欢迎访问作物学报,今天是

作物学报 ›› 2009, Vol. 35 ›› Issue (11): 2101-2106.doi: 10.3724/SP.J.1006.2009.02101

• 耕作栽培·生理生化 • 上一篇    下一篇

棉花地上部形态建成的光温模型

郭银巧1,2,赵传德3,朱艳1,李存东2,孙红春2,曹卫星1,*   

  1. 1南京农业大学农学院/江苏省信息农业高技术研究重点实验室,江苏南京 210095;2河北农业大学农学院,河北保定071001;3安泰科技股份有限公司,北京100081
  • 收稿日期:2009-05-12 修回日期:2009-07-21 出版日期:2009-11-12 网络出版日期:2009-09-10
  • 通讯作者: 曹卫星,E-mail: caow@njau.edu.cn; Tel: 025-84396565
  • 基金资助:

    本研究国家高技术研究发展计划(863计划)项目(2006AA10A303),国家科技支撑计划项目(2006BDA10A01),农业部行业专项课题(nyhyzx07-005-05)资助

Morphogenesis Model with Relation to Light and Temperature Condition for Above-Ground Organs in Cotton

GUO Yin-Qiao1,2,ZHAO Chuan-De4,ZHU Yan1,LI Cun-Dong2,SUN Hong-Chun2,CAO Wei-Xing1*   

  1. 1Jiangsu Key Laboratory for Information Agricultural,College of Agronomy,Nanjing Agricultural University,Nanjing 210095,China;2College of Agronomy,Agricultural University of Hebei,Baoding 071001,China;3Advanced Technology & Materials Co.,Ltd,Beijing 100081,China
  • Received:2009-05-12 Revised:2009-07-21 Published:2009-11-12 Published online:2009-09-10
  • Contact: CAO Wei-Xing,E-mail: caow@njau.edu.cn; Tel: 025-84396565

摘要:

以不同株型棉花品种为研究对象,基于同类相似性原理,借助数学建模和统计分析方法,系统分析光温生态因子对棉花叶片长、宽,叶柄长、粗,主茎节间长、粗,果节长、粗,蕾铃高、直径等形态指标的影响,量化温、光因子与棉花各器官形态建成的关系,构建了基于GDD (growing degree day)Logistic方程的棉花形态建成光温模型。利用独立的试验数据对模型进行了检验,结果表明,棉花主茎叶片的长度和宽度、叶柄长度、主茎节间的长度和粗度、果枝叶片的长度和宽度、叶柄长度、果节的长度和粗度、蕾铃高度和直径的RMSE值分别为0.480.650.530.090.020.550.280.230.140.170.200.11 cm。显示棉花器官形态指标的模拟值与检验值具有较好的吻合度,说明模型具有良好的预测性和描述性。

关键词: 棉花, 形态建成, 光温生态模型

Abstract:

Due to their complexity in the morphological character of multi-branch cotton, it is hard to simulate the morphogenesis of cotton. The objective of the study was to construct a simulation model with morphological characters based on GDD (growing degree day) and Logistic equation. An experiment for model establishment was conducted using two cultivars (Meimian 33B and Jifeng 908) with three repetitions. The length and width of leaf, the length of petiole, the length and diameter of internode, the height and diameter of boll were determined from three-leaf stage to the stationary length of leaf on main stem. The result was as follows: (1) GDD and IGDD were quantitied through integrating the quantitative connection of every organ of cotton and the relationship of morphological indices to the effective cumulative temperature, the growing degree day and initial growing degree day of every organ in cotton were quantitied. (2) The major influencing factors of temperature and sunlight were quantitied. The temperature and sunshine hours effect factor model was constructed using mathematical modeling method, which can be explained and reflected better by effect factor in practice. (3) According to the pot experiment data in the field of Hebei Agriculture University in 2006, through analyzing the effects of temperature and sunshine hours on morphogenesis formation in cotton, potential length and width of different cotton organs were quantitied. (4) By quantifying relationship of morphogenesis formation to temperature and sunshine hours, an ecological model of cotton morphogenesis was constructed with the rule of “the same similar”. The model is based on GDD and Logistic equation, which can predict the morphologic indices such as the length and width of leaf, the length of petiole, the length and diameter of internode, the height and diameter of boll. The model was validated with independent dataset from experiment in Nanjing in 2006, the results showed that the RMSEs between simulated and observed value for length and width of leaf on main stem, length of petiole on main stem, length and width of internode on main stem, length and width of leaf on sympodial stem, length of petiole on sympodial stem, length and width of internodes on sympodial stem, boll height and diameter was 0.48, 0.65, 0.53, 0.09 0.02, 0.55, 0.28, 0.23, 0.14, 0.17, 0.20, and 0.11 cm, respectively, which indicated that the present model has a good performance in predicting the dynamics of each organ size in cotton growth process.

