欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (04): 711-716.doi: 10.3724/SP.J.1006.2011.00711

• 耕作栽培·生理生化 • 上一篇    下一篇

腐植酸提高食用型甘薯块根可溶性糖含量的生理基础

柳洪鹃1,李作梅1,史春余1,*,张立明2,*   

  1. 1 山东农业大学农学院 / 作物生物学国家重点实验室,山东泰安 271018;2 山东省农业科学院,山东济南 250100
  • 收稿日期:2010-09-27 修回日期:2011-01-06 出版日期:2011-04-12 网络出版日期:2011-02-24
  • 通讯作者: 史春余, E-mail: scyu@sdau.edu.cn, Tel: 0538-8246259; 张立明, E-mail: zhanglm11@sina.com.cn
  • 基金资助:

    本研究由山东省自然科学基金项目(Y2007D14)和国家甘薯产业技术体系北方薯区栽培岗位科学家资助。

Physiological Basis of Improving Soluble Sugar Content in Sweetpotato for Table Use by Humic Acid Application

LIU Hong-Juan1,LI Zuo-Mei1,SHI Chun-Yu1,*,ZHANG Li-Ming2,*   

  1. 1 Agronomy College, Shandong Agricultural University / State Key Laboratory of Crop Biology, Tai’an 271018, China; 2 Shandong Academy of Agricultural Sciences, Jinan 250100, China
  • Received:2010-09-27 Revised:2011-01-06 Published:2011-04-12 Published online:2011-02-24
  • Contact: 史春余, E-mail: scyu@sdau.edu.cn, Tel: 0538-8246259; 张立明, E-mail: zhanglm11@sina.com.cn

摘要: 选用典型的食用型甘薯品种北京553,设置施用腐植酸和对照处理,于2008—2009年2个生长季在山东农业大学农学试验站进行试验。在甘薯块根膨大过程中定期取样,测定块根可溶性糖和淀粉含量及相关酶活性、功能叶蔗糖含量及相关酶活性变化。结果表明, 与对照比较,施用腐植酸显著提高了功能叶磷酸蔗糖合酶活性和蔗糖含量,生育期内平均增幅分别为30.90%和9.48%,显著降低了块根蔗糖合酶活性,平均降幅为11.04%,促进了蔗糖、果聚糖等在块根中的积累;同时,施用腐植酸还显著提高了块根中淀粉酶活性,α-淀粉酶和β-淀粉酶平均增幅分别为11.33%、15.70%,促进了后期葡萄糖、果糖等在块根中的积累。在甘薯收获期,块根可溶性总糖含量提高了15.49%、淀粉含量降低了3.56%。总之,施用腐植酸能够增加块根中蔗糖的供应量、抑制可溶性糖向淀粉转化、促进淀粉水解,这些是提高块根可溶性总糖含量的生理基础。

关键词: 甘薯, 腐植酸, 块根, 可溶性糖, 糖代谢酶

Abstract: Soluble sugar content is a main index of edible quality in storage root of sweetpotato for table use.  Previous research showed that soluble sugar content in storage organs of plants was increased significantly by application of humic acid (HA), butthere have been little research on their physiological basis. The objective of this study was to clarify the physiological basis of soluble sugar content improvement in storage root of sweetpotato by using humic acid. The typical varieties of sweetpotato for table use (Beijing 553) was grown in a replicated experiment at agricultural experiment station of Shandong Agricultural University in two summer growing seasons of 2008 and 2009. The treatments included the control and treatment applied HA. The changes of starch content, soluble sugar content and relative enzymes activity during root tuber development, and sucrose content and relative enzymes activity in functional leaves were determined by using periodic sampling during storage root development. The results showed that compared with the control, sucrose phosphate synthase (SPS) activity and sucrose content in functional leaves were increased significantly, with the average increase of 30.90% and 9.48% during whole growth period, while sucrose synthase (SS) activity in storage root was decreased significantly with the average declines by 11.04%, that could promote accumulation of sucrose and fructan in storage root in treatment of HA. Amylase activity in treatment of applying HA was increased significantly with the average increase of 11.33% and 15.70%, respectively for α-amylase and β-amylase activity, that enlarged the accumulation of fructose and glucose in storage root. At harvest, the soluble sugar content was increased by 15.49% and the starch content was decreased by 3.56%. The increase of sucrose content, the decrease of the inversion quantity from soluble sugar to starch and the hydrolysis enhancement of starch in storage root are the physiological basis of increasing soluble sugar of storage root.

