欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (08): 1347-1353.doi: 10.3724/SP.J.1006.2012.01347

• 作物遗传育种·种质资源·分子遗传学 •    下一篇

水稻早衰突变体esl2的遗传分析和基因定位

徐芳芳,桑贤春,任德勇,唐彦强,胡宏伟,杨正林,赵芳明,何光华*   

  1. 西南大学水稻研究所 / 转基因植物与安全控制重庆市重点实验室 / 南方山地农业教育部工程研究中心, 重庆 400716
  • 收稿日期:2012-01-05 修回日期:2012-04-20 出版日期:2012-08-12 网络出版日期:2012-06-04
  • 通讯作者: 何光华, E-mail: hegh@swu.edu.cn
  • 基金资助:

    本研究由中央高校基本科研业务费专项(XDJK2009B019)和国家自然科学基金项目(31071072)资助。

Genetic Analysis and Gene Mapping of Early Senescence Leaf Mutant esl2 in Rice

XU Fang-Fang,SANG Xian-Chun,REN De-Yong,TANG Yan-Qiang,HU Hong-Wei,YANG Zheng-Lin,ZHAO Fang-Ming,HE Guang-Hua*   

  1. Rice Research Institute, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing 400716, China
  • Received:2012-01-05 Revised:2012-04-20 Published:2012-08-12 Published online:2012-06-04
  • Contact: 何光华, E-mail: hegh@swu.edu.cn

摘要: 利用EMS诱变水稻籼型恢复系缙恢10号, 从其后代中鉴定出一个早衰突变体esl2, 苗期正常, 孕穗期开始叶尖和叶缘黄化衰老。与野生型相比, 孕穗期和抽穗期光合色素含量均显著下降, 抽穗期倒一叶的超氧化酶歧化酶(SOD)活性、可溶性蛋白(SP)含量降低, 活性氧(ROS)、过氧化物酶(POD)、过氧化氢酶(CAT)、丙二醛(MDA)和脯氨酸(PRO)含量或活性增加。超微结构观察表明, esl2衰老部位的细胞多中空且形状不规则, 伴随细胞裂解、细胞质溶解等特征; 同时, 叶绿体结构异常, 叶绿体膜溶解、基粒模糊, 基质片层疏松, 类囊体发育异常。遗传分析表明, 该突变体受一对隐性核基因调控。利用1 005株西农1A/esl2的F2隐性定位群体, 最终将Esl2定位在第4染色体SSR标记RM17122和swu4-13之间, 物理距离约244 kb, 这为Esl2基因的克隆和功能研究奠定了基础。

关键词: 水稻(Oryza sativa L.), 早衰, 基因定位

Abstract: An early senescence leaf mutant temporarily designated as esl2was discovered in the progeny of an excellent indica restorer line Jinhui 10 with seeds treated by ethyl methane sulfonate (EMS). Themutant kept normal at seedling stage and showed etiolated senescence leaves from booting sage to the maturity, especially at tip and margin of leaf blade. By contrast with the wild type, photosynthetic pigment contents decreased significantly at both booting stage and heading stage, superoxide dismutase (SOD) activity and soluble protein contents decreased significantly, while the activities of peroxidase (POD) and catalase (CAT), and contents of reactive oxygen species (ROS), malondialdehyde (MDA) and praline increased significantly at heading stage in the esl2 mutant. The assay of Transmission Electronic Microscope (TEM) observation was performed and demonstrated that the most cells appeared irregular and void with endolysis and disrupted organelles at senescence part of the mutational leaf, concomitantly, abnormal chloroplast appeared and showed dissolved membrane, indistinct grana, disorganized lamellar structure and incorrect thylakoid. Genetic analysis suggested that the mutational trait was controlled by one nuclear recessive gene. Xinong 1A was crossed with the esl2 and 1005 mutational F2single plants were used for gene mapping. Finally, Esl2 locus was mapped between SSR marker RM17122 and swu4-13 on the chromosome 4 with physical distance of 244 kb. This result provides a foundation of Esl2 gene cloning by map-based strategy as well as its functional analysis.

