欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (04): 729-734.doi: 10.3724/SP.J.1006.2011.00723

• 研究简报 • 上一篇    下一篇

长江流域油菜氮磷钾肥料利用率现状研究

邹娟1,鲁剑巍1,*,陈防2,李银水1   

  1. 1华中农业大学资源与环境学院,湖北武汉 430070;2中国科学院武汉研究所武汉植物园,湖北武汉 430074
  • 收稿日期:2010-06-04 修回日期:2011-01-06 出版日期:2011-04-12 网络出版日期:2011-02-24
  • 通讯作者: 鲁剑巍, E-mail: lujianwei@mail.hzau.edu.cn
  • 基金资助:

    本研究由国家“十一五”科技支撑计划项目(2008BADA4B08),国家现代农业(油菜)产业技术体系专项经费资助项目(nycytx-005),教育部新世纪人才项目(NCET-07-0345)和国际植物营养研究所(IPNI)合作项目(Hubei-35)资助。

Status of Nutrient Use Efficiencies of Rapeseed in the Yangtze River Basin

ZOU Juan1,LU Jian-Wei1,*,CHEN Fang2,LI Yin-Shui1   

  1. 1 College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; 2 Botanical Garden of Wuhan / Wuhan Institute of Botany, Chinese Academy of Sciences, Wuhan 430074, China
  • Received:2010-06-04 Revised:2011-01-06 Published:2011-04-12 Published online:2011-02-24
  • Contact: 鲁剑巍, E-mail: lujianwei@mail.hzau.edu.cn

摘要: 总结近年来在长江流域冬油菜主产区进行的74个田间试验结果,分析目前条件下油菜氮磷钾肥的偏生产力、农学效率、肥料表观利用率、生理效率及肥料对油菜产量的贡献率。结果表明,油菜农学效率分别为6.2 kg kg–1 N、6.3 kg kg–1 P2O5和2.6 kg kg–1 K2O;表观利用率为N 34.0%、P2O5 17.4%和K2O 36.9%,生理利用率为18.5 kg kg–1 N、35.5 kg kg–1 P2O5和9.1 kg kg–1 K2O,氮磷钾肥对油菜籽产量的贡献率分别为41.9%、21.4%和11.5%。研究结果显示,试验条件下长江流域油菜的肥料利用率较低,生产上需同时解决油菜高产及肥料利用效率提高的问题。

关键词: 油菜, 肥料利用率

Abstract: Nutrient use efficiency is an important index not only for fertilizer recommendation on the field scale but also for forecasting fertilizer demand on the regional and national scales, however, exact nutrient use efficiencies of rapeseed in the Yangtze River Basin have not been well known yet. In this paper, data from 74 field experiments were collected and used for analysis and evaluation of partial factor productivity (PFP), agronomic efficiency (AE), apparent recovery efficiency (RE), physiological efficiency (PE), and fertilizer contribution index of rapseed. The results indicated that AE averaged 6.2 kg kg–1 N, 6.3 kg kg–1 P2O5, and 2.6 kg kg–1 K2O, respectively. RE averaged N 34.0%, P2O5 17.4%, and K2O 36.9%, respectively. The averages of PE were 18.5 kg kg–1 N, 35.5 kg kg–1 P2O5, and 9.1 kg kg–1 K2O. The contribution of N, P and K fertilizer to rapeseed yield was 41.9%, 21.4%, and 11.5%, respectively. It was concluded that nutrient use efficiencies of rapeseed in the Yangtze River Basin were low. Thus, rapeseed yield and nutrient use efficiencies should be improved simultaneously to ensure sustainability for rapeseed production.

