欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (03): 415-423.doi: 10.3724/SP.J.1006.2011.00415

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

花生AhFAD2基因的多态性及其与籽粒油酸/亚油酸比值间的相关性

周丽侠1,3,唐桂英1,2,陈高1,3,毕玉平1,2,3,单雷1,2,*   

  1. 1 山东省农业科学院高新技术研究中心 / 山东省作物与畜禽品种改良生物技术重点实验室,山东济南 250100;2 农业部黄淮海作物遗传改良与生物技术重点实验室,山东济南 250100; 3 山东师范大学生命科学学院,山东济南 250014
  • 收稿日期:2010-08-02 修回日期:2010-12-03 出版日期:2011-03-12 网络出版日期:2011-01-17
  • 基金资助:

    本研究由国家自然科学基金项目(30971546)和山东省自然科学基金项目(ZR2009DM013)资助。

Correlation between AhFAD2 Polymorphism and Oleic Acid/ Linoleic Acid (O/L) Ratio in Peanut Seeds

ZHOU Li-Xia1,3,TANG Gui-Ying1,2,CHEN Gao1,3,BI Yu-Ping1,2,3,SHAN Lei1,2,*   

  1. 1 Hi-Tech Research Centre, Shandong Academy of Agricultural Sciences and Key Laboratory for Genetic Improvement of Crop Animal and Poultry of Shandong Province, Jinan 250100, China; 2 Key Laboratory of Crop Genetic Improvement and Biotechnology, Huanghuaihai, Ministry of Agriculture, Jinan 250100, China; 3 College of Life Science, Shandong Normal University, Jinan 250014, China
  • Received:2010-08-02 Revised:2010-12-03 Published:2011-03-12 Published online:2011-01-17

摘要: 高油酸低亚油酸的花生油稳定性好、营养价值高,培育高油酸/亚油酸比值(O/L)的花生品种一直是花生育种的重要目标。为深入了解控制花生O/L比值的遗传基础,提高花生品质育种效率,对鲁花14等13个花生品种Δ12脂肪酸脱氢酶AhFAD2基因的编码区进行了序列分析。结果表明,该基因在13个花生品种中皆存在3类转录本,即AhFAD2AAhFAD2B和假基因。台山珍珠、台山三粒肉、江田种、Chico、05-21063、白沙1016的基因型是OL1OL1OL2OL2;临桂麻壳、飞龙乡、勾了种、鲁花14、花育19、花育23的基因型是ol1ol1OL2OL2;鲁花11的基因型可能存在OL1ol1杂合等位位点。在个别品种中AhFAD2A基因的若干位置存在多态性;AhFAD2B基因相对保守,所测13个花生品种的核苷酸序列基本相同。结合13个花生栽培品种籽粒中O/L比值测定的结果,初步探讨了基因多态性与O/L比值之间的关系,同时对假基因可能存在的功能进行了讨论。

关键词: 花生, Δ12脂肪酸脱氢酶基因, 基因多态性, O/L比值, 假基因

Abstract: Peanut oils containing high levels of oleic acid and low linoleic acid levels are strongly demanded. This would improve oil stability and nutritional quality. Thus, breeding peanut variety with high O/L ratio has become one of the major goals in plant breeding. To investigate the genetic traits that control high oleate levels-phenotype and improve the peanut-breeding efficiency, we sequenced ORF region of about 527 delta 12 fatty acid desaturaseAhFAD2 cDNAs from 13 peanut varieties. Our results showed that three types of mRNA transcripts AhFAD2A, AhFAD2B and pseudogene existed in all peanut varieties. Genotypes of peanut varieties TaishanPearl, Taishan Sanlirou, Jiangtian, Chico, 05-21063, Baisha 1016; and Linguimake, Feilongxiang, Goule, Luhua 14, Huayu 19, Huayu 23, and Luhua 11 were found to be OL1OL1OL2OL2, ol1ol1OL2OL2 and OL1ol1OL2OL2, respectively. We also found thatsome SNP polymorphism sites existed in the AhFAD2A gene but not in all peanut varieties, and AhFAD2B was relatively conserved in all 13 peanut varieties investigated. Combined with the measurement of O/L ratio in various peanut varieties, the relationship between gene polymorphism and O/L ratio was primarily investigated. Meanwhile, the potential function of pseudogene was also discussed.

Key words: Arachis hypogaea L., Δ12 fatty acid desaturase gene, Gene polymorphism, O/L ratio, Pseudogene

