欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (04): 735-743.doi: 10.3724/SP.J.1006.2011.00735

• 研究简报 • 上一篇    

超高产春玉米根系特征

张玉芹1,2,杨恒山2,*,高聚林1,*,张瑞富2,王志刚1,徐寿军2,范秀艳2,毕文波2   

  1. 1 内蒙古农业大学农学院,内蒙古呼和浩特010019;2 内蒙古民族大学农学院,内蒙古通辽028042
  • 收稿日期:2010-06-19 修回日期:2010-11-28 出版日期:2011-04-12 网络出版日期:2011-02-24
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB118601),国家自然科学基金项目(30860134),内蒙古农业大学科技创新团队建设计划项目(NDTD2010-9)和内蒙古民族大学科研创新团队支持计划项目(NMD1003)资助。

Root Characteristics of Super High-Yield Spring Maize

ZHANG Yu-Qin1,2,YANG Heng-Shan2,*,GAO Ju-Lin1,*,ZHANG Rui-Fu2,WANG Zhi-Gang1,XU Shou-Jun2,FAN Xiu-Yan2,BI Wen-Bo2   

  1. 1 Department of Agronomy, Inner Mongolia Agricultural University, Huhhot 010019, China; 2 Department of Agronomy, Inner Mongolia University for the Nationality, Tongliao 028042, China
  • Received:2010-06-19 Revised:2010-11-28 Published:2011-04-12 Published online:2011-02-24

摘要: 以西辽河平原地区广泛种植的金山27为试材,以当地普通高产栽培模式为对照,研究了超高产栽培下春玉米的根系特征。结果表明,超高产春玉米深层根系占总根重比例较大,最大根幅下移,下层土壤根条数增加,且随土层深度增加与对照的差异增大。单株根重随生育进程呈先升后降的变化趋势,吐丝期达到最大且与对照的差异达到显著水平。各生育时期0~20 cm土层根重所占比例明显低于对照,40 cm以下各土层根重所占比例均高于对照。冠根比生育前期与对照接近,生育后期低于对照。根系活力变化随生育进程呈单峰型变化曲线,在吐丝期达到最大。超高产栽培下各生育时期根系活力随土层深度增加均呈单峰型变化曲线,而对照在不同生育时期有较大的差异。SOD和POD活性在吐丝期和乳熟期各土层超高产栽培均高于对照,而MDA含量低于对照。深松土和优化施肥改善了根系环境条件和养分供应水平,在高密度种植下促进了下层根系的发生,并保持较高的生理活性,为超高产的实现奠定了基础。

关键词: 玉米, 超高产栽培, 根系特征

Abstract: Using cultivar Jinshan 27 as test material and high-yield maize cultivar as the control, we analyzed the root characteristics of super high-yield maize. The results showed that the percentage of roots in deep soil was higher, the biggest roots width tended to be deeper, the number of root per plant in deep soil layer increased for super high-yield maize, and the difference of root parameters enlarged with the increase of the soil depth compared with the control. The root dry weight was first up then down in the growing process, and the maximum value appeared at silking stage and showed extremely difference from the control. The percentage of root weight at 0–20 cm soil layer was lower obviously than the control, and that at the soil layer over 40 cm was more than the control at every growing stage. Ratio of shoot/root was close to the control at early growth stage, and lower than the contrastat later growing stage. Changes of rootvigor showed a single apex curveingrowing and the peak value appeared at silking stage. Root vigor at every growing stage changed as a single apex curve with the increase of soil depth under super high-yield cultivation, but root vigor of the control changed greatly in different growing stages. The activities of SOD&POD of root system per soil layer were higher than the control at silking and milking stages in super high-yield maize, but MDA content was lower than the contrast. The root growing condition and nutrient supply were improved by deep ploughing, optimizing fertilization and high planting density, which not only improve the deep root growing, but also keep root a higher physiological activity, providing a basis for production of super high-yield maize.