Key words: Rapeseed, Nutrient use efficiency, Nitrogen, Phosphorus, Potassium

[1]Ju X-T(巨晓棠), Zhang F-S(张福锁). Thinking about nitrogen recovery rate. Ecol Environ (生态与环境), 2003, 12(2): 192–197 (in Chinese with English abstract)
[2]Chen T-B(陈同斌), Zeng X-B(曾希柏), Hu Q-X(胡清秀). Utilization efficiency of chemical fertilizers among different counties in China. Acta Geogr Sin (地理学报), 2002, 57(5): 531–538 (in Chinese with English abstract)
[3]Yan X(闫湘), Jin J-Y(金继运), He P(何萍), Liang M-Z(梁鸣早). Recent advances in technology of increasing fertilizer use efficiency. Sci Agric Sin (中国农业科学), 2008, 41(2): 450–459 (in Chinese with English abstract)
[4]Zhu Z-L(朱兆良). Fertilizer fate and N management in agroecosystem. In: Zhu Z-L(朱兆良), Wen Q-X(文启孝). Nitrogen in Soil of China (中国土壤氮素). Nanjing: Jiangsu Science and Technology Press, 1992. pp 228–245 (in Chinese)
[5]Zhu Z-L(朱兆良). The status problems and countermeasure of nitrogen fertilizer application in China. In: Li Q-K(李庆逵), Zhu Z-L(朱兆良), Yu T-R(于天仁), eds. Fertilizer Issues of Sustainable Agriculture Development in China (中国农业持续发展中的肥料问题). Nanjing: Jiangsu Science and Technology Press, 1998. pp 38–51 (in Chinese)
[6]Zhang F-S(张福锁), Wang J-Q(王激清), Zhang W-F(张卫峰), Cui Z-L(崔振岭), Ma W-Q(马文奇), Chen X-P(陈新平), Jiang R-F(江荣风). Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin (土壤学报), 2008, 45(5): 915–924 (in Chinese with English abstract)
[7]Zou J(邹娟), Lu J-W(鲁剑巍), Chen F(陈防), Li Y-S(李银水). Effect of nitrogen, phosphorus, potassium and boron fertilizers on yield and profit of rapeseed (Brassica napus L.) in the Yangtze River Basin. Acta Agron Sin (作物学报), 2009, 35(1): 87–92 (in Chinese with English abstract)
[8]Cassman K G, Peng S, Olk D C, Ladha J K, Reichardt W, Dobermann A, Singh U. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Res, 1998, 56: 7–39
[9]Fageria N K, Baligar V C. Methodology for evaluation of lowland rice genotypes for nitrogen use efficiency. J Plant Nutr, 2003, 26: 1315–1333
[10]Peng S-B(彭少兵), Huang J-L(黄见良), Zhong X-H(钟旭华), Yang J-C(杨建昌), Wang G-H(王光火), Zou Y-B(邹应斌), Zhang F-S(张福锁), Zhu Q-S(朱庆森), Bureshl R, Wittl C. Research strategy in improving fertilizer nitrogen use efficiency of irrigated rice in China. Sci Agric Sin (中国农业科学), 2002, 35(9): 1095–1103(in Chinese with English abstract)
[11]Orlovius K. Oilseed rape. In: Kirbky E A ed, Fertilizing for High Yield and Quality, Bulletin 16. IPI, Basel. 2003
[12]Jensen L S, Christensen L, Mueller T, Nielsen N E. Turnover of residual 15N-labelled fertilizer N in soil following harvest of oilseed rape (Brassica napus L.). Plant Soil, 1997, 190: 193–202
[13]Dreccer M F, Schapendonk A H C M, Slafer G A, Rabbinge R. Comparative response of wheat and oilseed rape to nitrogen supply: Absorption and utilization efficiency of radiation and nitrogen during the reproductive stages determining yield. Plant Soil, 2000, 220: 189–205
[14]Hocking P J, Stapper M. Effects of sowing time and nitrogen fertilizer on canola and wheat, and nitrogen fertilizer on Indian mustard. II. Nitrogen concentrations, N accumulation, and N fertilizer use efficiency. Aust J Agric Res, 2001, 52: 635–644
[15]Hocking P J, Randall P J, DeMarco D. The response of dryland canola to nitrogen fertilizer: partitioning and mobilization of dry matter and nitrogen, and nitrogen effects on yield components. Field Crops Res, 1997, 54: 201–220
[16]Smith C J, Wright G C, Woodroofe M R. The effect of irrigation and nitrogen fertilizer on rapeseed (Brassica napus) production in south-eastern Australia: II. Nitrogen accumulation and oil yield. Irrigr Sci, 1988, 9: 15–25
[1] 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371.
[2] 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501.
[3] 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180.
[4] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[5] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[6] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[7] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[8] 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769.
[9] 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39.
[10] 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740.
[11] 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823.
[12] 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510.
[13] 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798.
[14] 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用[J]. 作物学报, 2021, 47(5): 894-903.
[15] 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!