Key words: Cotton, Morphogenesis formation, Sunlight and temperature ecological model

[1]Room P M, Hanan J S. Virtual cotton: A new tool for research, management and training. Proceedings of the world Cotton Research Conference-1. Challenging the Future. Brisbane, Melbource: CSIRO Australia, 1995. pp 40-44
[2]Marcelis L F M, Heuvelink E, Goudriaan J. Modelling biomass production and yield of horticultural crops: A review. Sci Hort, 1998, 74: 83-111
[3]Fournier C, Andrieu B A. 3D architectural and process-based model of maize development. Ann Bot, 1998, 81: 233-250
[4]Song Y-H(宋有洪), Guo Y(郭焱), Li B-G(李保国), de Reffye P. Virtual maize model II plant morphological constructing based on organ biomass accumulation. Acta Ecol Sin (生态学报), 2003, 23(12): 2579-2586 (in Chinese with English abstract)
[5] de Reffye P, Blaise F, Chemouny S. Calibration of hydraulic growth model on the architecture of cotton plants. Agronomie, 1999, 19: 265-280
[6] Room P M, Hanan J S, Prusinkiewicz P. Virtual plants: New perspectives for pcologists, pathologists and pgricultural scientists. Trends Plant Sci, 1996, 1: 33-38
[7] Hanan J S, Hearn A B. Linking physiological and architectural models of cotton. Agric Syst, 2003, 75: 47-77
[8] Yang J(杨娟), Zhao M(赵明), Pan X-B(潘学标). Visualization of cotton growth based on NURBS and VC++ 6.0. Trans CSAE (农业工程学报), 2006, 22(10): 159-162 (in Chinese with English abstract)
[9] Zhang L-Z(张立桢). A Process-Based Simulation Model for Cotton Growth and Development. PhD Dissertation of Nanjing Agricultural University, 2003 (in Chinese with English abstract)
[10] Zhang W-P(张吴平), Li B-G(李保国). Three-dimensional model simulating development and growth of cotton root system. J Syst Simulat (系统仿真学报), 2006, 18(z1): 283-286 (in Chinese with English abstract)
[11] Buch-Sorlin G H. L-System Model of the Vegetative Growth of Winter Barley. In: Polani D, Kim J, Martinetz T, eds. Fifth German Workshop on Artificial Life. Berlin: Akademische Verlagsgesellschaft Aka Gmbh, 2000. pp 53-64
[12] Zhang Z-G(展志刚), Wang Y-M(王一鸣), de Reffye P. Morphological architecture-based growth model of winter wheat. Trans CSAE (农业工程学报), 2001, 17(5): 6-11 (in Chinese with English abstract)
[13] Chen G-Q(陈国庆). Study on morphogenesis model and virtual system of wheat. MS Dissertation of Shangdong Agricultural University, 2004 (in Chinese with English abstract)
[14] Tan Z-H(谭子辉), Zhu Y(朱艳), Yao X(姚霞), Tian Y-C(田永超), Liu X-J(刘小军), Cao W-X(曹卫星). Modeling spike growth dynamics in winter wheat. J Triticeae Crops (麦类作物学报), 2006, 26(4): 93-97 (in Chinese with English abstract)
[15] Shi C-L(石春林), Jin Z-Q(金之庆), Cao W-X(曹卫星). An elementary study on virtual growth of rice plant. Jiangsu J Agric Sci (江苏农业学报), 2006, 22(2): 105-108 (in Chinese with English abstract)
[16] Chang L-Y(常丽英), Gu D-X(顾东祥), Zhang W-Y(张文宇), Yang J(杨杰), Cao W-X(曹卫星), Zhu Y(朱艳). A simulation model of leaf elongation process in rice. Acta Agron Sin (作物学报), 2008, 34(2): 311-317 (in Chinese with English abstract)
[17] Chang L-Y(常丽英), Tang L(汤亮), Gu D-X(顾东祥), Yang J(杨杰), Cao W-X(曹卫星), Zhu Y(朱艳). A process-based simulation model of leaf sheath and internode elongation dynamics in rice. J Nanjing Agric Univ (南京农业大学学报), 2008, 31(3): 19-25 (in Chinese with English abstract)
[18] Dong Q-X(董乔雪), Wang Y-M(王一鸣), Barczi J F, He C-X(贺超兴). Estimation method for model parameters of tomato morphological architecture by multi-targets plant fitting. Trans CSAE (农业工程学报), 2007, 15(1): 122-126 (in Chinese with English abstract)
[19] Zhang G-J(张光鉴). Theory of Similarity (相似论). Jiangsu: Jiangsu Science and Technology Press, 1992 (in Chinese)
[20] Institute of Cotton of The Chinese Academy of Agricultural Sciences (中国农业科学院棉花研究所主编). Cotton Cultivation in China (中国棉花栽培学). Shanghai: Shanghai Science and Technology Press, 1983 (in Chinese)