Key words: Maize, Super high-yield cultivation, Root characteristics

[1]Zhan P(张鹏), Wang C-M(汪朝明), Zhang H-L(张洪龙),Wu Y(吴艳), Cao J-H(曹家洪), Zhao Y-H(赵艳花), Tang G(唐谷). Breeding and application of maize hybrid varieties Shundan 6 suitable for high altitude area planted and resistant to dense super-high-yield. Seed (种子), 2009, 28(3): 97-99 (in Chinese with English abstract)
[2]Dong L(东丽). Research on ways for super high-yielding breeding of crop. Southwest China J Agric Sci (西南农业学报), 2009, 22(5): 1477-1481 (in Chinese with English abstract)
[3]Huang Z-H(黄智鸿), Wang S-Y(王思远), Bao Y(包岩), Liang X-H(梁煊赫), Sun G(孙刚), Shen L(申林), Cao Y(曹洋), Wu C-S(吴春胜). Studies on dry matter accumulation and distributive characteristic in super high yield maize. J Maize Sci (玉米科学), 2007, 15(3): 95-98 (in Chinese with English abstract)
[4]Huang Z-X(黄振喜), Wang Y-J(王永军), Wang K-J(王空军), Li D-H(李登海), Zhao M(赵明), Liu J-G(柳京国), Dong S-T(董树亭), Wang H-J(王洪军), Wang J-H(王军海), Yang J-S(杨今胜). Photosynthetic characteristics during grain filling stage of summer maize hybrids with high yield potential of 15000 kg ha-1. Sci Agric Sin (中国农业科学), 2007, 40(9): 1898-1906 (in Chinese with English abstract)
[5]Wang Z-G(王志刚), Gao J-L(高聚林), Ren Y-Z(任有志), Zhao M(赵明), Dong Z-Q(董志强), Li S-K(李少昆), Yang F-S(杨凤山). Study on canopy structure of super-high yield colony in spring maize. J Maize Sci (玉米科学), 2007, 15(6): 51-56 (in Chinese with English abstract)
[6]Huang Z-H(黄智鸿), Shen L(申林), Cao Y(曹洋), Sun G(孙刚), Hao M(郝满), Wu C-S(吴春胜). Comparative studies on source-sink relationship among super high-yield and common maize varieties. J Jilin Agric Univ (吉林农业大学学报), 2007, 29(6): 607-611(in Chinese with English abstract)
[7]Gao Y-S(高玉山), Dou J-G(窦金刚), Liu H-T(刘慧涛), Sun Y(孙毅), Ren J(任军), Yan X-G(闫孝贡). Research on relationship of varieties, densities and yield constitute factor for super high-yielding maize in semi-arid region of Jilin province. J Maize Sci (玉米科学), 2007, 15(1): 120-122 (in Chinese with English abstract)
[8]Yao X-X(姚晓旭), Yu H-Q(于海秋), Cao M-J(曹敏建). Effect of different nitrogen and potassium fertilizer operation on dry material accumulation and yield of super high-yield maize. Acta Agric Boreali-Sin (华北农学报), 2009, 24(suppl): 176-178 (in Chinese with English abstract)
[9]Su X-H(苏新宏), Zhang X-L(张学林), Wang Q(王群), Li C-H(李潮海). Effects of meteorological factors on grain yield of summer corn under super-high-yield cultivation. J Maize Sci (玉米科学), 2009, 17(1): 105-107 (in Chinese with English abstract)
[10]Hou Y-H(侯玉虹), Chen C-Y(陈传永), Guo Z-Q(郭志强), Hou L-B(侯立白), Zhang B(张宾), Zhao M(赵明). Dynamic characteristics of leaf area index and allocation characters of ecological resources for different yielding spring maize populations. Chin J Appl Ecol (应用生态学报), 2009, 20(1): 135-142 (in Chinese with English abstract)
[11]Cromack K, Sollins P. Calcium oxalate accumulation and soil weathering in mats of the hypogenous fungus Hysterangium crassum. Soil Biol Biochem, 1979, 11: 463-465
