欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (04): 723-728.doi: 10.3724/SP.J.1006.2011.00723

• 研究简报 • 上一篇    下一篇

燕麦葡聚糖合酶基因AsCSLH的克隆及特征分析

吴斌,张宗文*   

  1. 中国农业科学院作物科学研究所, 北京 100081
  • 收稿日期:2010-09-10 修回日期:2011-01-06 出版日期:2011-04-12 网络出版日期:2011-02-24
  • 通讯作者: 张宗文, E-mail:zongwenz@163.com, Tel: 010-82105685
  • 基金资助:

    本研究由国家自然科学基金项目(30800699)和中央级公益性科研院所基本科研业务费专项(2060302-17)资助。

Cloning and Analysis of β-Glucan Synthase Gene AsCSLH in Avena sativa L.

U Bin,ZHANG Zong-Wen*   

  1. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2010-09-10 Revised:2011-01-06 Published:2011-04-12 Published online:2011-02-24
  • Contact: 张宗文, E-mail:zongwenz@163.com, Tel: 010-82105685

摘要: β-葡聚糖是燕麦发挥保健作用的重要功能因子,分离其合成关键基因有助于解析燕麦β-葡聚糖积累的分子机制。以高β-葡聚糖燕麦地方品种夏莜麦为材料, 通过RACE和染色体步移的方法克隆了燕麦β-葡聚糖合酶基因AsCSLH及其基因组序列并分析其序列结构特征,采用半定量RT-PCR方法研究该基因组织表达特性。分离出的燕麦CSLH基因包含6个内含子, 内含子剪接方式均符合GT/AG剪接规则,编码区全长2 277 bp,在序列上与水稻CSLH基因的编码区序列相似性最高并且所预测的编码蛋白含有相关多糖合成酶保守结构域。AsCSLH基因在燕麦各组织中均有表达,在灌浆期籽粒中表达水平最高。推测AsCSLH基因在燕麦籽粒的β-葡聚糖合成中起重要作用。

关键词: 燕麦, β-葡聚糖合酶, 基因克隆, 表达分析

Abstract: Beta-glucan [(1→3, 1→4)-β-D-glucan] is one of the important components in oat (Avena sativa L.) that has the function of health protection for human beings. Cloning the β-glucan synthase gene is of significance to reveal the molecular mechanism of β-glucan accumulation and guide oat breeding for β-glucan enhancement. A β-glucan synthase gene, designated AsCSLH, and its genomic DNA sequence were cloned from the oat landrace Xiayoumai using rapid amplification of cDNA ends (RACE) and GenomeWalk from the cDNA, respectively. The AsCSLH gene contains a 2 277 bp open reading frame and encodes a peptide of 758 amino acid residues. Six introns were found in AsCSLH gene with typical GT/AG characteristic after comparison of its sequences of genomic DNA and cDNA. Sequences analysis showed that AsCSLH gene shared the highest identity with rice CSLH gene (BK000084). Structure analysis of predicted encoded protein also confirmed that this cDNA sequence was the oat β-glucan synthase gene. The tissue-specific expression analysis by semiquantitative RT-PCR assays suggested that AsCSLH was expressed in different tissues of oat with the highest level in immature seeds. These results suggested that AsCSLH plays an important role in oat β-glucan synthesis.

Key words: Oat (Avena sativa L.), β-glucan synthase, Gene cloning, Expression analysis