Key words: Rice (Oryza sativa L.), Early senescence, Gene mapping

[1]Yoshida S. Molecular regulation of leaf senescence. Curr Opin Plant Biol, 2003, 6: 79–84

[2]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40

[3]He Y, Tang W, Swain J D, Green A L, Jack T P, Gan S. Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol, 2001, 126: 707–716

[4]Ansari M I, Lee R H, Chen S C G. A novel senescence-associated gene encoding GABA: Pyruvate transaminase is up-regulated during rice leaf senescence. Physiol Plant, 2005, 123: 1–8

[5]Lee R H, Lin M C, Chen S C. A novel alkaline a-galactosidase gene is involved in rice leaf senescence. Plant Mol Biol, 2004, 55: 281–295

[6]Cha K W, Lee Y J, Koh H J, Lee B M, Nam Y W, Paek N C. Isolation, characterization, and mapping of stay green mutant in rice. Theor Appl Genet, 2002, 104: 526–532

[7]Jiang H W, Li M R, Liang N T, Yan H B, Wei Y B, Xu X L, Liu J, Xu Z F, Chen F, Wu G J. Molecular cloning and function analysis of the stay green gene in rice. Plant J, 2007, 52: 197–209

[8]Park S Y, Yu J W, Park J S, Li J J, Yoo S C, Lee N Y, Lee S K, Jeong S W, Seo H S, Koh H J, Jeon J S, Park Y, Paek N C. The senescence-induced stay green protein regulates chlorophyll degradation. Plant Cell, 2007, 19: 1649–1664

[9]Kusaba M, Ito H, Morita R, Iida S, Sato Y, Fujimoto M, Kawasaki S, Tanaka R, Hirochika H, Nishimura M, Tanaka A. Rice NON-YELLOW COLORINGI is involved in light-harvesting complex II and grana degradation during leaf senescence. Plant Cell, 2007, 19: 1362–1375

[10]Kong Z S, Li M N, Yang W Q, Xu W Y, Xue Y B. A novel nuclear localized CCCH-type zinc finger protein, OsDOS, is involved in delaying 1388?leaf senescence in rice. Plant Physiol, 2006, 141: 1376–1388

[11]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol, 2007, 145: 29–40

[12]Qiao Y L, Jiang W Z, Lee J H, Park B S, Choi M S, Piao R H, Woo M O, Roh J H, Han L Z, Paek N C, Seo H S, Koh H J. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunitμ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol, 2009, 185: 258–274

[13]Lin A H, Wang Y Q, Tang J Y, Xue P, Li C L, Liu L C, Hu B, Yang F Q, Loake G J, Chu C C. Nitric oxide and protein S-nitrosylation are integral to hydrogen peroxide induced leaf cell death in rice. Plant Physiol, 2011, DOI: 10.1104/pp.111.184531

[14]Wang J, Wu S J, Zhou Y, Zhou L H, Xu J F, Hu J, Fang Y X, Gu M H, Liang G H. Genetic analysis and molecular mapping of a presenescing leaf gene psl1 in rice (Oryza sativa L.). Chin Sci Bull, 2006, 51: 2986–2992

[15]Li F Z, Hu G C, Fu Y P, Si H M, Bai X M, Sun Z X. Genetic analysis and high-resolution mapping of premature senescence gene Pse(t) in rice (Oryza sativa L.). Genome, 2005, 48: 738–746

[16]Yan W Y, Ye S h, Jin Q S, Zeng L J, Peng Y, Yan D W, Yang W B, Yang D l, He Z H, Dong Y J, Zhang X M. Characterization and mapping of a novel mutant sms1(senescence and male sterility 1) in rice. J Genet Genomics, 2010, 37: 47–55

[17]Fang L K, Li Y F, Gong X P, Sang X C, Ling Y H, Wang X W, Cong Y F, He G H. Genetic analysis and high-resolution mapping of psl3 (presenescing leaf 3) in rice. Chin Sci Bull, 2010, 5: 1676–1681

[18]Yang Y L, Rao Y C, Liu H J, Fang Y X, Dong G J, Huang L C, Leng Y J, Guo L B, Zhang G H, Hu J, Gao Z Y, Qian Q, Zeng D L. Characterization and fine mapping of an early senescence mutant (es-t) in Oryza sativa L. Chin Sci Bull, 2011, DOI: 10.1007/s11434-011-4587-8

[19]Wellburn A R. The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol, 1994, 144: 307–313

[20]Gao J-F(高俊凤). Experimental Guidance for Plant Physiology(植物生理学实验指导). Beijing: Higher Education Press, 2006. pp: 208-233 (in Chinese)

[21]Wang A-G(王爱国), Luo G-H(罗广华). Quantitative relation between the reaction of hydroxylamine and superoxide anion radicals in plant. Plant Physiol Commun (植物生理学通讯), 1990, 26(6): 55–57 (in Chinese with English abstract)

[22]He R-F(何瑞锋), Ding Y(丁毅), Yu J-H(余金洪), Zu M-S(祖明生). Study on leaf ultrastructure of the thermo-sensitive chlorophyll deficient mutant in rice. J Wuhan Bot Res (武汉植物学研究), 2001, 19(1): 1–5 (in Chinese with English abstract)

[23]Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828–9832

[24]Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucl Acids Res, 1980, 8: 4321–4325

