欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (08): 1497-1502.doi: 10.3724/SP.J.1006.2011.01497

• 研究简报 • 上一篇    

普通小麦品种小偃54中α/β-醇溶蛋白编码基因的克隆与序列分析

张晓霞1,2,焦浈1,董振营2,李世明2,王燃2,凌宏清2,秦广雍1,*,王道文2,*   

  1. 1郑州大学 / 河南省离子束生物工程重点实验室, 河南郑州 450052;2中国科学院遗传与发育生物学研究所 / 植物细胞与染色体工程国家重点实验室,北京 100101
  • 收稿日期:2011-01-25 修回日期:2011-03-26 出版日期:2011-08-12 网络出版日期:2011-06-13
  • 通讯作者: 秦广雍, E-mail: qinguangyong@zzu.edu.cn; 王道文, E-mail: dwwang@genetics.ac.cn
  • 基金资助:

    本研究由植物细胞与染色体工程国家重点实验室开放课题(PCCE-2008-KF-02)和河南省重大科技专项(081100110500)资助。

Cloning and Sequence Analysis of α/β-gliadin Genes from Common Wheat Variety Xiaoyan 54

ZHANG Xiao-Xia1,2,JIAO Zhen1,DONG Zhen-Ying2,LI Shi-Ming2,WANG Ran2,LING Hong-Qing2,QIN Guang-Yong1,*,WANG Dao-Wen2,*   

  1. 1 Henan Provincial Key Laboratory of Ion Beam Bioengineering, Zhengzhou University, Zhengzhou 450052, China; 2 State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
  • Received:2011-01-25 Revised:2011-03-26 Published:2011-08-12 Published online:2011-06-13
  • Contact: 秦广雍, E-mail: qinguangyong@zzu.edu.cn; 王道文, E-mail: dwwang@genetics.ac.cn

摘要: 醇溶蛋白是小麦籽粒贮藏蛋白的重要组分,其组成与含量对小麦加工品质具有重要影响。本研究建立了利用PCR从普通小麦基因组BAC文库中筛选含有α/β-醇溶蛋白基因序列BAC克隆的方法,并获得9个不同的含有α/β-醇溶蛋白基因的BAC克隆。从其中鉴定出17个α/β-醇溶蛋白基因,其编码区序列长度为852~957 bp。12个序列在编码区内存在提前终止密码子,推测为假基因。其他5个成员(Gli-Xy54-1Gli-Xy54-2Gli-Xy54-3Gli-Xy54-7Gli-Xy54-13)分别编码291、310、311、287和317个氨基酸残基,都具有α/β-醇溶蛋白一级结构的典型特征。根据推导的氨基酸序列中乳糜泻病诱发因子的分布情况及多聚谷氨酰胺重复区的长度差异,推测Gli-Xy54-7可能定位于6A染色体,Gli-Xy54-2Gli-Xy54-3Gli-Xy54-13可能定位于6B染色体,Gli-Xy54-1可能定位于6D染色体。基因聚类分析支持了上述推论。这是第一次从普通小麦中筛选到包含α/β-醇溶蛋白基因的BAC克隆,并从中得到目标基因全长,对进一步研究普通小麦基因组中α/β-醇溶蛋白编码基因的组成、表达与功能有较好的参考价值。

