欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (07): 1247-1252.doi: 10.3724/SP.J.1006.2012.01247

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

冬小麦低温处理叶片细胞膜透性的QTL定位

巨伟1,杨彩凤1,张树华2,田纪春3,海燕4,杨学举2,*   

  1. 1 河北农业大学农学院/河北省作物种质资源实验室,河北保定 071000;2 河北农业大学生命科学学院,河北保定 071000;3 山东农业大学农学院,山东泰安 271018;4 河南省农作物新品种重点实验室,河南郑州450000
  • 收稿日期:2011-12-26 修回日期:2012-04-16 出版日期:2012-07-12 网络出版日期:2012-05-11
  • 通讯作者: 杨学举, E-mail: shmyxj@hebau.edu.cn, Tel: 0312-7528267
  • 基金资助:

    本研究由河北省科技支撑计划(06220116D-2)资助。

Mapping QTL for Cell Membrane Permeability of Leaf Treated by Low Temperature in Winter Wheat

JU Wei1,YANG Cai-Feng1,ZHANG Shu-Hua2,TIAN Ji-Chun3,HAI Yan4,YANG Xue-Ju2,*   

  1. 1 College of Agronomy, Agricultural University of Hebei / Crop Germplasm Laboratory of Hebei Province , Baoding 71000, China; 2 College of Life Sciences, Agricultural University of Hebei, Baoding 71000, China; 3 College of Agronomy, Shandong Agricultural University, Tai’an 271018, China; 4 Henan Key Laboratory for Crop Improvement, Zhengzhou 450002, China
  • Received:2011-12-26 Revised:2012-04-16 Published:2012-07-12 Published online:2012-05-11
  • Contact: 杨学举, E-mail: shmyxj@hebau.edu.cn, Tel: 0312-7528267

摘要: 为探索冬小麦抗寒性的分子机制,以168个花培3号×豫麦57的双单倍体株系为作图群体,利用已构建含有324个SSR标记的遗传图谱,对电导法测定低温(−18℃)处理后的叶片膜透性进行QTL定位。利用完全区间作图法,在3种环境下共检测到21个与叶片膜透性相关的加性QTLs,分布于1B、2A、3A、3B、5B、6A、6B、6D、7B和7D染色体上,其中4个位点(qCMP-1B-1qCMP-3B-2qCMP-5B-1qCMP-5B-4)遗传贡献率大于10%,属主效基因,其余QTL的遗传贡献率较小,属微效基因。3种环境条件下5B染色体的Xgwm213–Xswes861.2区间检测到共同位点,与Xswes861.2的遗传距离为0 cM,其中qCMP-5B-1 (环境1)和qCMP-5B-4 (环境3)的贡献率高达17.5%和14.0%。研究结果对于小麦抗寒标记选择和抗寒育种具有应用价值。

关键词: 冬小麦, DH群体, 细胞膜透性, 抗寒性, QTL

Abstract: To understand the genetic mechanism of cold resistance in winter wheat, we mapped quantitative trait loci (QTLs) for cellmembrane permeability of leaf treated by low temperature using compound interval method based on an existing linkage map containing 324 simple sequence repeat (SSR) markers. The map population, which was consisted of 168 double haploid lines from the cross Huapei 3 × Yumai 57, was planted in three sites, and the cellmembrane permeability of leaf treated by low temperature (−18°C) was determined with electric conductometry . A total of 21 additive QTLs associated with cell membrane permeability of leaf were detected in three environments, which were distributed on chromosomes 1B, 2A,3A, 3B, 5B, 6A, 6B, 6D, 7B, and 7D. Four loci (qCMP-1B-1, qCMP-3B-2, qCMP-5B-1, and qCMP-5B-4) with phenotypic contributions higher than 10% were regarded as major genes, and the remaining QTLs were minor genes with phenotypic contributions lower than 10%. A common locus in the Xgwm213–Xswes861.2 interval on chromosome 5B was detected in the three environments, with 0 cM genetic distance from Xswes861.2. The loci, designated qCMP-5B-1 in environment 1 and qCMP-5B-4 in environment 3, explained 17.5% and 14.0% with phenotypic variations, respectively. The result of the present study was useful for marker-assisted selection and breeding for cold resistance of wheat.

