欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (04): 717-722.doi: 10.3724/SP.J.1006.2011.00717

• 研究简报 • 上一篇    下一篇

水稻57H突变体glup-t的遗传分析与基因定位

田孟祥1,2,陈涛1,张亚东1,朱镇1,赵庆勇1,周丽慧1,姚姝1,王艳平1,王才林1,*   

  1. 1 江苏省农业科学院粮食作物研究所 / 江苏省优质水稻工程技术研究中心 / 国家水稻改良中心南京分中心,江苏南京210014;2南京农业大学农学院,江苏南京210095
  • 收稿日期:2010-08-16 修回日期:2010-11-28 出版日期:2011-04-12 网络出版日期:2011-02-24
  • 通讯作者: 王才林, E-mail: clwang@jaas.ac.cn, Tel: 025-84390307
  • 基金资助:

    本研究由农业部公益性行业(农业)科研专项(200803056),江苏省农业科技自主创新基金项目(CX[09]634),江苏省重大科技支撑计划项目(BE2008354)和江苏省自然科学基金项目(BK2008347)资助。

Genetic Analysis and Mapping of glup-t Gene for 57H Mutant in Rice

TIAN Meng-Xiang1,2,CHEN Tao1,ZHANG YA-Dong1,ZHU Zhen1,ZHAO Qing-Yong1,ZHOU Li-Hui1,YAO Shu1,WANG Yan-Ping1,WANG Cai-Lin1,*   

  1. 1 Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Jiangsu High Quality Rice R&D Center, Nanjing Branch of China National Center for Rice Improvement, Nanjing 210014, China; 2 College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2010-08-16 Revised:2010-11-28 Published:2011-04-12 Published online:2011-02-24
  • Contact: 王才林, E-mail: clwang@jaas.ac.cn, Tel: 025-84390307

摘要: 谷蛋白是水稻胚乳中主要的贮藏蛋白,约占总蛋白的80%。谷蛋白最初在粗糙内质网表面以57 kD前体的形式合成,这些前体经加工转运等过程,最终沉积在第二类蛋白体PB-II中,裂解为成熟的酸碱性亚基。任一谷蛋白转运步骤的缺陷都有可能导致谷蛋白57 kD前体的积累,形成谷蛋白前体增加突变体,即57H突变体。细老鼠牙是一个57H自然突变体,其57 kD谷蛋白前体增加而相应的37~39 kD酸性和22~23 kD碱性亚基减少,此外,该突变体还表现为13 kD醇溶蛋白大大增加。本研究以细老鼠牙与武运粳7号、02428杂交获得的F2群体为材料,对57H突变体进行遗传分析和基因定位,结果表明,细老鼠牙的57H突变性状受1对隐性核基因控制,暂命名为glup-t。利用简单重复序列(simple sequence repeat, SSR)、插入缺失(insertion deletion, Indel)和酶切扩增多态性序列(cleaved amplified polymorphic sequence, CAPS)等分子标记的方法,将该突变基因glup-t定位在水稻第4染色体长臂上的CAPS4-3与Indel4-7、Indel4-8之间,遗传距离均为0.26 cM。

关键词: 水稻, 谷蛋白, 57H突变体, glup-t, 基因定位

Abstract: Glutelins are major storage protein and account for 80% of the total protein found in starchy endosperm in rice. They are synthesized on rough endoplasmic reticulum as 57 kD precursors, and then processed into acidic and basic subunits in PB-II. Mutation of the gene controlling the synthesis of glutelin will result in an formation with high amount of 57 kD glutelin precursor, named 57H mutant. In this study, we reported a novel rice 57H spontaneous mutant, Xilaoshuya, which showed increased amount of 57 kD and 13 kD polypeptides, the decreased amounts of 37–39 kD and 22–23 kD polypeptides. Four F2 segregation populations derived from crosses between Xilaoshuya and Wuyunjing 7, 02428 were used to study the inheritance and gene mapping for 57H mutant. The results suggested that, the mutant trait in Xilaoshuya was controlled by a pair of recessive nuclear gene and designated tentatively as glup-t. By means of molecular marker technique, the glup-t gene was mapped between CAPS4-3 and Indel4-7, Indel4-8 on the long arm of chromosome 4, and all of the genetic distances to the three markers were 0.26 cM.