[25]Sang X-C(桑贤春), He G-H(何光华), Zhang Y(张毅), Yang Z-L(杨正林), Pei Y(裴炎). The simple gain of templates of rice genomes DNA for PCR. Hereditas (Beijing) (遗传), 2003, 25(6): 705–707 (in Chinese with English abstract)

[26]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLPs) in rice (Oryza sativa L.). Mold Gen Genet, 1996, 252: 597–607

[27]Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg L. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174–181

[28]Kosambi D D. The estimation of map distances from recombination values. Ann Human Genet, 1944, 12: 172–175

[29]Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D. The molecular analysis of leaf senescence-a genomics approach. Plant Biotechnol, 2003, 1: 3–22

[30]Wilson K A, McManusM T, Gordon M E, Jordan T W. The proteomics of senescence in leaves of white clover, Trifolium repens L. Proteomics, 2002, 2: 1114–1122

[31]Belknap W R, Garbarino J E. The role of ubiquitin in plant senescence and stress responses. Trends Plant Sci, 1996, 1: 331–335

[32]Yan H F, Saika H, Maekawa M, Takamure I, Tsutsumi N, Kyozuka J, Nakazono M. Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death. Genes and Genetic Systems, 2007, 82: 361–366

[33]Lim P O, Kim H J, Nam H G. Leaf senescence. Annu Rev Plant Biol, 2007, 58: 115–136
[1] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[2] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[3] 蒋成功, 石慧敏, 王红武, 李坤, 黄长玲, 刘志芳, 吴宇锦, 李树强, 胡小娇, 马庆. 玉米籽粒突变体smk7的表型分析和基因定位[J]. 作物学报, 2021, 47(2): 285-293.
[4] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[5] 黄妍, 贺焕焕, 谢之耀, 李丹莹, 赵超越, 吴鑫, 黄福灯, 程方民, 潘刚. 水稻矮化宽叶突变体osdwl1的生理特性和基因定位[J]. 作物学报, 2021, 47(1): 50-60.
[6] 姜鸿瑞, 叶亚峰, 何丹, 任艳, 杨阳, 谢建, 程维民, 陶亮之, 周利斌, 吴跃进, 刘斌美. 一个新的水稻脆秆突变体bc17的鉴定及基因定位[J]. 作物学报, 2021, 47(1): 71-79.
[7] 石慧敏, 蒋成功, 王红武, 马庆, 李坤, 刘志芳, 吴宇锦, 李树强, 胡小娇, 黄长玲. 玉米籽粒突变体dek48的表型鉴定与基因定位[J]. 作物学报, 2020, 46(9): 1359-1367.
[8] 田士可, 秦心儿, 张文亮, 董雪, 代明球, 岳兵. 玉米雄性不育突变体mi-ms-3的遗传分析及分子鉴定[J]. 作物学报, 2020, 46(12): 1991-1996.
[9] 谢园华,李凤菲,马晓慧,谭佳,夏赛赛,桑贤春,杨正林,凌英华. 水稻半外卷叶突变体sol1的表型分析与基因定位[J]. 作物学报, 2020, 46(02): 204-213.
[10] 霍强,杨鸿,陈志友,荐红举,曲存民,卢坤,李加纳. 基于QTL定位和全基因组关联分析筛选甘蓝型油菜株高和一次有效分枝高度的候选基因[J]. 作物学报, 2020, 46(02): 214-227.
[11] 莫祎,孙志忠,丁佳,余东,孙学武,盛夏冰,谭炎宁,袁贵龙,袁定阳,段美娟. 水稻白条纹叶突变体wsl1的遗传分析及基因精细定位[J]. 作物学报, 2019, 45(7): 1050-1058.
[12] 王瑞,陈阳松,孙明昊,张秀艳,杜依聪,郑军. 玉米穗发芽突变体vp-like8的遗传分析及突变基因鉴定[J]. 作物学报, 2019, 45(5): 656-661.
[13] 尚丽娜,陈新龙,米胜南,委刚,王玲,张雅怡,雷霆,林永鑫,黄兰杰,朱美丹,王楠. 水稻温敏型叶片白化转绿突变体tsa2的表型鉴定与基因定位[J]. 作物学报, 2019, 45(5): 662-675.
[14] 张莉莎,米胜南,王玲,委刚,郑尧杰,周恺,尚丽娜,朱美丹,王楠. 水稻短根白化突变体sra1生理生化分析及基因定位[J]. 作物学报, 2019, 45(4): 556-567.
[15] 王晓娟,潘振远,刘敏,刘忠祥,周玉乾,何海军,邱法展. 一个新的玉米silky1基因等位突变体的遗传分析与分子鉴定[J]. 作物学报, 2019, 45(11): 1649-1655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!