:2010-01-12 网络出版日期:2009-11-17
  • 通讯作者: 李自超, E-mail: lizichao@cau.edu.cn
  • 基金资助:

    本研究由2003 Theme 1 Budget of the Challenge Program for Water and Food 和国家高技术研究发展计划(863计划)项目(2006AA10Z158)资助。

Characterization of Evolution and Tissue-Expression of Rice (Oryza sativa L.) α-Amylase Genes

LIAO Deng-Qun1,2,ZHANG Hong-Liang1,LI Zi-Chao1,*,John BENNETT 2,3   

  1. 1China Agricultural University / Key Laboratory of Crop Genomics & Genetic Improvement of Ministry of Agriculture / Beijing Key Laboratory of Crop Genetic Improvement, Beijing 100193, China; 2 Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines; 3 School of Biological Sciences, University of Sydney, NSW 2006, Australia
  • Received:2009-07-14 Revised:2009-09-07 Published:2010-01-12 Published online:2009-11-17
  • Contact: LI Zi-Chao,E-mail: lizichao@cau.edu.cn

摘要:

α-淀粉酶在植物特别是谷类萌发种子淀粉降解中具有重要作用。水稻α-淀粉酶基因的结构、进化和表达研究已有报道,但是,多集中于OsAmy1OsAmy3这两个亚族内基因间以及发芽种子中。不同亚族间的基因结构、进化及更多组织和时期的表达特点尚缺乏细致研究。本研究通过TblastN同源性比对及保守结构域分析揭示水稻基因组含有11α-淀粉酶基因。生物信息学分析、系统进化树构建及半定量RT-PCR分析表明,该家族基因在结构上发生了明显的分化,具有清晰的进化层次,OsAmy5AOsAmy4A是家族中较原始状态的基因;在表达和功能上也发生了明显分化,进化水平较高的基因发生了明显的时空表达特异性分化。OsAmy1AOsAmy3AOsAmy3DOsAmy3E分别在保证种子植物世代传递、维持种子休眠过程中胚的微弱生命活动及保证种子萌发过程中能量的稳定持续供应上具有重要作用。

关键词: 水稻, α-淀粉酶')">α-淀粉酶, 基因结构, 进化, 表达

Abstract:

α-amylases play an important role in starch degradation in plants, especially in cereal germinating seeds. Existing reports on structural organization and evolution of rice α-amylase family mainly focus on members of subfamilies OsAmy1 and OsAmy3 and their expression in germinating seeds, however, it is not known whether the putative α-amylase genes else exist in rice genome and what their structural organization, evolution and expression profiling look like especially among subfamilies. Via TblastN search and conservative domain analysis, we revealed that there were 11 putative α-amylase genes in rice genome. Through tools of bioinformatics, phylogenetic reconstruction and semi-quantitative RT-PCR, we studied the structural evolution among these 11 α-amylase genes and their spatial-temporal expression profiling. The results showed that there was a distinctly divergent and ranked gene structure among members of this family. OsAmy5A and OsAmy4A were the most primitive genes, and other ones were evolved from them mainly through loss of introns and fixed more conserved domains and sequences. These genes were also divergent in expression and function. The more primitive the genes are the less spatial-temporal specificity in gene expression they have. OsAmy5A, OsAmy4A, and OsAmy2A were expressed in all tissues, however, the rest were expressed spatially and temporally. OsAmy1A, which was expressed at the beginning of seed germination but not all during the grain filling stage, should serve to control energy supply between generations. OsAmy3A, both expressed dramatically at the end of grain filling and the initiation of seed germination, should be related to sustaining life activities in embryos of dormancy seeds. OsAmy3D and OsAmy3E were regulated at the gene expression level by sugar concentration during seed germination, and may play an important role in stable and continuous energy supply during seed germination.

Key words: Rice, α-amylase')">α-amylase, Gene Structure, Evolution, Expression profiling

[1] Stanley D, Farnden K J F, MacRae E A. Plant α-amylases: functions and roles in carbohydrate metabolism. Biologia, Bratislava, 2005, 60(suppl 16): 65-71

[2] Smith A M, Zeeman S C, Smith S M. Starch degradation. Annu Rev Plant Biol, 2005, 56: 73-98

[3] Beck E, Ziegler P. Biosynthesis and degradation of starch in higher plants. Annu Rev Plant Physiol Plant Mol Biol, 1989, 40: 95-117

[4] Williamson J F, Peterson M L. Relation between alpha amylase activity and growth of rice seedlings. Crop Sci, 1973, 13: 612-614

[5] Karrer E E, Chandler J M, Foolad M R, Rodriguez R L. Correlation between a-amylase gene expression and seedling vigor in rice. Euphytica, 1993, 66: 163-169

[6] Guglielminetti L, Yamaguchi J, Perata P, Alpi A. Amylolytic activities in cereal seeds under aerobic and anaerobic conditions. Plant Physiol, 1995, 109: 1069-1076

[7] Hwang Y S, Thomas B R, Rodriguez R L. Differential expression of rice a-amylase genes during seedling development under anoxia. Plant Mol Biol, 1999, 40: 911-920

[8] Rogers J C. Two barley alpha-amylase gene families are regulated differently in aleurone cells. J Biol Chem, 1985, 260: 3731-3738

[9] Khursheed B, Rogers J C. Barley alpha-amylase genes. Quantitative comparison of steady-state mRNA levels from individual members of the two different families expressed in aleurone cells. J Biol Chem, 1988, 263: 18953-18960