Key words: Rice, Glutelin, 57H mutant, glup-t, Gene mapping

[1]Liu Q-Q(刘巧泉), Zhou L-H(周丽慧), Wang H-M(王红梅), Gu M-H(顾铭洪). Advances on biosynthesis of rice seed storage proteins in molecular biology. Mol Plant Breed (分子植物育种), 2008, 6(1): 1–15 (in Chinese with English abstract)
[2]Yamagata H, Sugimoto T, Tanaka K, Kasai Z. Biosynthesis of storage proteins in developing rice seeds. Plant Physiol, 1982, 170: 1094–1100
[3]Sarker S C, Ogawa M, Takahashi M, Asada K. Processing of a 57-kD precursor peptide to subunits of rice glutelin. Plant Cell Physiol, 1986, 27: 1579–1586
[4]Kumamaru T, Uemura Y, Inoue Y, Takemoto Y, Siddiqui S U, Ogawa M, Hara-Nishimura I, Satoh H. Vacuolar processing enzyme plays an essential role in the crystalline structure of glutelin in rice seed. Plant Cell Physiol, 2010, 51: 38–46
[5]Kumamaru T, Satoh H, Iwata N, Omura T, Ogawa M, Tanaka K. Mutants for rice storage proteins: 1. Screening of mutants for rice storage proteins of protein bodies in the starchy endosperm. Theor Appl Genet, 1988, 76: 11–16
[6]Zheng T Q, Shen W B, Zhu S S, Zhai H Q, Wan J M. Status and perspectives on the researches of rice glutelin mutants. Agric Sci China, 2003, 2(3): 237–244
[7]Tian H-D(田怀东), Zhang B-X(张变香). Diversity of phenotypes of endosperm storage proteins of rice 57H mutants and their classification. Bull Bot Res (植物研究) 2010, 30(3): 283–288 (in English with Chinese abstract)
[8]Kumamaru T, Satoh H, Iwata N, Omura T, Ogawa M. Mutants for rice storage proteins: III. Genetic analysis of mutants for storage proteins of protein bodies in the starchy endosperm. Jpn J Genet, 1987, 62: 333–339
[9]Satoh H, Kumamaru T, Yoshimura S, Ogawa M. New 57 kDa glutelin genes on chromosome 9 in rice. Rice Genet Newslett, 1994, 11: 158–161
[10]Kumamaru T, Uemura Y, Takemoto Y, Ogawa M, Satoh H. High-resolution mapping of glup3 gene accumulating high amount of glutelin precursor. Rice Genet Newslett, 2002, 19: 62–63
[11]Wang Y H, Zhu S S, Liu S J, Jiang L, Chen L M, Ren Y L, Han X H, Liu F, Ji S L, Liu X, Wan J M. The vacuolar processing enzyme OsVPE1 is required for efficient glutelin processing in rice. Plant J, 2009, 58: 606–617
[12]Sato M, Takemoto Y, Kumamaru T, Satoh H. Mapping of glup4 gene for highly accumulating glutelin precursor polypeptides in rice. Rice Genet Newslett, 2003, 20: 42–43
[13]Ueda Y, Satoh H, Satoh M, Takemoto Y, Kumamaru T, Ogawa M. Inheritance mode of Glup5 gene and the genetic relationships with other 57 mutant genes. Rice Genetics Newsletters, 2004, 21: 49–50
[14]Satoh M, Ishihara D, Tian H D, Takemoto Y, Kumamaru, T, Satoh H. Gene mapping and immunocytochemistry of rice glup6 mutant. Rice Genetics Newsletters, 2003, 20: 43–44
[15]Ueda Y, Sugino A, Takemoto Y, Satoh M, Kumamaru T, Ogawa M, Satoh H. A novel 57H mutant gene, glup7, located on chromosome 4. Rice Genet Newslett, 2004, 21: 51–54
[16]Takemoto Y, Coughlan S J, Okita T W, Satoh H, Ogawa M, Kumamaru T. The rice mutant esp-2 greatly accumulates the glutelin Precursor and deletes the protein disulfide isomerase. Plant Physiol, 2002, 4: 1212–1222
[17]Wang Y-P(王艳平), Tian M-X(田孟祥), Tang L-H(汤陵华), Fang X-W(方先文), Wang C-L(王才林). The glutelin content analysis of rice 57H glutelin mutants. Jiangsu Agric Sci (江苏农业科学),2009, (6): 34–36 (in Chinese)