Key words: Sweetpotato, Humic acid, Storage root, Soluble sugar, Carbohydrate metabolic enzymes

[1]Ma D-F(马代夫), Qiu J(邱军), Fang B-P(房伯平), Sun J-Y(孙近友), Liu Y-H(刘玉恒), Liu Q-C(刘庆昌), Zhang L-M(张立明). Investigation of national sweetpotato regional test and recommendations on industrial development. Rain Fed Crops (杂粮作物), 2004, 24(5): 306–308 (in Chinese)
[2]Zhang L-M(张立明), Wang Q-M(王庆美), Wang Y-C(王荫墀). The main nutrient components and health care function of sweetpotato. Rain Fed Crops (杂粮作物), 2003, 23(3): 162–166 (in Chinese)
[3]Shi C-Y(史春余), Wang R-J(王汝娟), Liang T-B(梁太波), Wang Z-L(王振林). Characterization of carbohydrate metabolism in relation to quality of storage root in edible sweetpotato. Sci Agric Sin (中国农业科学), 2008, 41(11): 3878–3885 (in Chinese with English abstract )
[4]Zhang Q-H(张清华), Wang C-Q(王成秋), Han W-C(韩为灿), Fan R-P(范荣平), Han C-B(韩超兵). Study on the application of foliar humic acid in citrus. Humic Acid (腐植酸), 1996, (3): 13–15 (in Chinese)
[5]Ma H-G(马海刚), Xu W-L(徐万里), He S-L(何生丽), Jiang C-Y(蒋晨义), Sun H-W(孙好文), Cai Z-Y(蔡泽宇). Effect of humic acid fertilizer on applied fertilizer and quality of processing tomato. Xinjiang Agric Sci (新疆农业科学), 2009, 46(4): 772–775 (in Chinese with English abstract)
[6]Zhang J-Z(张继舟), Yuan L(袁磊), Ma X-F(马献发). Effects of humic acid on soil nutrients and salts, and on yield and quality of tomato in greenhouse. Humic Acid (腐植酸), 2008, (3): 19–22 (in Chinese)
[7]Yao H-L(姚海兰), Shi C-Y(史春余), Wang R-J(王汝娟). Effects of potassium humate on storage root quality of edible sweetpotato. Humic Acid (腐植酸), 2009, (1): 24–28 (in Chinese)
[8]Wang Y-Q(王艳群), Zhang X-G(张笑归), Xue S-C(薛世川), Gao R-T(高如泰), Zhou Y-P(周亚鹏). Effects of weathered coal and microelement fertilizer on the biologic yield and quality of crown daisy. Chin Agric Sci Bull (中国农学通报), 2008, 24(1): 293–296 (in Chinese with English abstract)
[9]Xiang G-D(项国栋), Zou D-Y(邹德乙), Li R(李荣). Study on effect of humic acid fertilizer specified for vegetable on growth of strawberry and its best application rate. Humic Acid (腐植酸), 2006, (5): 38–42 (in Chinese)
[10]Du H-Y(杜会英), Xue S-C(薛世川), Sun Z-M(孙志梅), Yang Y-M(杨云马), Wang Y-Q(王艳群), Li Y-C(李迎春). The effect of humic acid (HA) compound fertilizer on the quality and production of grape. J Agric Univ Hebei (河北农业大学学报), 2004, 27(4): 63–66 (in Chinese with English abstract)
[11]Shi C-Y(史春余), Zhang F-D(张夫道), Zhang S-Q(张树清), Li H(李辉), Fu C-G(付成高). Effects of organic-inorganic slow release fertilizers on yield and nitrogen recovery in tomato. Plant Nutr Fert Sci (植物营养与肥料学报), 2004, 37(6): 1183–1187 (in Chinese with English abstract)
[12]Padem H, Ocal A. Effects of humic acid applications on yield and some characteristics of processing tomato. Acta Hort, 2002, 487: 173–179
[13]Ertan Yildirim. Foliar and soil fertilization of humic acid affect productivity and quality of tomato. Acta Agric Scandinavica Section B-Soil Plant Sci, 2007, 57: 182–186