Key words: Winter wheat, DH population, Cell membrane permeability, Cold resistance, Quantitative trait loci

[1]Yang J-H(杨健辉), Ju W(巨伟), Yang X-J(杨学举). Research progress on freezing and cold-resistant breeding of winter wheat. J Hebei Agric Sci (河北农业科学), 2011, 15(1): 33–34 (in Chinese with English abstract)

[2]Yu J(于晶), Zhang L(张林), Cang J(苍晶), Hao Z-B(郝再彬), Wang D-J(王多佳). Progress in cold resistance of winter wheat. J Northeast Agric Univ (东北农业大学学报), 2008, 39(11): 123–127 (in Chinese with English abstract)

[3]Pei B-D(裴宝弟), Zhang W(张雯), Shi R-X(史瑞雪). Biochemical mechanism of cold-resistance of two breeds of winter wheat.

J Shanxi Agric Univ(山西农业大学学报), 2000, 20(3): 288–290 (in Chinese with English abstract)

[4]Jian L-C(简令成). Advances of the studies on the mechanism of plant cold hardiness. Chin Bull Bot (植物学通报), 1992, 9(3): 17–22 (in Chinese)

[5]Ju W(巨伟), Yang C-F(杨彩凤), Zhao Y(赵勇), Liu B-H(刘宝华), Yang X-J(杨学举). Study on relationship between cell membrane permeability of leaves of winter wheat under the low temperature treatment and cold resistance. J Anhui Agric Sci (安徽农业科学), 2011, 39(19): 11416–11417 (in Chinese with English abstract)

[6]Brube-Bable A L, Fowler D B. Genetic control of cold hardiness and venalization requirement in winter wheat. Crop Sci, 1988, 28: 879–884

[7]Waldman M, Rikin A, Dovrat A, Richmond A E. Horironal regulation of morphogenesis and cold resistance. J Exp Bot, 1975, 26: 853–859

[8]Limin A E, Danyluk J, Chauvinl L P, Fowler D B, Sarhan F. Chromosome mapping of low-temperature induced Wcs120 family genes and regulation of cold-tolerance expression in wheat. Mol Gen Genet, 1997, 253: 720–727

[9]Hai Y(海燕), Kang M-H(康明辉). Breeding of a new wheat variety Huapei 3 with high yield and early maturing. J Henan Agric Sci (河南农业科学), 2007, (5): 36–37 (in Chinese)

[10]Guo C-Q(郭春强), Bai Z-A(柏志安), Liao P-A(廖平安), Jin W-K(靳文奎). New high quality and yield wheat variety Yumai 57. China Seed (中国种业), 2004, (4): 54 (in Chinese)

[11]Shen W-Y(沈文云), Hou F(侯锋), Lü S-Z(吕淑珍), Zhang Q-D(张庆栋). Physiological characteristics of hybrid cucumber in low-temperature. Acta Agric Boreali-Sin (华北农学报), 1995, 10(1): 56–59 (in Chinese)

[12]Zhang K P, Tian J C, Zhao L, Liu B, Chen G F. Detection of quantitative trait loci for heading date based on the doubled haploid progeny of two elite Chinese wheat cultivars. Genetics, 2009, 135: 257–265

[13]Wang J-K (王建康). Inclusive composite interval mapping of quantitative trait genes. Acta Agron Sin(作物学报), 2009, 35(2): 239–245 (in Chinese with English abstract)

[14]Li H H, Ye G H, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 106: 361–374

[15]Li H H, Ribaut J M, Li Z L, Wang J K. Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental populations. Theor Appl Genet, 2008, 116: 243–260

[16]Zhang L Y, Li H H, Li Z L, Wang J K. Interactions between markers can be caused by dominance effect of QTL. Genetics, 2008, 108: 1177–1190

[17]McIntosh R A, Devos K M, Dubcovsky J, Rogers W J, Morris C F, Appels R, Anderson O D. Catalogue of gene symbols for wheat.2005 [2009-06-30]. http://wheat.pw.usda.gov/ggpages/wgc/2005upd.html

[18]Cao G, Zhu J, He C, Gao Y, Yan J, Wu P. Impact of epistasis and QTL×environment interaction on the developmental behavior of plant height in rice (Oryza sativa L.). Theor Appl Genet, 2001, 103: 153–160

