作物学报 ›› 2011, Vol. 37 ›› Issue (03): 415-423.doi: 10.3724/SP.J.1006.2011.00415
周丽侠1,3,唐桂英1,2,陈高1,3,毕玉平1,2,3,单雷1,2,*
ZHOU Li-Xia1,3,TANG Gui-Ying1,2,CHEN Gao1,3,BI Yu-Ping1,2,3,SHAN Lei1,2,*
摘要: 高油酸低亚油酸的花生油稳定性好、营养价值高,培育高油酸/亚油酸比值(O/L)的花生品种一直是花生育种的重要目标。为深入了解控制花生O/L比值的遗传基础,提高花生品质育种效率,对鲁花14等13个花生品种Δ12脂肪酸脱氢酶AhFAD2基因的编码区进行了序列分析。结果表明,该基因在13个花生品种中皆存在3类转录本,即AhFAD2A、AhFAD2B和假基因。台山珍珠、台山三粒肉、江田种、Chico、05-21063、白沙1016的基因型是OL1OL1OL2OL2;临桂麻壳、飞龙乡、勾了种、鲁花14、花育19、花育23的基因型是ol1ol1OL2OL2;鲁花11的基因型可能存在OL1ol1杂合等位位点。在个别品种中AhFAD2A基因的若干位置存在多态性;AhFAD2B基因相对保守,所测13个花生品种的核苷酸序列基本相同。结合13个花生栽培品种籽粒中O/L比值测定的结果,初步探讨了基因多态性与O/L比值之间的关系,同时对假基因可能存在的功能进行了讨论。
[1]Wang S-B(万书波). Peanut Quality (花生品质学). Beijing: China Agricultural Science and Technology Press, 2005. p 2 (in Chinese) [2]Moore K M, Knauft D A. The inheritance of the high oleic acid in peanut. J Heredity, 1989, 80: 252–253 [3]Chu Y, Holbrook C C, Ozias-Akins P. Two alleles of ahFAD2B control the the high oleic acid trait in cultivated peanut. Crop Sci, 2009, 49: 2029–2036 [4]Wang S-B(万书波). Peanut Production in China (中国花生栽培学). Shanghai: Shanghai Scientific and Technical Publishers, 2003. pp 1–10 (in Chinese) [5]St Angelo A J, Ory R L. Investigations of causes and prevention of fatty acid peroxidation in peanut butter. J Am Peanut Res Educ Assoc, 1973, 5: 128–133 [6]Grundy S M. Comparison of monounsaturated fatty acids and carbohydrates for lowering plasma cholesterol in man. New Eng J Med, 1986, 314: 745–748 [7]Yu S L, Pan L J, Yang Q L, Min P, Ren Z K, Zhang H S. Comparison of the Δ12 fatty acid desaturase gene between high-oleic and normal-oleic peanut genotypes. J Genet Genomics, 2008, 35: 679–685 [8]O'Keefe S F, Wiley V A, Knauft D A. Comparison of oxidative stability of high-and normal-oleic peanut oils. J Am Oil Chem Soc, 1993, 70: 489 [9]Bolton G E, Sanders T H. Effect of roasting oil composition on the stability of roasted high-oleic peanuts. J Am Oil Chem Soc, 2002, 79: 129–132 [10]Jung S, Swift D, Sengoku E, Patel M, Teule F, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea L.): I. Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Mol Gen Genet, 2000, 263: 796–805 [11]Chong E W, Sinclair A J, Guymer R H. Facts on fats. Clin Exp Ophthalmol, 2006, 34: 464–471 [12]Colomer R, Menendez J A. Mediterranean diet, olive oil, and cancer. Clin Transl Oncol, 2006, 8: 15–21 [13]Mesa Garcia M D, Aguilera Garcia C M, Gil Hernandes A. Importance of lipids in the nutritional treatment of inflammatory diseases. Nutr Hosp, 2006, 21: 28–41 [14]Vassiliou E K, Gonzalez A, Garcia C, Tadros J H, Chakraborty G, Toney J H. Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-α both in vitro and in vivo system. Lipids Health Disease, 2009, 8: 25 [15]Ray T K, Holly S P, Knauft D A, Abbott A G, Powell G L. The primary defect in developing seed from the high oleate variety of peanut (Arachis hypogaea L.) is the absence of Δ12-desaturase activity. Plant Sci, 1993, 91: 15–21 [16]Jung S, Powell G, Moore K, Abbott A. The high oleate trait in the cultivated peanut (Arachis hypogaea L.): II. Molecular basis and genetics of the trait. Mol Gen Genet, 2000, 263: 806–811 [17]Chu Y, Ramos L, Holbrook C C, Ozias-Akins P. Frequency of a loss-of-function mutation in oleoyl-PC desaturase (ahFAD2A) in the mini-core of the U.S. peanut germplasm collection. Crop Sci, 2007, 47: 2372–2378 [18]Barkley N A, Chenault-Chamberli K D, Wang M L, Pittman R N. Development of a real time PCR genotyping assay to identify high oleic acid peanuts (Arachis hypogaea L.). Mol Breed, 2010, 25: 541–548 [19]Chen Z B, Wang M L, Barkley N A, Pittman R N. A simple allele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection. Plant Mol Biol Rep, 2010, 28: 542–548 [20]Sukhija P S, Palmquist D L. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J Agric Food Chem, 1988, 36: 1202–1206 [21]Yu S-L(禹山林). The Varieties and Pedigree of Peanut in China (中国花生品种及其系谱). Shanghai: Shanghai Scientific and Technical Publishers, 2008. pp 290–611 (in Chinese) [22]Bruner A C, Jung S, Abbott A G, Powell G L. The naturally occurring high oleate oil character in some peanut varieties results from reduced oleoyl-PC desaturase activity from mutation of aspartate 150 to asparagine. Crop Sci, 2001, 41: 522–526 [23]Norden A J, Gorbet D W, Knauft D A, Young C T. Variability in oil quality among peanut genotypes in the Florida breeding program. Peanut Sci, 1987, 4: 7–11 [24]Lopez Y, Nadaf H L, Smith O D, Connell J P, Reddy A S, Fritz A K. Isolation and characterization of the Δ12-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in spanish market-type lines. Theor Appl Genet, 2000, 101: 1131–1138 [25]Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet, 2004, 108: 1492–1502 [26]Harrison P M, Hegyi H, Balasubramanian S, Luscombe N M, Bertone P, Echols N, Johnson T, Gerstein M. Molecular fossils in the human genome: Identification and analysis of the pseudogenes in chromosomes 21 and 22. Genome Res, 2002, 12: 272–280 [27]Zucherkandl E. Why so many noncoding nucleotides ? The eukaryote genomes as an epigenetic machine. Genetica, 2002, 115: 105–129 [28]Wu H(吴浩), Cao M-F(曹明富). Pseudogene. Bull Biol (生物学通报), 2005, 40(5): 20 (in Chinese) [29]Xiao G(肖钢), Zhang Z-Q(张振乾), Wu X-M(邬贤梦), Tan T-L(谭太龙), Guan C-Y(官春云). Cloning and characterization of six oleic acid desaturase pseudogenes of Brassica napus. Acta Agron Sin (作物学报), 2010, 36(3): 435−441 (in Chinese with English abstract) |
[1] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 刘嘉欣, 兰玉, 徐倩玉, 李红叶, 周新宇, 赵璇, 甘毅, 刘宏波, 郑月萍, 詹仪花, 张刚, 郑志富. 耐三唑并嘧啶类除草剂花生种质创制与鉴定[J]. 作物学报, 2022, 48(4): 1027-1034. |
[4] | 丁红, 徐扬, 张冠初, 秦斐斐, 戴良香, 张智猛. 不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 695-703. |
[5] | 黄莉, 陈玉宁, 罗怀勇, 周小静, 刘念, 陈伟刚, 雷永, 廖伯寿, 姜慧芳. 花生种子大小相关性状QTL定位研究进展[J]. 作物学报, 2022, 48(2): 280-291. |
[6] | 汪颖, 高芳, 刘兆新, 赵继浩, 赖华江, 潘小怡, 毕晨, 李向东, 杨东清. 利用WGCNA鉴定花生主茎生长基因共表达模块[J]. 作物学报, 2021, 47(9): 1639-1653. |
[7] | 王建国, 张佳蕾, 郭峰, 唐朝辉, 杨莎, 彭振英, 孟静静, 崔利, 李新国, 万书波. 钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J]. 作物学报, 2021, 47(9): 1666-1679. |
[8] | 石磊, 苗利娟, 黄冰艳, 高伟, 张忠信, 齐飞艳, 刘娟, 董文召, 张新友. 花生AhFAD2-1基因启动子及5'-UTR内含子功能验证及其低温胁迫应答[J]. 作物学报, 2021, 47(9): 1703-1711. |
[9] | 高芳, 刘兆新, 赵继浩, 汪颖, 潘小怡, 赖华江, 李向东, 杨东清. 北方主栽花生品种的源库特征及其分类[J]. 作物学报, 2021, 47(9): 1712-1723. |
[10] | 张鹤, 蒋春姬, 殷冬梅, 董佳乐, 任婧瑶, 赵新华, 钟超, 王晓光, 于海秋. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767. |
[11] | 薛晓梦, 吴洁, 王欣, 白冬梅, 胡美玲, 晏立英, 陈玉宁, 康彦平, 王志慧, 淮东欣, 雷永, 廖伯寿. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. |
[12] | 郝西, 崔亚男, 张俊, 刘娟, 臧秀旺, 高伟, 刘兵, 董文召, 汤丰收. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840. |
[13] | 张旺, 冼俊霖, 孙超, 王春明, 石丽, 于为常. CRISPR/Cas9编辑花生FAD2基因研究[J]. 作物学报, 2021, 47(8): 1481-1490. |
[14] | 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592. |
[15] | 黄冰艳, 孙子淇, 刘华, 房元瑾, 石磊, 苗利娟, 张毛宁, 张忠信, 徐静, 张梦圆, 董文召, 张新友. 花生巢式群体的脂肪含量遗传分析[J]. 作物学报, 2021, 47(6): 1100-1108. |
|