欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (10): 1812-1821.doi: 10.3724/SP.J.1006.2009.01812

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

陆地棉产量相关性状的QTL定位

秦永生,刘任重,梅鸿献,张天真,郭旺珍*   

  1. 南京农业大学/作物遗传与种质创新国家重点实验室,江苏南京210095
  • 收稿日期:2009-05-06 修回日期:2009-07-19 出版日期:2009-10-12 网络出版日期:2009-09-10
  • 通讯作者: 郭旺珍, E-mail: moelab@njau.edu.cn
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2006AA100105),国家重点基础研究发展规划(973规划)项目(2006CB101708),教育部高等学校学科创新引智计划(111计划)项目(B08025)资助。

QTL Mapping for Yield Traits in Upland Cotton(Gossypium hirsutum L.)

QIN Yong-Sheng,LIU Ren-Zhong,MEI Hong-Xian,ZHANG Tian-Zhen,GUO Wang-Zhen*   

  1. National Key Laboratory of Crop Genetics and Germplasm Enhancement,Nanjing Agricultural University,Nanjing 210095,China
  • Received:2009-05-06 Revised:2009-07-19 Published:2009-10-12 Published online:2009-09-10
  • Contact: GUO Wang-Zhen, E-mail: moelab@njau.edu.cn

摘要:

中棉所28和湘杂棉2号分别是以中棉所12×4133和中棉所12×8891配制而成的两个陆地棉强优势杂交种。以其F2为作图群体,筛选6000多对SSR引物,利用两群体间27个共有多态位点,通过JoinMap 3.0软件整合了一张包含245个多态位点、全长1847.81 cM的遗传图谱。利用Win QTLCart 2.5复合区间作图法分别对两群体8个产量相关性状在F2和F2:3中进行QTL定位,在中棉所28群体多环境平均值的联合分析中检测到16个QTL,三环境分离分析中检测到43个QTL;在湘杂棉2号群体分别检测到20个和66个QTL。在A3、D8、D9等染色体上有QTL成簇分布现象,同时在两个群体中发现一些不受环境影响且稳定遗传的QTL。对考察的8个性状在两个群体中发现12对共有QTL,控制果枝数、衣分和籽指的QTL增效基因位点均来源于共同亲本中棉所12。综合分析推测中棉所12的育种价值主要是通过提高后代的结铃性来实现的。研究结果为棉花产量性状的分子设计育种提供了有用的信息。

关键词: 棉花, 产量性状, QTL定位

Abstract:

As a major source of fiber and the world’s second-most important oil-seed crop after soybean, cotton plays an important role in the global economy. With the development of textile technology and social demand, it is urgent to breed and plant cotton varieties with high yield and super fiber quality. If the marker tightly linked with major gene controlling desired traits was identified, the efficiency of selection for agronomic traits might improve greatly. So far, high-identity genetic linkage map derived from upland cotton cultivars was lack because of their narrow genetic basis. Increasing the map density and tagging QTLs related with agronomic traits in Upland cotton will accelerate the process of marker assisted selection (MAS) breeding. CRI28 and XZM 2 are two cotton hybrids with high heterosis, which were bred by crossing CRI12, 4133, and 8891, respectively, with CRI12 as mutual parent. In this paper, two F2 mapping populations were respectively assembled by using the parents of CRI28 hybrid (CRI12 and 4133, their corresponding population named as Pop1) and the parents of XZM 2 hybrid (CRI12 and 8891, their corresponding population named as Pop2), further, a joinmap linkage map which contained 245 loci and covered 1 847.81 cM was integrated with 27 mutual polymorphic loci in the two mapping populations by JOINMAP 3.0 software, after screening about 6 000 SSR primers. By the composite interval mapping method (CIM), the QTLs for eight yield-related traits in F2 and F3 populations were mapped. Of them, 43 QTLs were identified in the three environments by separating analysis and 16 QTLs by the joint analysis in Pop1; similarly, 66 and 20 QTLs in Pop2 respectively. Some QTLs on chromosome A3, D8, and D9, and some stable QTLs not influenced by environment were also detected. Twelve QTLs for eight traits could be found simultaneously in the two populations, and additive QTLs for fruit branches per plant, lint percentage and seed index all were offered by CRI12, suggesting that the value of CRI12 in breeding is mostly contributed by increasing the offspring’s bolls. These results will provide very important information in Upland cotton breeding for yield by MAS.