关键词: 普通小麦, α/β-醇溶蛋白, BAC文库筛选, 基因克隆

Abstract: We developed a method for identifying the genomic BAC clones containing the α/β-gliadin gene sequences of common wheat (Triticum aestivum L.). Using this method, nine unique positive clones harboring α/β-gliadin genes were obtained from the BAC library of the elite wheat variety Xiaoyan 54. From these BAC clones, 17 distinct α/β-gliadin gene sequences were isolated, 12 of which were pseudogenes because of the presence of one or more premature stop codons in their open reading frame (ORF). The remaining five genes (tentatively designated Gli-Xy54-1, Gli-Xy54-2, Gli-Xy54-3, Gli-Xy54-7, and Gli-Xy54-13) possessed intact ORF. Their deduced protein sequences contained 291, 310, 311, 287, and 317 amino acid residues, respectively, and resembled highly the primary structure of previously reported α/β-gliadins. The presence of celiac disease inducing epitopes and the length of the polyglutamine repeats in the five deduced α/β-gliadins were analyzed. Based on these data, it was suggested that Gli-Xy54-1 might be located on chromosome 6A, Gli-Xy54-2, Gli-Xy54-3, and Gli-Xy54-13 on chromosome 6B, and Gli-Xy54-7 on chromosome 6D. This proposition was supported by phylogenetic analysis of the gliadin gene sequences isolated here and previously. As far as we know, this work represents the first report on the identification of BAC clones containing the α/β-gliadin genes from common wheat. The genes isolated here may facilitate further investigations on the composition, expression and function of α/β-gliadin genes in common wheat.