[19]Fridovich I. The biology of oxygen radicals. Science, 1978, 201: 875-880

[20]Zhong X-L(钟秀丽), Wang D-L(王道龙), Ji T-J(吉田久), Hu X(胡新), Zhao P(赵鹏), Han L-S(韩立帅), Wang X-G(王晓光), Huang S-H(黄绍华), Huang J-Y(黄建英), Sun Z-F(孙忠富). Analysis on the factors affecting frost resistance for winter wheat. Acta Agron Sin (作物学报), 2007, 33(11): 1810–1814 (in Chinese with English abstract)

[21]Wang Y-L (王玉玲), Kang J (康洁). Effects of low temperature stress on physiological and biochemical characteristics of winter wheat in seedling and jointing stages. J Henan Agric Sci (河南农业科学), 2004, 5: 3–5 (in Chinese with English abstract)

[22]Chen L(陈龙), Wu S-G(吴诗光), Li S-M(李淑梅), Yin G-H(殷贵鸿), Zhou L(周琳), Gu H-M(古红梅). Response and resistance to chemical and biological analysis in jointing stage of winter wheat under low temperature stress. Acta Agric Boreali-Sin (华北农学报), 2001, 16(4): 42–46 (in Chinese)

[23]Yang C-L(杨春玲), Song Z-J(宋志均), Chen Y-X(陈玉香), Han Y(韩勇), Li X-L(李晓亮). Study on mechanism of cold resisitance in wheat. J Shanxi Agric Sci (山西农业科学), 2008, 36(1): 49–52 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[5] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[6] 张波, 裴瑞琴, 杨维丰, 朱海涛, 刘桂富, 张桂权, 王少奎. 利用单片段代换系鉴定巴西陆稻IAPAR9中的粒型基因[J]. 作物学报, 2021, 47(8): 1472-1480.
[7] 罗兰, 雷丽霞, 刘进, 张瑞华, 金桂秀, 崔迪, 黎毛毛, 马小定, 赵正武, 韩龙植. 利用东乡普通野生稻染色体片段置换系定位产量相关性状QTL[J]. 作物学报, 2021, 47(7): 1391-1401.
[8] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[9] 周新桐, 郭青青, 陈雪, 李加纳, 王瑞. GBS高密度遗传连锁图谱定位甘蓝型油菜粉色花性状[J]. 作物学报, 2021, 47(4): 587-598.
[10] 李书宇, 黄杨, 熊洁, 丁戈, 陈伦林, 宋来强. 甘蓝型油菜早熟性状QTL定位及候选基因筛选[J]. 作物学报, 2021, 47(4): 626-637.
[11] 沈文强, 赵冰冰, 于国玲, 李凤菲, 朱小燕, 马福盈, 李云峰, 何光华, 赵芳明. 优良水稻染色体片段代换系Z746的鉴定及重要农艺性状QTL定位及其验证[J]. 作物学报, 2021, 47(3): 451-461.
[12] 王瑞莉, 王刘艳, 雷维, 吴家怡, 史红松, 李晨阳, 唐章林, 李加纳, 周清元, 崔翠. 结合RNA-seq分析和QTL定位筛选甘蓝型油菜萌发期与铝毒胁迫相关的候选基因[J]. 作物学报, 2021, 47(12): 2407-2422.
[13] 吕国锋, 别同德, 王慧, 赵仁慧, 范金平, 张伯桥, 吴素兰, 王玲, 汪尊杰, 高德荣. 长江下游麦区新育成品种(系) 3种主要病害的抗性鉴定及抗病基因/ QTL的分子检测[J]. 作物学报, 2021, 47(12): 2335-2347.
[14] 张矞勋, 齐拓野, 孙源, 璩向宁, 曹媛, 吴梦瑶, 刘春虹, 王磊. 高分六号遥感影像植被特征及其在冬小麦苗期LAI反演中的应用[J]. 作物学报, 2021, 47(12): 2532-2540.
[15] 胡鑫慧, 谷淑波, 朱俊科, 王东. 分期施钾对不同质地土壤麦田冬小麦干物质积累和产量的影响[J]. 作物学报, 2021, 47(11): 2258-2267.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!