[18]Jiang S-M(江绍玫), Zhu S-S(朱速松), Shen W-B(沈文飚), Zheng T-Q(郑天清), Wang Y-H(王益华), Jiang L(江玲), Wang C-M(王春明), Xu L-L(徐朗莱), Wan J-M(万建民). Research on methods for screening rice mutant s of storage proteins. J Nanjing Agric Univ (南京农业大学学报), 2003, 26(4): 17–20 (in Chinese with English abstract)
[19]Tian M-X(田孟祥), Chen T(陈涛), Zhang Y-D(张亚东), Zhu Z(朱镇), Zhao L(赵凌), Zhao Q-Y(赵庆勇), Zhou L-H(周丽慧), Wang Y-P(王艳平), Wang C-L(王才林). Design and validation of two indel markers for low glutelin content gene (lgc1) in rice. Mol Plant Breed (分子植物育种), 2010, 8(2): 340–344 (in Chinese with English abstract)
[20]Dellaport S L, Wood J, Hicks J B. A plant DNA minipreparation: Plant Mol Biol Rep, 1983, 1: 19–21
[21]Zhao Q-Y(赵庆勇), Zhu Z(朱镇), Zhang Y-D(张亚东), Zhao L(赵凌), Chen T(陈涛), Zhang Q-F(张巧凤), Wang C-L(王才林). Analysis on correlation between heterosis and genetic distance based on simple sequence repeat markers in japonica rice. Chin J Rice Sci (中国水稻科学), 2009, 23(2): 141–147 (in Chinese with English abstract)
[22]Temnykh S, Declerck G, Lukashova A, Lipovich L, Cartinhour S, Mccouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon association, and genetic marker potential. Genome Res, 2001, 11: 1441–1452
[23]Satoh H, Kumamaru T, Ogawa M, Shiraishi M, Im B G, Son M Y, Takemoto Y. Spontaneous 57 kDa mutant in rice. Rice Genet Newslett, 1995, 12: 194–196
[24]Satoh H, Li W X, Takemoto Y, Ito T, Kumamaru T, Qu L Q, Ogawa M. glup4 controlling a 57H character was located on chromosome 12 in rice. Rice Genet Newslett, 1999, 16: 98–100
[25]Tian H D, Kumamaru T, Takemoto Y, Ogawa M, Satoh H. Gene analysis of new 57H mutant gene, glup6, in rice. Rice Genet Newsl, 2001, 18: 48–50
[26]Ahmed S U, Bar-Peled M, Raikhel N V. Cloning and subcellular location of an Arabidopsis receptor-like protein that shares common features with protein-sorting receptors of eukaryotic cells. Plant Physiol, 1997, 114: 325–336
[27]Shimada T, Fuji K, Tamura K, Kondo M, Nishimura M, Hara-Nishimura I. Vacuolar sorting receptor for seed storage proteins in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2003, 100: 16095–16100
[28]Kim H, Kang H, Jang M, Chang J H, Miao Y S, Jiang L W, Hwang I. Homomeric interaction of AtVSR1 is essential for its function as a vacuolar sorting receptor. Plant Physiol, 2010, 154: 134–148
[29]Shimada T, Koumoto Y, Li L X, Yamazaki M, Kondo M, Nishimura M, Hara-Nishimura I. AtVPS29, a putative component of a retromer complex, is required for the efficient sorting of seed storage proteins. Plant Cell Physiol, 2006, 47: 1187–1194
[30]Li L X, Shimada T, Takahashi H, Ueda Y, Fukao Y, Kondo M, Nishimura M, Hara-Nishimura I. MAIGO2 is involved in exit of seed storage proteins from the endoplasmic reticulum in Arabidopsis thaliana. Plant Cell, 2006, 18: 3535–3547
[31]Tamura K, Takahashi H, Kunieda T, Fuji K, Shimada T, Hara-Nishimura I. Arabidopsis KAM2/GRV2 is required for proper endosome formation and functions in vacuolar sorting and determination of the embryo growth axis. Plant Cell, 2007, 19: 320–332
[32]Shimada T, Yamada K, Kataoka, M, Nakaune S, Koumoto Y, Kuroyanagi M, Tabata S, Kato T, Shinozaki K, Seki M, Kobayashi M, Kondo M, Nishimura M, Hara-Nishimura I. Vacuolar processing enzymes are essential for proper processing of seed storage proteins in Arabidopsis thaliana. J Biol Chem, 2003, 278: 32292–32299
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!