Key words: Upland cotton, Yield traits, QTL mapping

[1] Fryxell P A. A revised taxonomic interpretion of Gossypium L. (Malvaceae). Rheedea, 1992, 2: 108-165
[2] Zhang P-T(张培通), Guo W-Z(郭旺珍), Zhu X-F(朱协飞), Yu J-Z(俞敬忠), Zhang T-Z(张天真). Molecular tagging of QTLs for yield and its components of G. hirsutum cv. Simian 3. Acta Agron Sin (作物学报), 2006, 32(8): 1197-1203 (in Chinese with English abstract)
[3] Du C-F(杜春芳), Li P-B(李朋波), Li R-Z(李润植). Research advances in molecular basis of the variations and QTL cloning of quantitative plant traits. Acta Bot Boreali-Occident Sin (西北植物学报), 2005, 25(12): 2575-2580 (in Chinese with English abstract)
[4] Rong J K, Abbey C, Bowers J E, Brubaker C L, Chang C, Chee P W, Delmonte T A, Ding X L, Garza J J, Marler B S, Park C H, Pierce G J, Rainey K M, Rastogi V K, Schulze S R, Trolinder N L, Wendel J F, Wilkins T A, Williams-Coplin T Dawn, Wing R A, Wright R J, Zhao X P, Zhu L H, Paterson A H. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics, 2004, 166: 389-417
[5] Yu J, Park Y H, Lazo G, Kohel R. Molecular mapping of the cotton genome: QTL analysis of fiber quality properties. In: Proceedings of Beltwide cotton conferences, San Diego, 5-9 January 1998. p 485
[6] Lacape J M, Nguyen T B, Thibivilliers S, Bojinov B, Courtois B. A combined RFLP-SSR-AFLP map of tetraploid cotton based on a Gossypium hirsutum ×Gossypium barbadense backcross population. Genome, 2003, 46: 612-626
[7] Zhang J, Guo W Z, Zhang T Z. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. × Gossypium barbadense L.) with a haploid population. Theor Appl Genet, 2002, 105: 1166-1174