[1]Lu D-B(陆大彪). Oat. Crops (作物杂志), 1985, (1): 28 (in Chinese)
[2]Food and Drug Administration. Final Rule: Food Labeling: Health Claims; Oats and Coronary Heart Disease. Fed Regist, 1997-01-23
[2010-11-20]. http://www.fda.gov/Food/LabelingNutrition/LabelClaims/HealthClaimsMeetingSignificantScientificAgreementSSA/ucm074719.htm
[3]Brennan, C S, Cleary L J. The potential use of cereal (1→3, 1→4)-β-D-glucans as functional food ingredients. J Cereal Sci, 2005, 42: 1–13
[4]Buckeridge M S, Rayon C, Urbanowicz B, Tiné M A, Carpita N C. Mixed linkage (1→3),(1→4)-β-D-glucans of grasses. Cereal Chem, 2004, 81: 115–127
[5]Braaten J T, Wood P J, Scott F W, Wolynetz M S, Lowe M K, Bradley-White P, Collins M W. Oat beta-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects. Eur J Clin Nutr, 1994, 48: 465–674
[6]Jenkins A L, Jenkins D J, Zdravkovic U, Würsch P, Vuksan V. Depression of the glycemic index by high levels of beta-glucan fiber in two functional foods tested in type 2 diabetes. Eur J Clin Nutr, 2002, 56: 622–628
[7]Luzio N R, Williams D L, McNamee R B, Malshet V G. Comparative evaluation of the tumor inhibitory and antibacterial activity of solubilized and particulate glucan. Recent Results Cancer Res, 1980, 75: 165–172
[8]Wood P J. Oat β-glucan: Physicochemical properties and physiological effects. Trends Food Sci Technol, 1991, 2: 311–314
[9]Stalberg K, Ellerstom M, Ezcurra I, Ablov S, Rask L. Disruption of an overlapping E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds. Planta, 1996, 199: 515–519
[10]Ulmasov T, Hagen G, Guilfoyle T J. Dimerization and DNA binding of auxin response factors. Plant J, 1999, 19: 309–319
[11]Simpson S D, Nakashima K, Narusaka Y, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J, 2003, 33: 259–270
[12]Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K. An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognition sequence. Plant Cell, 1993, 5: 1529–1539
[13]Zhang Z L, Xie Z, Zou X, Casaretto J, Ho T H, Shen Q J. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol, 2004, 134: 1500–1513
[14]Hazen S P, Scott-Craig J S, Walton J D. Cellulose synthase-like genes of rice. Plant Physiol, 2002, 128: 336–340
[15]Coutinho P M, Deleury E, Davies G J, Henrissat B. An evolving hierarchical family classification for glycosyltransferases. J Mol Biol, 2003, 328: 307–317
[16]Fincher G B. Revolutionary times in our understanding of cell wall. Plant Physiol, 2009, 149: 27–37
[17]Richmond T A, Somerville C R. The cellulose synthase superfamily. Plant Physiol, 2000, 124: 495–498
[18]Farrokhi N, Burton R A, Brownfield L, Hrmova M, Wilson S M, Bacic A, Fincher G B. Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes. Plant Biotechnol J, 2006, 4: 145–167
[19]Doblin M S, Pettolino F A, Wilson S M, Campbell R, Burton R A, Fincher G B, Newbigin E, Bacic A. A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-β-D-glucan synthesis in transgenic Arabidopsis. Proc Natl Acad Sci USA, 2009, 106: 5996–6001
[20]Carpita N C, McCann M C. The maize mixed-linkage (1→3), (1→4)-β-D-Glucan polysaccharide is synthesized at the Golgi membrane. Plant Physiol, 2010, 153: 1362–1371
[21]Read B J, Raman H, McMichael G L, Chalmers K J, Ablett G A, Platz G J, Raman R, Genger R K, Boyd W J R, Li C D, Grime C R, Park R F, Wallwork H, Prangnell R, Lance R C M. Mapping and QTL analysis of the barley population Sloop ´ Halcyon. Aust J Agric Res, 2003, 54: 1145–1153
[22]Hamann T, Osborne E, Youngs H, Misson J, Nussaume L, Somerville C. Global expression analysis of CESA and CSL genes in Arabidopsis. Cellulose, 2004, 11: 279–286
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[3] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[4] 晋敏姗, 曲瑞芳, 李红英, 韩彦卿, 马芳芳, 韩渊怀, 邢国芳. 谷子糖转运蛋白基因SiSTPs的鉴定及其参与谷子抗逆胁迫响应的研究[J]. 作物学报, 2022, 48(4): 825-839.
[5] 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623.
[6] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[7] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[8] 许静, 潘丽娟, 李昊远, 王通, 陈娜, 陈明娜, 王冕, 禹山林, 侯艳华, 迟晓元. 花生油脂合成相关基因的表达谱分析[J]. 作物学报, 2021, 47(6): 1124-1137.
[9] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[10] 贾小平, 李剑峰, 张博, 全建章, 王永芳, 赵渊, 张小梅, 王振山, 桑璐曼, 董志平. 谷子SiPRR37基因对光温、非生物胁迫的响应特点及其有利等位变异鉴定[J]. 作物学报, 2021, 47(4): 638-649.
[11] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[12] 牛娜, 刘震, 黄鹏翔, 朱金勇, 李志涛, 马文婧, 张俊莲, 白江平, 刘玉汇. 马铃薯GAUT基因家族的全基因组鉴定及表达分析[J]. 作物学报, 2021, 47(12): 2348-2361.
[13] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[14] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[15] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!