Yu Z-W(于振文). Crop Cultivation (for Species) (作物栽培学各论). Beijing: China Agriculture Press, 2003 (in Chinese)
[1] 周静远, 孔祥强, 张艳军, 李雪源, 张冬梅, 董合忠. 基于种子萌发出苗过程中弯钩建成和下胚轴生长的棉花出苗壮苗机制与技术[J]. 作物学报, 2022, 48(5): 1051-1058.
[2] 孙思敏, 韩贝, 陈林, 孙伟男, 张献龙, 杨细燕. 棉花苗期根系分型及根系性状的关联分析[J]. 作物学报, 2022, 48(5): 1081-1090.
[3] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[4] 郑曙峰, 刘小玲, 王维, 徐道青, 阚画春, 陈敏, 李淑英. 论两熟制棉花绿色化轻简化机械化栽培[J]. 作物学报, 2022, 48(3): 541-552.
[5] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[6] 张特, 王蜜蜂, 赵强. 滴施缩节胺与氮肥对棉花生长发育及产量的影响[J]. 作物学报, 2022, 48(2): 396-409.
[7] 赵文青, 徐文正, 杨锍琰, 刘玉, 周治国, 王友华. 棉花叶片响应高温的差异与夜间淀粉降解密切相关[J]. 作物学报, 2021, 47(9): 1680-1689.
[8] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[9] 曾紫君, 曾钰, 闫磊, 程锦, 姜存仓. 低硼及高硼胁迫对棉花幼苗生长与脯氨酸代谢的影响[J]. 作物学报, 2021, 47(8): 1616-1623.
[10] 马欢欢, 方启迪, 丁元昊, 池华斌, 张献龙, 闵玲. 棉花GhMADS7基因正调控棉花花瓣发育[J]. 作物学报, 2021, 47(5): 814-826.
[11] 许乃银, 赵素琴, 张芳, 付小琼, 杨晓妮, 乔银桃, 孙世贤. 基于GYT双标图对西北内陆棉区国审棉花品种的分类评价[J]. 作物学报, 2021, 47(4): 660-671.
[12] 周冠彤, 雷建峰, 代培红, 刘超, 李月, 刘晓东. 棉花CRISPR/Cas9基因编辑有效sgRNA高效筛选体系的研究[J]. 作物学报, 2021, 47(3): 427-437.
[13] 卢合全, 唐薇, 罗振, 孔祥强, 李振怀, 徐士振, 辛承松. 商品有机肥替代部分化肥对连作棉田土壤养分、棉花生长发育及产量的影响[J]. 作物学报, 2021, 47(12): 2511-2521.
[14] 王晔, 刘钊, 肖爽, 李芳军, 吴霞, 王保民, 田晓莉. 转PSAG12-IPT基因对棉花叶片衰老及产量和纤维品质的影响[J]. 作物学报, 2021, 47(11): 2111-2120.
[15] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!