[12]Jackson R B, Sperry J S, Dawson T E. Root water uptake and transport: using physiological processes in global predictions. Trends Plant Sci, 2000, 10: 482-488
[13]Zhao J-R(赵久然), Sun S-X(孙世贤). Re-thinking on breeding objective and technical route of super maize. J Maize Sci (玉米科学), 2007, 15(1): 21-23, 28 (in Chinese with English abstract)
[14]Zhu D-F(朱德峰), Lin X-Q(林贤青), Cao W-X(曹卫星). Characteristics of root distribution of super high yielding rice varieties. J Nanjing Agric Univ (南京农业大学学报), 2000, 23 (4): 5-8 (in Chinese with English abstract)
[15]Zhao G-C(赵广才), Liu L-H(刘利华), Zhang Y(张艳), Yang Y-S(杨玉双), Yang Z-S(杨兆生). Effect of fertilizer application on population quality, root system distribution, grain yield and quality in super-high-yielding wheat. Acta Agric Boreali-Sin (华北农学报), 2002, 17(4): 82-87 (in Chinese with English abstract)
[16]Silberbush M, Barber S A. Root growth, nutrient up-take and yield of soybean cultivars grown in the field. Commun Soil Sci Plant Anal, 1985, 16: 119-127
[17]Liu P-L(刘培利), Lin Q(林琪), Sui F-G(隋方功), Sun Z-Q(孙作启). Study on the characteristics of root system in high-yield upright-leaf maize. J Maize Sci (玉米科学), 1994, 2(1): 59-61 (in Chinese with English abstract)
[18]Song R(宋日), Wu C-S(吴春胜), Ma L-Y(马丽艳), Yang Z(杨志), Guo J-X(郭继勋). Comparison of root distribution between spreading-leaf and upright-leaf maize cultivars in Songnen Plain. Shenyang Agric Univ (沈阳农业大学学报), 2002, 33(4): 241-243 (in Chinese with English abstract)
[19]Liu S-Q(刘胜群), Song F-B(宋凤斌). Comparative study on the characteristics of root system among maize genotypes with different tolerance to drought. Yangzhou Univ (Agric & Life Sci Edn)(扬州大学学报?农业与生命科学版), 2007, 28(1): 68-71 (in Chinese with English abstract)
[20]Sun Z-C(孙政才), Zhao J-R(赵久然). Techniques of Combine Good Seed and Good Law for Super High-Yield Maize (超级玉米良种良法配套技术). Beijing: China Agriculture Press, 2005. pp 441-444 (in Chinese)
[21]Chen G-P(陈国平), Yang G-H(杨国航), Zhao M(赵明), Wang L-C(王立春), Wang Y-D(王友德), Xue J-Q(薛吉全), Gao J-L(高聚林), Li D-H(李登海), Dong S-T(董树亭), Li C-H(李潮海), Song H-X(宋慧欣), Zhao J-R(赵久然). Studies on maize small area super-high yield trails and cultivation technique. J Maize Sci (玉米科学), 2008, 16(4): 1-4 (in Chinese with English abstract)
[22]Zhao Z(赵致), Zhang R-D(张荣达), Wu S-L(吴盛黎), Song B(宋碧), Zhang B-K(张帮琨), Jang L(江龙), Wang S(王嵩), Hu J-F(胡建风). Study on theory and technology of growing for high-yield in compact corn. Sci Agric Sin (中国农业科学), 2001, 34(5): 537-543 (in Chinese with English abstract)
[23]Zou Q(邹琦). The Book Instruction Experiment of Plant Physiological and Biochemical (植物生理生化实验指导). Beijing: China Agriculture Press, 1997. pp 32-33 (in Chinese)
[24]Giannopolitis C N, Ries S K. Superoxide dismutases: I. Occurrence in higher plants. Plant Physio1, 1977, 59: 309-314
[25]Zhang X-Z(张宪政). Research Methods about Crop Physiology (作物生理研究法). Beijing: Agriculture Press, 1992. pp 131-207 (in Chinese)
[26]Heath R L, Packer L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys, 1968, 125: 189-198
[27]Monita S, Suga T, Yamazaki K. The relationship between root length density and yield in rice plants. Jpn J Crop Sci, 1988, 57 (3): 438-443 (in Chinese with English abstract)