[10] Gubler F, Jacobsen J V. Gibberellin-responsive elements in the promoter of a barley high-pl
[alpha]-amylase gene. Plant Cell, 1992, 4: 1435-1441

[11] Sogaard M, Kadziola A, Haser R, Svensson B. Site-directed mutagenesis of histidine 93, aspartic acid 180, glutamic acid 205, histidine 290, and aspartic acid 291 at the active site and tryptophan 279 at the raw starch binding site in barley alpha-amylase 1. J Biol Chem, 1993, 268: 22480-22484

[12] Huang N, Sutliff T D, Litts J C, Rodriguez R L. Classification and characterization of the rice alpha-amylase multigene family. Plant Mol Biol, 1990, 14: 655-668

[13] Huang N, Koizumi N, Reinl S, Rodriguez R L. Structural organization and differential expression of rice alpha-amylase genes. Nucl Acids Res, 1990, 18: 7007-7014

[14] Ranjhan S, Litts J C, Foolad M R, Rodriguez R L. Chromosomal localization and genomic organization of alpha-amylase genes in rice (Oryza sativa L.). Theor Appl Genet, 1991, 82: 481-488

[15] Yu S M, Kuo Y H, Sheu G, Sheu Y J, Liu L F. Metabolic derepression of alpha-amylase gene expression in suspension- cultured cells of rice. J Biol Chem, 1991, 266: 21131-21137

[16] Itoh K, Yamaguchi J, Huang N, Rodriguez R L, Akazawa T, Shimamoto K. Developmental and hormonal regulation of rice
[alpha]-amylase (RAmy1A)-gusA fusion genes in transgenic rice seeds. Plant Physiol, 1995, 107: 25-31

[17] Mitsui T, Yamaguchi J, Akazawa T. Physicochemical and serological characterization of rice
[alpha]-amylase isoforms and identification of their corresponding genes. Plant Physiol, 1996, 110: 1395-1404

[18] Chen M H, Liu L F, Chen Y R, Wu H K, Yu S M. Expression of -amylases, carbohydrate metabolism, and autophagy in cultured rice cells is coordinately regulated by sugar nutrient. Plant J, 1994, 6: 625-636

[19] Tetlow I J, Morell M K, Emes M J. Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot, 2004, 55: 2131-2145

[20] Zeeman S C, Smith S M, Smith A M. The breakdown of starch in leaves. New Phytol, 2004, 163: 247-261

[21] Stanley D, Fitzgerald A M, Farnden K J F, MacRae E A. Characterization of putative α-amylases from apple (Malus domestica) and Arabidopsis thaliana. Biologia, Bratislava, 2002, 57(suppl 11): 137-148

[22] Huang N, Stebbins G L, Rodriguez R L. Classification and evolution of a-amylase genes in plants. Proc Natl Acad Sci USA, 1992, 89: 7526-7530

[23] Sutliff T D, Huang N, Litts J C, Rodriguez R L. Characterization of an a-amylase multigene cluster in rice. Plant Mol Biol, 1991, 16: 579-591

[24] Abe R, Chiba Y, Nakajima T. Characterization of the functional module responsible for the low temperature optimum of a rice a-amylase (Amy3E). Biologia, Bratislava, 2002, 57(suppl 11): 197-202

[25] Karrer E E, Litts J C, Rodriguez R L. Differential expression of a-amylase genes in germinating rice and barley seeds. Plant Mol Biol, 1991, 16: 797-805

[26] Umemura T A, Perata P, Futsuhara Y, Yamaguch J. Sugar sensing and a-amylase gene repression in rice embryos. Planta, 1998, 204: 420-428

[27] Karrer E E, Chandler J M, Foolad M R, Rodriguez R L. Correlation between a-amylase gene expression and seedling vigor in rice. Euphytica, 1993, 66: 163-169

[28] Huang J R, Toyofuku K, Yamaguchi J, Akita S. Expression of a-amylase isoforms and the RAmy1A gene in rice (Oryza sativa L.) during seed germination, and itsrelationship with coleoptile length in submerged soil. Plant Prod Sci, 2000, 3: 32-37

[29] Washio K, Ishikawa K. Structure and expression during the germination of rice seeds of the gene for a carboxypeptidase. Plant Mol Biol, 1992, 19: 631-640

[30] Moritaa A, Umemurab T A, Kuroyanagib M, Futsuharab Y, Perata P, Yamaguchia J. Functional dissection of a sugar-repressed a-amylase gene (RAmy1A) promoter in rice embryos. FEBS Lett, 1998, 423: 81-85

[31] Sugimoto N, Takeda G, Nagato Y, Yamaguchi J. Temporal and spatial expression of the a-amylase gene during seed germination in rice and barley. Plant Cell Physiol, 1998, 39: 323-333

[32] Janecek S. alpha-Amylase family: molecular biology and evolution. Prog Biophys Mol Biol, 1997, 67: 67-97

[33] Sánchez D, Ganfornina M D, Gutiérrez G, Marín A. Exon-intron structure and evolution of the lipocalin gene family. Mol Biol Evol, 2003, 20: 775-783

[34] Li W, Liu B, Yu L, Feng D, Wang H, Wang J. Phylogenetic analysis, structural evolution and functional divergence of the 12-oxo-phytodienoate acid reductase gene family in plants. BMC Evol Biol, 2009, 9: 90

[35] Janecek S. Sequence similarities and evolutionary relationships of microbial, plant and animal a-amylases. Eur J Biochem, 1994, 224: 519-524
Doolittle W F. The Origin and function of intervening sequences in DNA: A review. Am Nat, 1987, 130: 915-928
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!