[14]He P(何萍), Yang J(杨金), Zhou W(周卫). The effect of humic acid (HA) compound fertilizer on yield, quality and physiological activity in tomato. Chin J Soil Sci (土壤通报), 1997, 28(6): 277–279 (in Chinese)
[15]Lin R-X(林汝湘), Xie C-S(谢春生), Feng Z-X(冯祖虾), Huang H-C(黄宏城). A study on several nutritional compositions of sweetpotato germplasm in south China. Sci Agric Sin (中国农业科学), 1995, 28(4): 39–45 (in Chinese with English abstract)
[16]Li L(李良), Liao J-X(廖嘉信), Lai Z-R(赖昭蓉). Relationship between eating quality components and physico-chemical properties in sweetpotato. J Chin Agron Assoc (中华农学会报), 1991, 156: 83–94 (in Chinese)
[17]Guo A-G(郭蔼光). Basic Biochemistry (基础生物化学). Beijing: Higher Education Press, 2008. pp 139–141, 203–205 (in Chinese)
[18]Douglas C D, Tsung M K, Frederick C F. Enzymes of sucrose and hexose metablism in development kernels of two inbreds of maize. Plant Physiol, 1988, 86: 1 013–1 019
[19]Tsai-Mei, Ou-Lee, Setter T L. Effect of increased temperature in apical regions of maize ears on starch-synthesis enzymes and accumulation of sugars and starch. Plant Physiol, 1985, 79: 852–855
[20]Yu X-J(於新建). Experimental Manual of Plant Physiology (植物生理学实验手册). Shanghai: Shanghai Scientific and Technical Publisher, 1985. pp 148–149 (in Chinese)
[21]Wardlaw I F, Willenbrink J. Carbonhydrate storage and mobilization by the culm of wheat between heading and grain maturity: the relation to sucrose synthase and sucrose-phosphate synthase. Aust J Plant Physiol, 1994, 21: 251–271
[22]Smith D A, Prescott H E. Sugar content and activity of sucrose metabolism enzymes in milled rice grain. Plant Physiol, 1989, 89: 893–896
[23]Keeling P L, Wood J R, Tyson R H, Bridges I G. Starch biosynthesis in developing wheat grain. Plant Physiol, 1988, 87: 311–319
[1] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[2] 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528.
[3] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[4] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[5] 王翠娟, 柴沙沙, 史春余, 朱红, 谭中鹏, 季杰, 任国博. 铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达[J]. 作物学报, 2021, 47(2): 305-319.
[6] 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162.
[7] 黄小芳,毕楚韵,石媛媛,胡韵卓,周丽香,梁才晓,黄碧芳,许明,林世强,陈选阳. 甘薯基因组NBS-LRR类抗病家族基因挖掘与分析[J]. 作物学报, 2020, 46(8): 1195-1207.
[8] 刘永晨,司成成,柳洪鹃,张彬彬,史春余. 改善土壤通气性促进甘薯源库间光合产物运转的原因解析[J]. 作物学报, 2020, 46(3): 462-471.
[9] 陈杉彬, 孙思凡, 聂楠, 杜冰, 何绍贞, 刘庆昌, 翟红. 甘薯IbCAF1基因的克隆及耐盐性、抗旱性鉴定[J]. 作物学报, 2020, 46(12): 1862-1869.
[10] 张欢, 杨乃科, 商丽丽, 高晓茹, 刘庆昌, 翟红, 高少培, 何绍贞. 甘薯抗旱相关基因IbNAC72的克隆与功能分析[J]. 作物学报, 2020, 46(11): 1649-1658.
[11] 姜仲禹, 唐丽雪, 柳洪鹃, 史春余. 不同施钾量条件下甘薯块根形成的内源激素变化及其与块根数量的关系[J]. 作物学报, 2020, 46(11): 1750-1759.
[12] 张海燕, 汪宝卿, 冯向阳, 李广亮, 解备涛, 董顺旭, 段文学, 张立明. 不同时期干旱胁迫对甘薯生长和渗透调节能力的影响[J]. 作物学报, 2020, 46(11): 1760-1770.
[13] 史文卿,张彬彬,柳洪鹃,赵庆鑫,史春余,王新建,司成成. 甘薯块根形成和膨大对土壤紧实度的响应机制及与产量的关系[J]. 作物学报, 2019, 45(5): 755-763.
[14] 张海燕,解备涛,汪宝卿,董顺旭,段文学,张立明. 不同甘薯品种抗旱性评价及耐旱指标筛选[J]. 作物学报, 2019, 45(3): 419-430.
[15] 李艳霞,杨卫兵,尹燕枰,郑孟静,陈金,杨东清,骆永丽,庞党伟,李勇,王振林. 小麦小穗不同粒位粒重形成的生理特性差异[J]. 作物学报, 2019, 45(11): 1715-1724.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!