欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (07): 1240-1246.doi: 10.3724/SP.J.1006.2012.01240

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

利用RIL群体对水稻再生力及相关农艺性状的QTL分析

杨川航1,2,王玉平1,涂斌1,李婷1,胡亮2,李仕贵1,*   

  1. 1 四川农业大学水稻研究所,四川温江611130;2 四川省自贡市农业科学研究所,四川自贡643000
  • 收稿日期:2011-11-01 修回日期:2012-02-22 出版日期:2012-07-12 网络出版日期:2012-03-29
  • 通讯作者: 李仕贵, E-mail: lishigui@sicau.edu.cn
  • 基金资助:

    本研究由国家杰出科学基金项目(31025017)和自贡市科委重大专项(2008NO4)资助。

QTL Analysis of Rice Ratooning Ability and Related Agronomic Traits by Using RIL Populations

YANG Chuan-Hang1,2,WANG Yu-Ping1,TU Bin1,LI Ting1,HU Liang2,LI Shi-Gui1,*   

  1. 1 Rice Research Institute, Sichuan Agricultural University, Wenjiang 611130, China; 2 Zigong Agricultural Research Institute, Zigong 643000, China
  • Received:2011-11-01 Revised:2012-02-22 Published:2012-07-12 Published online:2012-03-29
  • Contact: 李仕贵, E-mail: lishigui@sicau.edu.cn

摘要: 以粳糯稻品种糯89-1与籼型重穗型杂交稻骨干恢复系蜀恢527杂交构建的籼粳交F7代RIL群体的169个家系为作图群体,构建了一张含105个微卫星(SSR)标记的分子连锁图谱。定位了水稻正季7个农艺性状的QTL 15个,分布在第1、第2、第3、第5、第6、第7、第10染色体上,LOD值介于2.10~7.51,贡献率3.77%~25.37%,其中贡献率10.0%以上的QTL 7个,单个性状的QTL 1~4个;定位了水稻再生季7个农艺性状的QTL 19个,分布在第1、第2、第3、第4、第5、第6、第7、第10染色体上,LOD值介于2.17~18.34,贡献率3.23%~37.66%,其中贡献率10.0%以上的QTL 7个,单个性状的QTL1~5个;定位了影响水稻再生力(最终再生率)的QTL 2个(qRa4qRa5),分别在第4和第5染色体上,贡献率分别为8.17%和7.09%,加性效应分别为0.32和-0.39,贡献率和加性效应均较小,属微效基因。共检测到两季农艺性状QTL 36个,同一性状被重复检测的QTL 8个。水稻再生力与正季稻有效穗呈极显著负相关;水稻再生力与再生稻有效穗呈极显著正相关,与每穗总粒数和着粒密度呈显著负相关。QTL定位结果揭示了有效穗是影响再生力的主要因素。

关键词: 水稻, 重组自交系, 再生力, 农艺性状, QTL

Abstract: A molecular linkage map containing 105 SSR marks were constructed by using a RIL population generated from the F7 descent of a cross of japonica glutinous rice variety 89-1 and an indica heavy panicle backbone hybrid rice lines SH527. By using this map, we mapped 15 QTLs for seven agronomic traits in the normal season, which was distributed on chromosomes 1, 2, 3, 5, 6, 7, and 10, respectively. The LOD value varied from 2.10 to 7.51, and the contribution rate varied from 3.77% to 25.37%, among which seven QTLs had the contribution rate larger than 10.0%. The number of a single trait QTL varied from 1 to 5. Two QTLs (qRa4, qRa5) affecting rice ratooning ability were detected on chromosomes 4 and 5, the contribution rate was 8.17% and 7.09%, and the additive effect was 0.32 and -0.39, respectively. Thirty-six QTLs for agronomic traits were detected in two seasons and among which eight were detected repeatablely. According to the results, the ratooning ability was remarkably negatively related to the effective ear of the normal season. In addition, the ratooning ability was tightly positively related to the effective ear in the ratooning season, and was negatively related to the grain number per ear and seed density. The QTLs mapping results revealed that the effective ear of normal season and ratooning season is the main factor that affects rice’s ratooning ability.

Key words: Rice, RIL, Ratooning ability, Agronomic traits, QTL

[1]Yang K-Q(杨开渠). Research on ratooning rice. Acta Agric Sin (农业学报), 1958, 9(2): 107–133 (in Chinese)

[2]Ding Y(丁彦), Zhou Q-M(周清明). Research on the utilization of regrowth vigour of rice. Hunan Agric Sci (湖南农业科学), 2005, (2) 11–13 (in Chinese with English abstract)

[3]Tang H(唐浩), Chen L-Y(陈立云), Yang Y-S(杨益善), Xiao Y-H(肖应辉), Li J-M(李军民). Correlation of ratooning rate of rice to yield characters. Hybrid Rice (杂交水稻), 2003, 18(3): 55–58 (in Chinese with English abstract)

[4]Ren T-J(任天举), Jiang Z-C(蒋志成), Wang P-H(王培华), Li J-Y(李经勇), Zhang X-C(张晓春), Lu Y-Y(鲁远源), Liu X-S(刘贤双). Correlation of ratooning ability with its main crop agronomic traits in midseason hybrid rice. Acta Agron Sin (作物学报), 2006, 32(4): 613–617 (in Chinese with English abstract)