[1]Wang S-B(万书波). Peanut Quality (花生品质学). Beijing: China Agricultural Science and Technology Press, 2005. p 2 (in Chinese)
[2]Moore K M, Knauft D A. The inheritance of the high oleic acid in peanut. J Heredity, 1989, 80: 252–253
[3]Chu Y, Holbrook C C, Ozias-Akins P. Two alleles of ahFAD2B control the the high oleic acid trait in cultivated peanut. Crop Sci, 2009, 49: 2029–2036
[4]Wang S-B(万书波). Peanut Production in China (中国花生栽培学). Shanghai: Shanghai Scientific and Technical Publishers, 2003. pp 1–10 (in Chinese)
[5]St Angelo A J, Ory R L. Investigations of causes and prevention of fatty acid peroxidation in peanut butter. J Am Peanut Res Educ Assoc, 1973, 5: 128–133
[6]Grundy S M. Comparison of monounsaturated fatty acids and carbohydrates for lowering plasma cholesterol in man. New Eng J Med, 1986, 314: 745–748
[7]Yu S L, Pan L J, Yang Q L, Min P, Ren Z K, Zhang H S. Comparison of the Δ12 fatty acid desaturase gene between high-oleic and normal-oleic peanut genotypes. J Genet Genomics, 2008, 35: 679–685
[8]O'Keefe S F, Wiley V A, Knauft D A. Comparison of oxidative stability of high-and normal-oleic peanut oils. J Am Oil Chem Soc, 1993, 70: 489
[9]Bolton G E, Sanders T H. Effect of roasting oil composition on the stability of roasted high-oleic peanuts. J Am Oil Chem Soc, 2002, 79: 129–132
[10]Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea L.): I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet, 2000, 263: 796–805
[11]Chong E W, Sinclair A J, Guymer R H. Facts on fats. Clin Exp Ophthalmol, 2006, 34: 464–471
[12]Colomer R, Menendez J A. Mediterranean diet, olive oil, and cancer. Clin Transl Oncol, 2006, 8: 15–21
[13]Mesa Garcia M D, Aguilera Garcia C M, Gil Hernandes A. Importance of lipids in the nutritional treatment of inflammatory diseases. Nutr Hosp, 2006, 21: 28–41
[14]Vassiliou E K, Gonzalez A, Garcia C, Tadros J H, Chakraborty G, Toney J H. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-α both in vitro and in vivo system. Lipids Health Disease, 2009, 8: 25
[15]Ray T K, Holly S P, Knauft D A, Abbott A G, Powell G L. The primary defect in developing seed from the high oleate variety of peanut (Arachis hypogaea L.) is the absence of Δ12-desaturase activity. Plant Sci, 1993, 91: 15–21
[16]Jung S, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea L.): II. Molecular basis and genetics of the trait. Mol Gen Genet, 2000, 263: 806–811
[17]Chu Y, Ramos L, Holbrook C C, Ozias-Akins P. Frequency of a loss-of-function mutation in oleoyl-PC desaturase (ahFAD2A) in the mini-core of the U.S. peanut germplasm collection. Crop Sci, 2007, 47: 2372–2378
[18]Barkley N A, Chenault-Chamberli K D, Wang M L, Pittman R N. Development of a real time PCR genotyping assay to identify high oleic acid peanuts (Arachis hypogaea L.). Mol Breed, 2010, 25: 541–548
[19]Chen Z B, Wang M L, Barkley N A, Pittman R N. A simple allele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection. Plant Mol Biol Rep, 2010, 28: 542–548
[20]Sukhija P S, Palmquist D L. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J Agric Food Chem, 1988, 36: 1202–1206
[21]Yu S-L(禹山林). The Varieties and Pedigree of Peanut in China (中国花生品种及其系谱). Shanghai: Shanghai Scientific and Technical Publishers, 2008. pp 290–611 (in Chinese)
[22]Bruner A C, Jung S, Abbott A G, Powell G L. The naturally occurring high oleate oil character in some peanut varieties results from reduced oleoyl-PC desaturase activity from mutation of aspartate 150 to asparagine. Crop Sci, 2001, 41: 522–526
[23]Norden A J, Gorbet D W, Knauft D A, Young C T. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci, 1987, 4: 7–11
[24]Lopez Y, Nadaf H L, Smith O D, Connell J P, Reddy A S, Fritz A K. Isolation and characterization of the Δ12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in spanish market-type lines. Theor Appl Genet, 2000, 101: 1131–1138
[25]Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet, 2004, 108: 1492–1502
[26]Harrison P M, Hegyi H, Balasubramanian S, Luscombe N M, Bertone P, Echols N, Johnson T, Gerstein M. Molecular fossils in the human genome: Identification and analysis of the pseudogenes in chromosomes 21 and 22. Genome Res, 2002, 12: 272–280
[27]Zucherkandl E. Why so many noncoding nucleotides ? The eukaryote genomes as an epigenetic machine. Genetica, 2002, 115: 105–129
[28]Wu H(吴浩), Cao M-F(曹明富). Pseudogene. Bull Biol (生物学通报), 2005, 40(5): 20 (in Chinese)
[29]Xiao G(肖钢), Zhang Z-Q(张振乾), Wu X-M(邬贤梦), Tan T-L(谭太龙), Guan C-Y(官春云). Cloning and characterization of six oleic acid desaturase pseudogenes of Brassica napus. Acta Agron Sin (作物学报), 2010, 36(3): 435−441 (in Chinese with English abstract)
[1] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[2] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[3] 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034.
[4] 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703.
[5] 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291.
[6] 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653.
[7] 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679.
[8] 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711.
[9] 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723.
[10] 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767.
[11] 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778.
[12] 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840.
[13] 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490.
[14] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[15] 黄冰艳, 孙子淇, 刘华, 房元瑾, 石磊, 苗利娟, 张毛宁, 张忠信, 徐静, 张梦圆, 董文召, 张新友. 花生巢式群体的脂肪含量遗传分析[J]. 作物学报, 2021, 47(6): 1100-1108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!