[8] Guo W Z, Cai C P, Wang C B, Han Z G, Song X L, Wang K, Niu X W, Wang C, Lu K, Shi B, Zhang T Z. A microsatellite-based, gene-rich linkage map reveals genome structure, function, and evolution in Gossypium. Genetics, 2007, 176: 527-541 [9] Ulloa M, Meredith W R, Shappley Z W, Kahler A L. RFLP genetic linkage maps from four F2:3 populations and a joinmap of Gossypium hirsutum L. Theor Appl Genet, 2002, 104: 200-208
[10] Sang Z-Q(桑志勤). QTL mapping for elite fiber quality properties in upland cotton.MS Dissertation of Nanjing Agricultural University, 2008. pp 44-46 (in Chinese with English abstract)
[11] Rong J K, Bowers J E, Schulze S R,Waghmare V N, Rogers C J, Pierce G J, Zhang H, Estill J C, Paterson A H. Comparative genomics of Gossypium and Arabidopsis: Unraveling the consequences of both ancient and recent polyploidy. Genome Res,2005, 15: 1198-1210
[12] Kearsey M J, Farquhar A G L. QTL analysis in plants; where are we now? Heredity, 1998, 80: 137-142
[13] Asins M J. Present and future of quantitative trait locus analysis in plant breeding. Plant Breed, 2002, 121: 281-291
[14] Ulloa M, Cantrell R G S, Oercy R, Lu Z, Zeiger E. QTL analysis of stomatal conductance and relationship to lint yield in intraspecific cotton. J Cotton Sci, 2000, 4: 10-18
[15] Yin J-M(殷剑美), Wu Y-T(武耀廷), Zhang J(张军), Zhang T-Z(张天真), Guo W-Z(郭旺珍), Zhu X-F(朱协飞). Tagging and mapping of QTLs controlling lint yield and yield components in upland cotton (Gossypium hirsutum L.) using SSR and RAPD markers. Chin J Biotechnol (生物工程学报), 2002, 18(2): 162-166 (in Chinese with English abstract)
[16] Shen X L, Guo W Z, Zhu X F, Yuan Y L, Yu J Z, Kohel R J, Zhang T Z. Molecular mapping of QTLs for fiber qualities in three diverse lines in Upland cotton using SSR markers. Mol Breed, 2005,15: 169-181
[17] Wang P-Z(王沛政), Qin L(秦利), Su L(苏丽), Hu B-M(胡保民), Zhang T-Z(张天真).QTL Mapping of the partial yield components of main upland cotton cultivars planted in Xinjiang.Sci Agric Sin (中国农业科学), 2008,41(10): 2947-2956 (in Chinese with English abstract)
[18] Van Ooijen J W, Voorrips R E. JoinMapR Version 3.0: software for the calculation of genetic linkage maps. CPRO-DLO, Wageningen, 2001
[19] Jing S-R(靖深蓉), Xing C-Z(邢朝柱), Yuan Y-L(袁有禄), Liu S-L(刘少林), Wang H-L(王海林). Breeding and application of Zhongza 028. China Cotton (中国棉花), 1995, 22(12): 22-23 (in Chinese)
[20] Li Y-Q(李育强), Zeng Z-Y(曾昭云), Jin L(金林), Yang F-Q(杨芳荃), Wan Y-L(万益林). Breeding and application of Xiangzamian 2. Crop Res(作物研究), 1997, 4: 27-29 (in Chinese)
[21] Paterson A H, Brubaker C L, Wendel J F. A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plan Mol Biol Rep, 1993, 11: 122-127
[22] Zhang J(张军), Wu Y-T(武耀廷), Guo W-Z(郭旺珍), Zhang T-Z(张天真). Fast screening of miscrosatellite markers in cotton with PAGE/silver staining. Acta Gossypii Sin (棉花学报), 2000, 12(5): 267-269 (in Chinese with English abstract)
[23] Kosambi D D. The estimation of map distance from recombination values.Ann Eugen, 1944, 12: 172-175


[24] Zeng ZB. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
[25] Jiang C X, Wright R J, El-Zik K M, Paterson A H. Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci USA, 1998, 95: 4419-4424
[26] Lander E S, Kruglyak L. Genetic dissection of complex traits guidelines for interpreting and reporting linkage results. Nat Genet, 1995, 11: 241-247
[27] Stuber C W, Edwards M D, Wendel J F. Molecular marker facilitated investigations of quantitative trait loci in maize: II. Factors influencing yield and its component traits. Crop Sci, 1987, 27: 639-648
[28] McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. Report on QTL nomenclature. Rice Genet Newsl, 1997, 14: 11-13
[29] Guo W Z, Cai C P, Wang C B, Zhao L, Wang L, Zhang T Z.A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genomics, 2008, 9: 314
[30] Qin H-D(秦鸿德). QTL Mapping of Yield and Fiber Quality Traits in Gossypium hirsutum L. and Recurrent Selection with MAS.PhD Dissertation of Nanjing Agricultural University, 2007 (in Chinese with English abstract)
[31] He D H, Lin Z X, Zhang X L, Nie Y C, Guo X P, Zhang Y X, Li W. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × Gossypium barbadense. Euphytica, 2007, 153: 181-197
[32] Ulloa M, Saha S, Jenkins J N, Meredith W R, McCarty J C, Stelly D M. Chromosomal assignment of AFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) joinmap. J Heredity, 2005, 96: 132-144
Wang B-H(汪保华). Genetic Dissection on the Basis of Heterosis in an Elite Cotton Hybrid Xiangzamian 2. PhD Dissertation of Nanjing Agricultural University, 2006. pp 40-41 (in Chinese with English abstract)

[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[5] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[6] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[7] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[8] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[9] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[10] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[11] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[12] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[13] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[14] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[15] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!