Key words: Common wheat, α/β-gliadin, BAC library screening, Gene cloning

[1]Han B(韩彬), Shepherd K W. The correlations between low glutenin subunits and gliadins and their effects on bread-making quality in the progeny of two wheats. Sci Agric Sin (中国农业科学), 1991, 24(4): 19–25 (in Chinese with English abstract)
[2]Bushuk W, Zillman R R. Wheat cultivar identification by gliadin electrophoregrams. Can J Plant Sci, 1978, 58: 505–515
[3]Qi P F, Wei Y M, Yue Y W, Yan Z H, Zheng Y L. Biochemical and molecular characterization of gliadins. Mol Biol, 2006, 40: 713–723
[4]Kasarda D D, Autran J C, Lew E J L, Nimmo C C, Shewry P R. N-terminal amino acid sequences of ω-gliadins and ω-secalins: implications for the evolution of prolamin genes. Biochim Biophys Acta, 1983, 747: 138–150
[5]Bietz J A, Huebner F R, Sanderson J E, Wall J S. Wheat gliadin homology revealed through N-terminal amino acid sequence analysis. Cereal Chem, 1977, 54: 1070–1083
[6]Payne P I. Genetics of wheat storage proteins and the effect of allelic variation on bread mapping quality. Annu Rev Plant Physiol, 1987, 38: 141–153
[7]Müller S, Wieser H. Disulphide bonds of alpha-type gliadins. J Cereal Sci, 1995, 22: 21–27
[8]Müller S, Wieser H. The location of disulphide bonds in monomeric gamma-gliadins. J Cereal Sci, 1997, 26: 169–176
[9]Redaelli R. Two-dimension mapping of gliadins using biotypes and null mutants of common wheat cultivar Savatovskaya 29. Hereditas, 1994, 121: 131–137
[10]Kasarda D D, Okita T W, Bernardin J E, Baecker P A, Nimmo C C, Lew E J L, Dietler M D, Greene F C. Nucleic acid (cDNA) and amino acid sequences of α-type gliadins from wheat (Triticum aestivum). Proc Natl Acad Sci USA, 1984, 81: 4712–4716
[11]Dewar D, Pereira S P, Ciclitira P J. The pathogenesis of celiac disease. Int J Biochem Cell Biol , 2004, 36: 17–24
[12]Londei M, Ciacci C, Ricciardelli I, Vacca L, Quaratino S, Maiuri L. Gliadin as a stimulator of innate responses in celiac disease. Mol Immunol, 2005, 42: 913–918
[13]Van Herpen T W J M, Goryunova S V, van der Schoot J, Mitreva M, Salentijn E, Vorst O, Schenk M F, van Veelen P A, Koning F, van Soest L J M, Vosman B, Bosch D, Hamer R J, Gilissen L J W J, Smulders M J M. Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics, 2006, 7: 1
[14]Lee Y K, Békés F, Gras P, Ciaffi M, Morell M K, Appels R. The-low-molecular-weight glutenin subunit proteins of primitive wheats: IV. Functional properties of products from individual genes. Theor Appl Genet, 1999, 98: 149–155
[15]Dong L L, Zhang X F, Liu D C, Fan H J, Sun J Z, Zhang Z J, Qin H J, Li B, Hao S T, Li Z S, Wang D W, Zhang A M, Ling H Q. New insights into the organization, recombination, expression and functional mechanism of low molecular weight glutenin subunit genes in bread wheat. PLoS ONE, 2010, 5(10): e13548
[16]Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol, 2007, 24: 1596–1599
[17]Liu Q(刘千), Long H(龙海), Wei Y-M(魏育明), Yan Z-H(颜泽洪), Zheng Y-L(郑有良). Sequence analysis of a-gliadin genes from wheat variety “Chuannong 16”. Sci Agric Sin (中国农业科学), 2008, 41(7): 2168–2173 (in Chinese with English abstract)
[18]Chen H-P(陈华萍), Long H(龙海), Liu Q(刘千), Wei Y-M(魏育明), Zheng Y-L(郑有良). Sequence analysis of α/β-gliadin genes from Sichuan wheat landrace AS1643. Sci Agric Sin (中国农业科学), 2006, 39(9): 1743–1750 (in Chinese with English abstract)
[19]Gupta R B, MacRitchie F. Allelic variation at glutenin subunit and gliadin loci, Glu-1, Glu-3 and Gli-1 of common wheats: II. Biochemical basis of the allelic effects on dough properties. J Cereal Sci, 1994, 19: 19–29
[20]Spaenij-Dekking L, Kooy-Winkelaar Y, van Veelen P, Wouter Drijfhout J, Jonker H, van Soest L, Smulders M J M, Bosch D, Gilissen L J W J, Koning F. Natural variation in toxicity of wheat: potential for selection of nontoxic varieties for celiac disease patients. Gastroenterology, 2005, 129: 797–806
[21]Anderson O D, Litts J C, Greene F C. The α-gliadin gene family: I. Characterization of ten new wheat α-gliadin genomic clones, evidence for limited sequence conservation of flanking DNA, and southern analysis of the gene family. Theor Appl Genet, 1997, 95: 50–58
[22]Okita T W, Cheesbrough V, Reeves C D. Evolution and heterogeneity of the alpha-/beta-type and gamma-type gliadin DNA sequences. J Biol Chem, 1985, 260: 8203–8213
[23]Harberd N P, Bartels D, Thompson R D. Analysis of the gliadin multigene locus in bread wheat using nullisomic-tetrasomic lines. Mol Gen Genet, 1985, 198: 234–242
[24]Ma Z C, Wei Y M, Yan Z H, Zheng Y L. Characterization of alpha-gliadin genes from diploid wheats and the comparative analysis with those from polyploidy wheats. J Genet, 2007, 43: 1534–1541
[25]Zhu X-P(朱西平), Li X(李鑫), Li Y-X(李雅轩), Yan Y-M(晏月明). Cloning, chromosomal location, and evolutionary analysis of α-gliadin genes from Aegilops tauschii and common wheat (Triticum aestivum L.). Acta Agron Sin (作物学报). 2010, 36(4): 580–589 (in Chinese with English abstract)
[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[4] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[5] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[6] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[7] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[8] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[9] 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502.
[10] 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861.
[11] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
[12] 杨芳萍,刘金栋,郭莹,贾奥琳,闻伟鄂,巢凯翔,伍玲,岳维云,董亚超,夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位[J]. 作物学报, 2019, 45(12): 1832-1840.
[13] 薛晓梦,李建国,白冬梅,晏立英,万丽云,康彦平,淮东欣,雷永,廖伯寿. 花生FAD2基因家族表达分析及其对低温胁迫的响应[J]. 作物学报, 2019, 45(10): 1586-1594.
[14] 谈欢,刘玉汇,李丽霞,王丽,李元铭,张俊莲. 马铃薯块茎花色素苷合成相关R2R3 MYB蛋白基因的克隆和功能
分析
[J]. 作物学报, 2018, 44(7): 1021-1031.
[15] 冯韬,官春云. 甘蓝型油菜芸薹素唑耐受因子(BnaBZR1/BnaBES1)全长CDS克隆与生物信息学分析[J]. 作物学报, 2018, 44(12): 1793-1801.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!