[5]Liu Y-S(刘永胜), Zhou K-D(周开达), Zeng Z-Y(曾日勇), Luo W-Z(罗文质). Evaluation for rice ratooning ability of intersubspecific hybrid and its relation to agronomic characters of mother plant. Chin J Rice Sci (中国水稻科学), 1992, 6(4): 151–154 (in Chinese with English abstract)

[6]Xu F-X (徐富贤), Xiong H(熊洪). Relationship between grain number per panicle of main crop among varieties and their ratooning ability in hybrid mid-rice. J Sichuan Agric Univ (四川农业大学学报), 1998, 16(3): 304–306 (in Chinese with English abstract)

[7]Tan Z-B(谭震波), Shen L-S(沈利爽), Lu C-F(陆朝福), Chen Y(陈英), Zhu L-H(朱立煌), Zhou K-D(周开达), Yuan Z-L(袁祚廉). Identification of QTLs for ratooning ability and grain yield of rice and analysis of their genetic effects. Acta Agron Sin (作物学报), 1997, 23(3): 289–295 (in Chinese with English abstract)

[8]Zheng J-S(郑景生), Li Y-Z(李义珍), Lin W-X(林文雄). Identification of QTL for ratooning ability and grain yield traits in ratoon rice based on SSR marker. Mol Plant Breed (分子植物育种), 2004, 2(3): 342–347 (in Chinese with English abstract)

[9]Chen R(陈瑞), Cheng Z-Q(程在全), Huang X-Q(黄兴奇), Zhang W(张伟). Progress in rice genes mapping and gene distribution in chromosomes. Hereditas (Beijing) (遗传), 2007, 29(4): 399–412 (in Chinese with English abstract)

[10]Bai X F, Luo L J, Yan W H, Kovi M R, Xing Y Z. Quantitative trait loci for rice yield-related traits using recomibant inbred lines derived from diverse cultivars. J Genet, 2011, 90: 209–215

[11]Guo T, Liu X, WENG J, Liu S, Liu X, Chen M, Li J, Su N, Wu F, Cheng Z, Guo X, Lei C, Wang J, Jang L, Wang J. Identification of a stable quantitative trait locus for percentage grains with white chalkiness in rice (Oryza sativa). J Integr Plant Biol, 2011, 53: 598–607

[12]Li Y-S(李余生), Tang G-H(汤国辉), Guan R-Z(管荣展), Wang C-L(王才林), Zhang H-S(张红生). QTLs analysis of yield-related traits in rice under environmental conditions. Jiangsu J Agric Sci (江苏农业学报), 2007, 23(6): 509–515 (in Chinese with English abstract)

[13]Guo L-B(郭龙彪), Luo L-J(罗利军), Xing Y-Z(邢永忠), Xu C-G(徐才国), Mei H-W(梅捍卫), Wang Y-P(王一平), Zhong D-B(钟代彬), Qian Q(钱前), Ying C-S(应存山), Shi C-H(石春海). Dissection of QTLs in two year for important agronomic traits in rice (Oryza sativa L.). Chin J Rice Sci (中国水稻科学), 2003, 17(3): 211–218 (in Chinese with English abstract)

[14]Feng G-N(封功能), Li D-X(李东霞), Zhou J-M(周建民), He Y(何颖), Xu C-W(徐辰武), Xu M-L(徐明良). QTL mapping and epistasis analysis of yield associated traits in an DH population from india-japonica cross of rice (Oryza sativa L.). J Yangzhou Univ (扬州大学学报), 2004, 25(2): 5–10 (in Chinese with English abstract)

[15]Li S-G(李仕贵). Gene Analysis and Molecular Tagging of Genes for Several Important Traits in Rice (Oryza sativa L.). PhD Dissertation of Sichuan Agricultural University, 1998 (in Chinese with English abstract)

[16]Zhao Z W, Liu J F, Qi J S, Li S G, Lei S F. Genetic analysis on overwintering character of glutinous rice 89-1. Agric Sci China, 2007, 6: 1035–1042

[17]Shen Z-T(申宗坦). Plant Breeding Experimentation (作物育种学试验). Beijing: Chinese Agriculture Press, 1995. pp 102–107 (in Chinese)

[18]Stephen E L, Mark J D, Eric S L. Constructing Genetic linkage Maps with MAPmarker/EXP Version 3.0: a Tutorial and Reference Manual, 3rd edn. Cambridge, MA: A Whitehead institute for Bio medical Research Technical Report, 1993 [2010-05-01]. http://linkage.rockefeller.edu/soft/

[19]Wang S C, Basten C J, Zeng Z B. Windows QTL Cartographer V2.5: Program in Statistical Genetics. Raleigh, NC: North Carolina State University, 2011 [2010-05-10]. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

[20]McCouch S R, CGSNL (Committee on Gene Symbolization, Nomenclature and Linkage, Rice Genetics Cooperative). Gene Nomenclature System for Rice. Rice, 2008, 1: 72–84
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[7] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[8] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[9] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[10] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[11] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[12] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[13] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!