[28]Jin J(金剑), Wang G-H(王光华), Liu X-B(刘晓冰), Li Y-H(李艳华), Chen X-L(陈雪丽), Stephen J H. Characteristics of root distribution at R5 stage in high yielding soybean in black soil. Chin J Oil Crop Sci (中国油料作物学报), 2007, 29(3): 266-271 (in Chinese with English abstract)
[29]Wang H-C(王化岑), Liu W-D(刘万代), Wang C-Y(王晨阳). Study on root growth and Vertical distribution in super high-yield wheat. Chin Agric Sci Bull (中国农学通报), 2002, 18(2): 6-8 (in Chinese)
[30]E Y-J(鄂玉江), Dai J-Y(戴俊英), Gu W-L(顾慰连). Studies on the relationship between root growth and yield in maize. Acta Agron Sin (作物学报), 1988, 14(2): 149-154 (in Chinese with English abstract)
[31]Song R(宋日), Wu C-S(吴春胜), Wang C-J(王成己), Guo J-X(郭继勋). Effects of deep root system on above-ground vegetative growth and yield in maize. J Maize Sci (玉米科学), 2002, 10(3): 63-66 (in Chinese with English abstract)
[32]Wang F-H(王法宏), Wang X-Q(王旭清), Li S-J(李松坚), Bian M-L(边麦玲), Yu Z-W(于振文), Yu S-L(余松烈). Studies on the root activities in different layers of soil of high-yielding wheat at the late growth period. Acta Agron Sin (作物学报), 2001, 27(6): 891-895 (in Chinese with English abstract)
[33]Wang K-J(王空军), Dong S-T(董树亭), Hu C-H(胡昌浩), Liu K-C(刘开昌), Zhang J-W(张吉旺). The evolution of physiological characteristics of maize root during varieties replacing in China, 1950s to 1990s. I. Changes of root Vigor & ATPase activity. Acta Agron Sin (作物学报), 2002, 28(2): 285-189 (in Chinese with English abstract)
[34]Zhao J-R(赵久然), Wang R-H(王荣焕). Factors promoting the steady increase of American maize production and their enlightenments for China. J Maize Sci (玉米科学), 2009, 17(5): 156-159 (in Chinese with English abstract)
[35]Zhang Y(张瑛). Production profiles and cultivation techniques of maize in U.S. Rain Fed Crops (杂粮作物), 2000, (3): 10-13 (in Chinese with English abstract)
[1] 肖颖妮, 于永涛, 谢利华, 祁喜涛, 李春艳, 文天祥, 李高科, 胡建广. 基于SNP标记揭示中国鲜食玉米品种的遗传多样性[J]. 作物学报, 2022, 48(6): 1301-1311.
[2] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[3] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 徐田军, 张勇, 赵久然, 王荣焕, 吕天放, 刘月娥, 蔡万涛, 刘宏伟, 陈传永, 王元东. 宜机收籽粒玉米品种冠层结构、光合及灌浆脱水特性[J]. 作物学报, 2022, 48(6): 1526-1536.
[7] 单露英, 李俊, 李亮, 张丽, 王颢潜, 高佳琪, 吴刚, 武玉花, 张秀杰. 转基因玉米NK603基体标准物质研制[J]. 作物学报, 2022, 48(5): 1059-1070.
[8] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[9] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[10] 闫宇婷, 宋秋来, 闫超, 刘爽, 张宇辉, 田静芬, 邓钰璇, 马春梅. 连作秸秆还田下玉米氮素积累与氮肥替代效应研究[J]. 作物学报, 2022, 48(4): 962-974.
[11] 徐宁坤, 李冰, 陈晓艳, 魏亚康, 刘子龙, 薛永康, 陈洪宇, 王桂凤. 一个新的玉米Bt2基因突变体的遗传分析和分子鉴定[J]. 作物学报, 2022, 48(3): 572-579.
[12] 宋仕勤, 杨清龙, 王丹, 吕艳杰, 徐文华, 魏雯雯, 刘小丹, 姚凡云, 曹玉军, 王永军, 王立春. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738.
[13] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[14] 张倩, 韩本高, 张博, 盛开, 李岚涛, 王宜伦. 控失尿素减施及不同配比对夏玉米产量及氮肥效率的影响[J]. 作物学报, 2022, 48(1): 180-192.
[15] 苏达, 颜晓军, 蔡远扬, 梁恬, 吴良泉, MUHAMMAD AtifMuneer, 叶德练. 磷肥对甜玉米籽粒植酸和锌有效性的影响[J]. 作物学报, 2022, 48(1): 203-214.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!