作物学报 ›› 2011, Vol. 37 ›› Issue (04): 729-734.doi: 10.3724/SP.J.1006.2011.00723
邹娟1,鲁剑巍1,*,陈防2,李银水1
ZOU Juan1,LU Jian-Wei1,*,CHEN Fang2,LI Yin-Shui1
摘要: 总结近年来在长江流域冬油菜主产区进行的74个田间试验结果,分析目前条件下油菜氮磷钾肥的偏生产力、农学效率、肥料表观利用率、生理效率及肥料对油菜产量的贡献率。结果表明,油菜农学效率分别为6.2 kg kg–1 N、6.3 kg kg–1 P2O5和2.6 kg kg–1 K2O;表观利用率为N 34.0%、P2O5 17.4%和K2O 36.9%,生理利用率为18.5 kg kg–1 N、35.5 kg kg–1 P2O5和9.1 kg kg–1 K2O,氮磷钾肥对油菜籽产量的贡献率分别为41.9%、21.4%和11.5%。研究结果显示,试验条件下长江流域油菜的肥料利用率较低,生产上需同时解决油菜高产及肥料利用效率提高的问题。
[1]Ju X-T(巨晓棠), Zhang F-S(张福锁). Thinking about nitrogen recovery rate. Ecol Environ (生态与环境), 2003, 12(2): 192–197 (in Chinese with English abstract) [2]Chen T-B(陈同斌), Zeng X-B(曾希柏), Hu Q-X(胡清秀). Utilization efficiency of chemical fertilizers among different counties in China. Acta Geogr Sin (地理学报), 2002, 57(5): 531–538 (in Chinese with English abstract) [3]Yan X(闫湘), Jin J-Y(金继运), He P(何萍), Liang M-Z(梁鸣早). Recent advances in technology of increasing fertilizer use efficiency. Sci Agric Sin (中国农业科学), 2008, 41(2): 450–459 (in Chinese with English abstract) [4]Zhu Z-L(朱兆良). Fertilizer fate and N management in agroecosystem. In: Zhu Z-L(朱兆良), Wen Q-X(文启孝). Nitrogen in Soil of China (中国土壤氮素). Nanjing: Jiangsu Science and Technology Press, 1992. pp 228–245 (in Chinese) [5]Zhu Z-L(朱兆良). The status problems and countermeasure of nitrogen fertilizer application in China. In: Li Q-K(李庆逵), Zhu Z-L(朱兆良), Yu T-R(于天仁), eds. Fertilizer Issues of Sustainable Agriculture Development in China (中国农业持续发展中的肥料问题). Nanjing: Jiangsu Science and Technology Press, 1998. pp 38–51 (in Chinese) [6]Zhang F-S(张福锁), Wang J-Q(王激清), Zhang W-F(张卫峰), Cui Z-L(崔振岭), Ma W-Q(马文奇), Chen X-P(陈新平), Jiang R-F(江荣风). Nutrient use efficiencies of major cereal crops in China and measures for improvement. Acta Pedol Sin (土壤学报), 2008, 45(5): 915–924 (in Chinese with English abstract) [7]Zou J(邹娟), Lu J-W(鲁剑巍), Chen F(陈防), Li Y-S(李银水). Effect of nitrogen, phosphorus, potassium and boron fertilizers on yield and profit of rapeseed (Brassica napus L.) in the Yangtze River Basin. Acta Agron Sin (作物学报), 2009, 35(1): 87–92 (in Chinese with English abstract) [8]Cassman K G, Peng S, Olk D C, Ladha J K, Reichardt W, Dobermann A, Singh U. Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Res, 1998, 56: 7–39 [9]Fageria N K, Baligar V C. Methodology for evaluation of lowland rice genotypes for nitrogen use efficiency. J Plant Nutr, 2003, 26: 1315–1333 [10]Peng S-B(彭少兵), Huang J-L(黄见良), Zhong X-H(钟旭华), Yang J-C(杨建昌), Wang G-H(王光火), Zou Y-B(邹应斌), Zhang F-S(张福锁), Zhu Q-S(朱庆森), Bureshl R, Wittl C. Research strategy in improving fertilizer nitrogen use efficiency of irrigated rice in China. Sci Agric Sin (中国农业科学), 2002, 35(9): 1095–1103(in Chinese with English abstract) [11]Orlovius K. Oilseed rape. In: Kirbky E A ed, Fertilizing for High Yield and Quality, Bulletin 16. IPI, Basel. 2003 [12]Jensen L S, Christensen L, Mueller T, Nielsen N E. Turnover of residual 15N-labelled fertilizer N in soil following harvest of oilseed rape (Brassica napus L.). Plant Soil, 1997, 190: 193–202 [13]Dreccer M F, Schapendonk A H C M, Slafer G A, Rabbinge R. Comparative response of wheat and oilseed rape to nitrogen supply: Absorption and utilization efficiency of radiation and nitrogen during the reproductive stages determining yield. Plant Soil, 2000, 220: 189–205 [14]Hocking P J, Stapper M. Effects of sowing time and nitrogen fertilizer on canola and wheat, and nitrogen fertilizer on Indian mustard. II. Nitrogen concentrations, N accumulation, and N fertilizer use efficiency. Aust J Agric Res, 2001, 52: 635–644 [15]Hocking P J, Randall P J, DeMarco D. The response of dryland canola to nitrogen fertilizer: partitioning and mobilization of dry matter and nitrogen, and nitrogen effects on yield components. Field Crops Res, 1997, 54: 201–220 [16]Smith C J, Wright G C, Woodroofe M R. The effect of irrigation and nitrogen fertilizer on rapeseed (Brassica napus) production in south-eastern Australia: II. Nitrogen accumulation and oil yield. Irrigr Sci, 1988, 9: 15–25 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8和BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180. |
[4] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[5] | 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811. |
[6] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[7] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[8] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[9] | 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39. |
[10] | 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740. |
[11] | 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823. |
[12] | 王艳花, 刘景森, 李加纳. 整合GWAS和WGCNA筛选鉴定甘蓝型油菜生物产量候选基因[J]. 作物学报, 2021, 47(8): 1491-1510. |
[13] | 李杰华, 端群, 史明涛, 吴潞梅, 柳寒, 林拥军, 吴高兵, 范楚川, 周永明. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47(5): 789-798. |
[14] | 姚佳瑜, 于吉祥, 王志琴, 刘立军, 周娟, 张伟杨, 杨建昌. 水稻内源油菜素甾醇对施氮量的响应及其对颖花退化的调控作用[J]. 作物学报, 2021, 47(5): 894-903. |
[15] | 唐鑫, 李圆圆, 陆俊杏, 张涛. 甘蓝型油菜温敏细胞核雄性不育系160S花药败育的形态学特征和细胞学研究[J]. 作物学报, 2021, 47(5): 983-990. |
|